首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kernel characteristics and composition, milling performance, protein quality, and alveograph parameters of five spelt cultivars grown in European countries were determined in relation of their utilization in pasta products. Long pasta was manufactured and chemically characterized, and its quality was assessed by sensory and chemical tests. Protein and fat contents were high in the grains (15.7 and 4.4% db, mean value, respectively). Total fiber varied from 10.5 to 14.9% db. The average β-glucan content was 1.2% db. The milling performance as determined by yield, damaged starch, ash, and particle-size distribution in the flour was uniform among the five cultivars. The results of the SDS sedimentation and gluten index tests indicated that spelt gluten strength was low, and this was confirmed by the alveograph test. Sensory and chemical evaluations of the pastas, however, indicated that spelt is suitable for obtaining good-quality pasta. The combination of the high protein content and the high-temperature drying cycle adopted in pasta production could be responsible for these good results.  相似文献   

2.
The combined effects on pasta properties of 1) varying dosages of endoxylanases (EC 3.2.1.8) from Aspergillus aculeatus and Bacillus subtilis and 2) lower levels of water during pasta dough processing were studied. The A. aculeatus endoxylanase has high selectivity toward water‐extractable arabinoxylan (WE‐AX), whereas B. subtilis endoxylanase preferentially hydrolyzes water‐unextractable arabinoxylan (WU‐AX). Pasta was produced on a microscale (50.0 g) from the semolinas of both a strong (AC Navigator) and a moderately strong (AC Avonlea) durum wheat cultivar. The levels of added water in endoxylanase‐treated pastas were adjusted to obtain the same maximal farinograph consistencies as for the control pastas. The extruded pastas were dried with drying cycles at 40, 70, or 90°C. Apart from increasing levels of solubilized arabinoxylans, these treatments had little effect on the color, optimal cooking time, and firmness of the resulting pasta. High enzyme concentrations and low (40°C) drying temperature resulted in clearly or much less checked final products for the B. subtilis and A. aculeatus enzyme, respectively. Upon cooking, the enzymically formed low molecular weight arabinoxylans were retained better in the pasta strands than their equally low molecular weight arabinogalactan counterparts.  相似文献   

3.
It is well known that gluten plays a major role in determining cooking quality in durum wheat pasta. This work is an attempt to systematically elucidate the role of gluten quantity and nature in determining cooking quality as a function of the drying cycle used in the manufacturing process. Gluten and starch were fractionated from two durum wheat cultivars possessing good and poor gluten quality. Either of them were then added back to the original base semolina to alter its protein content and to produce two semolina series with identical protein contents. Semolinas were processed into pasta and dried following three drying programs (low, medium, and high temperature). Cooking quality was determined with sensorial, chemical, and instrumental methods. The results indicate that optimum cooking time is governed by gluten quality. The positive effect on cooking quality of increasing gluten contents and of the application of HT drying is evident in weak gluten samples, but it is not significant in the strong gluten samples.  相似文献   

4.
Drying process plays a fundamental role in pasta making. The greatest number of studies have been focused on the optimization of drying conditions for semolina pasta, and the obtained results have been applied in a similar way on pasta made up of nonconventional raw materials without considering a processing optimization. The aim of this research was to evaluate the influence of different drying treatments (low, medium, and high temperature) on the quality of uncooked and cooked soft wheat pasta enriched with oat flour. Results of total organic matter and dried residue showed no significant difference between samples dried by medium and high temperature treatments. Moreover, these last samples showed a slight improvement in cooking quality over samples dried at low temperature (total organic matter results were 1.31 versus 1.66 g/100 g of dried pasta). This study revealed that the improvement of cooking quality of pasta enriched with oat flour did not require the application of high drying temperature (>80°C) that involves a considerable consumption of energy and could favor the development of a Maillard reaction, decreasing quality characteristics of this kind of product.  相似文献   

5.
Common wheat adulteration of durum wheat pasta was quantified using real‐time duplex polymerase chain reaction (PCR). The total DNA content of pasta was determined by amplifying part of a wheat gene encoding a lipid transfer protein, and common wheat DNA was quantified by amplifying part of the puroindoline‐b gene. Under the conditions defined by this study, for pasta with a theoretical adulteration of 3%, the experimentally determined mean value was 2.6–3.4%, depending on drying temperature. Pure durum wheat pastas were distinguished from adulterated pastas without ambiguity. This study demonstrates the feasibility of using real‐time duplex PCR to quantify common wheat adulteration of pasta dried at high temperature, quantification that was impossible with the French official peroxidase‐marker method.  相似文献   

6.
An attempt was made to evaluate gluten structural changes in refined and whole wheat pasta from hard white winter wheat to elucidate the impact of whole wheat components on the formation and structure of the gluten network in pasta. Attenuated total reflectance–FTIR spectroscopy was used to track gluten secondary structure through most of the major steps in pasta processing: raw material, mixing, drying, and cooking. Protein solubility, accessible thiols, and SDS‐PAGE data were also collected to provide additional information on the nature of protein interactions and network composition. Few secondary structural differences were observed between refined and whole wheat flours from hard white wheat. However, mixing induced a significant shift to β‐sheet structures in refined dough that was not equally matched by whole wheat dough. Drying under both high temperature, short time (HT) and low temperature, long time (LT) conditions resulted in a reversion to structural distributions similar to those for flour in both pastas. However, greater protein denaturation in HT samples was indicated by lower protein solubility also in the presence of denaturants and disulfide reducing agents. Cooking generated a substantial increase in β‐sheet structures for both pasta systems. This structure was greatest in refined and LT samples. Thiol accessibility data indicate the presence of a highly aggregated, compact gluten network in refined pasta, mostly driven by hydrophobic association. Conversely, the network in whole wheat pasta was more loosely associated and dependent on disulfide bonding, both of which fit well with the secondary structural data.  相似文献   

7.
As part of a general study aiming to clarify the role of arabinoxylans (AX) in pasta processing and quality, AX were modified by the addition of endoxylanases during pasta processing. The influence on processing parameters and quality were determined. Pasta (800 g) was produced from two commercial semolinas (semA and semB) using dosages of Bacillus subtilis (XBS) and Aspergillus niger (XAN) endoxylanases of 0–0.225 Somogyi units/g of semolina. Increased dosages resulted in a drop of extrusion pressure. The endoxylanase treatments had no great effect on the resulting pasta quality (color of dry products and surface condition, viscoelastic index, and resistance to longitudinal deformations of cooked products). High dosages of XAN and XBS resulted in high levels of solubilized AX (as an extra source of soluble dietary fiber) of low molecular weight which were expected to easily leach out during the cooking process of pasta. Surprisingly, only low levels of AX were found in the cooking water, even with extremely high dosages of endoxylanases used and cooking beyond optimum time. A method is provided to obtain high‐quality pasta with increased levels of soluble fiber.  相似文献   

8.
Pasta prepared by extrusion from 25 g of semolina has been compared with that made from a standard laboratory extruder and found to have similar quality. Durum semolina was fractionated into its starch, gluten, water soluble, and residue fractions. The freeze‐dried components were reconstituted and the properties of the reconstituted semolina (ReSem) have been measured. Examination using a 2 g‐mixograph and micro‐extension tester has shown that ReSem behaves similarly to the original semolina. ReSem and semolina were made into pasta using a small‐scale pasta extruder and were of comparable cooking quality. The fractionation and reconstitution of durum semolina on this scale is a useful technique to evaluate the contribution of semolina components to pasta quality.  相似文献   

9.
Pearling by‐products and the pearled products of two commercial stocks of hulled barley, pearled according to an industrial process consisting of five consecutive pearling steps, were analyzed for β‐glucans, dietary fiber (total, soluble, and insoluble), protein, lipid, ash, and digestible carbohydrate. The data showed that the pearling flour fractions, abraded in the fourth and fifth hullers, contained interesting amounts of β‐glucans (3.9–5.1% db) from a nutritional point of view. These fractions were subsequently enriched in β‐glucans using a milling‐sieving process to double β‐glucan content (9.1–10.5% db). Functional pastas, enriched with β‐glucans and dietary fiber, were produced by substituting 50% of standard durum wheat semolina with β‐glucan‐enriched barley flour fractions. Although darker than durum wheat pasta, these pastas had good cooking qualities with regard to stickiness, bulkiness, firmness, and total organic matter released in rinsing water. The dietary fiber (13.1–16.1% wb) and β‐glucan (4.3–5.0% wb) contents in the barley pastas were much higher than in the control (4.0 and 0.3% wb, respectively). These values amply meet the FDA requirements of 5 g of dietary fiber and 0.75 g of β‐glucans per serving (56 g in the United States and 80 g in Italy). At present, the FDA has authorized the health claim “may reduce the risk of heart disease” for food containing β‐glucans from oat and psyllium only.  相似文献   

10.
Changes in starch at the molecular level during high‐temperature (HT) drying of pasta were studied with differential scanning calorimetry (DSC). Pasta was manufactured from durum wheat semolina into the shape of spaghetti on a pilot‐plant installation. The HT phase (100°C) was applied at relatively high (27 g/100 g, wb), intermediate (20 g/100 g), and low (15 g/100 g) product moisture, respectively. Spaghetti dried at 55°C served as reference samples. The changes in the thermal properties of starch during drying were dependent on the drying conditions. The gelatinization enthalpy of pasta dried at 55°C was reduced by 30% during drying, which indicates a partial melting of the starch crystallites. With the beginning of the HT phase, the gelatinization enthalpy increased to final values that were close to or higher than those of freshly extruded pasta. In general, HT drying of pasta induced a broadening of the gelatinization range. Starch crystallinity remained unchanged during extrusion and drying at HT. Based on a state diagram of starch and on DSC measurements of pasta during drying, it is hypothesized that HT drying favors molecular rearrangements of starch polymers at the double helical level.  相似文献   

11.
Zinc and aluminum ions at 0.05% of wheat flour, dry basis (7.4 and 18.5 mmol/100 g, respectively), improved the brightness of raw and dried spaghetti and salt and alkaline noodles. They also retarded bacteria and yeast and mold growth in salt noodles held at 25°C for two days as determined by total plate counts. Neither metal ion caused a change in noodle cooking quality, but they imparted a slight aftertaste in cooked noodles. Wheat flour dough mixed with 0.05% zinc or 0.025% aluminum ion (fwb), when kneaded in aqueous 0.1% calcium chloride, gave gluten with increased brightness. Zinc and aluminum ions appear to complex with enzymic browning chromophores in wheat dough and gluten and change their spectral properties. Zinc and aluminum ions affected the dispersion of gluten in water at pH ~5.0 and facilitated its spray-drying, but they were not detrimental to baking quality. Citric and tartaric acids at 5 mmol/100 g of gluten (db) gave wet gluten with pH ~4.5, which improved its brightness and water dispersibility.  相似文献   

12.
A rapid shear‐based test (the GlutoPeak test, recently proposed by Brabender) was used to investigate gluten aggregation properties of durum wheat semolina and to relate them to pasta cooking behavior. Thirty semolina samples were characterized by means of the conventional approaches used for pasta‐quality prediction (protein content, gluten index, and alveographic indices). All samples were also analyzed by the GlutoPeak test, obtaining three parameters: maximum peak torque, maximum peak time, and area under the peak. The GlutoPeak indices were significantly correlated with protein content, gluten index, and W alveographic parameter. The cooking quality of pasta obtained from the 30 semolina samples was evaluated by sensory analysis in terms of stickiness, bulkiness, firmness, and overall quality. The GlutoPeak indices were significantly correlated with the sensorial parameters. In comparison with the alveographic test, which is presently the most used rheological approach for semolina characterization, GlutoPeak analysis presents some advantages represented by a smaller amount of sample (9 g), a shorter time (less than 5 min), and the possibility that untrained analysts can carry it out. In addition, following testing with larger sample numbers, the GlutoPeak test has the potential to be used instead of the gluten index as a rapid and reliable approach for medium‐quality semolina characterization.  相似文献   

13.
Starch and protein are the main polymeric ingredients of pasta and they determine the structural and textural properties of cooked pasta. The present investigation sought better understanding of the impact of high‐temperature (HT) drying on the starch and the protein fraction, and their role in structure and texture of pasta. Durum wheat spaghetti was prepared in a pilot‐plant installation. The drying conditions were selected for the HT phase at 80 or 100°C applied at high, intermediate, or low product moisture content. Spaghetti dried at 55°C served as a reference sample. The color of dry pasta was measured and the changes in the starch and protein fractions were determined by protein solubility, light microscopy, confocal scanning laser microscopy (CSLM), cooking tests, and texture measurements. HT drying at 100°C and low product moisture promoted browning of pasta. At the molecular level, HT drying promoted protein denaturation. At the microscopic level, HT drying contributed to a better preservation of the protein network and reduced swelling of starch and disintegration of granules. At the macroscopic level, HT drying enhanced the firmness of cooked pasta and reduced surface stickiness. In general, the changes were more pronounced by increasing the drying temperature from 80 to 100°C and by shifting the HT phase from an early to a late stage of the drying process. The drying conditions are determinant for the phase morphology of protein and starch in cooked pasta which, in turn, govern the textural properties of pasta.  相似文献   

14.
Lignans are of increasing interest because of their potential anticarcinogenic, antioxidant, estrogenic, and antiestrogenic activities. In this work, mixed‐cereal pastas manufactured by adding 60% whole‐grain flours of different cereals (wheat, oat, rye, barley, and rice) to durum wheat semolina, a multigrain pasta with different grains (cereals, legumes, and flaxseed), and a traditional industrial durum wheat semolina were analyzed for their lignans content both in the raw and in the cooked state, ready for consumption. For raw mixed‐cereal pastas, total lignans were within the range 94.91–485.62 μg/100 g d.w. After cooking, total lignans losses of about 35.5, 18.31, and 5.46% were observed respectively in oat‐, rye‐, and rice‐added pastas, whereas increases of 5.74 and 13.62% were observed in barley‐added and whole durum wheat pastas. Interesting results were obtained for the multigrain pasta: the raw product exhibited a total lignans content of 9,686.17 ± 287.03 μg/100 g d.w., and the major contribution was given by secoisolariciresinol. This highest total lignans value resulted from its rich and varied composition in seeds of different origin, legumes, and flaxseed in particular. Our findings showed that mixed‐cereal and multigrain pastas can be considered a good source of lignans. The effect of cooking was not the same for each product, and it depended on the different lignans profile of each grain, on the different chemical structure of each lignan, and on the nature of the food matrix.  相似文献   

15.
《Cereal Chemistry》2017,94(5):840-846
Currently, production of pasta that is either gluten‐free or having lower content of gluten, using low‐cost nonwheat cereals and legumes, is becoming increasingly popular worldwide. This is mainly done to increase the nutritional value and reduce the allergenicity of the product. The quality attributes of pasta prepared from micronized maize flour with additives such as guar gum (MPG) and a combination of guar and xanthan gum (MPGX) were compared with pasta prepared from unmicronized flour with guar gum (UMPG). The optimum cooking time for pasta in all three cases (UMPG, MPG, and MPGX) was 3 min. The cooked weight of pasta MPG and MPGX was less compared with UMPG, indicating limited water penetration during cooking. The solid loss of pasta ranged between 8 and 9.5% and was within acceptable levels (<12%). Micronization increased the firmness in MPG (3.7 N) and MPGX (4.5 N) compared with UMPG pasta (2.7 N). MPGX pasta exhibited improved texture, color, and overall acceptability compared with UMPG, and these quality attributes were also comparable to commercial wheat pasta. The study indicated that micronized maize flour with gums can be used in the preparation of maize pasta with good quality attributes.  相似文献   

16.
Free lipids (FL) were extracted from straight‐grade flours (SF) and the air‐classified high‐protein fractions (ACHPF) of nine hard winter wheats. The mean values of FL contents in 10 g (db) SF and ACHPF were, respectively, 92.8 and 178.5 mg for total FL, 74.1 and 141.9 mg for nonpolar lipids (NL), 12.8 and 20.9 mg for glycolipids (GL), and 4.9 and 12.0 mg for phospholipids (PL). FL compositions of SF and ACHPF showed nonsignificant differences in NL (80.7 and 81.1% of the FL) but significant differences in GL (13.9 and 12.0% of the FL) and PL (5.4 and 6.9% of the FL). Fortification of SF with ACHPF by blending to reach 13% protein content increased gluten quantity and thereby loaf volume but decreased gluten index, loaf volume regression, and crumb grain scores. NL contents showed significant relationships with dry gluten contents (r = 0.79) and gluten index (r = ‐0.83) values, indicating that high NL content in ACHPF could decrease gluten quality of fortified flours. Thus, an optimum balance should be maintained during fortification.  相似文献   

17.
Vacuum drying was employed with a vacuum impregnation technique in a semidry state to enrich rice with antioxidants of beetroot juice. The properties of the vacuum‐dried raw and cooked rice grains were characterized. The various raw rice grains (three varieties and two storage time periods) exhibited a significant absorption of beetroot juice, which was evident from the red‐violet beetroot color of the rice, as distinguished from the white color of the control. The color increase (ΔE= 20−40) was linear with the juice content (R2 = 0.96−0.99). Their total phenolic (TP) contents and 2,2‐diphenyl‐2‐picrylhydrazyl radical (DPPH) scavenging activities were enhanced (ΔTP = 21−260 mg of gallic acid equivalents/100 g of rice db and ΔDPPH = 22−64 mg of vitamin C equivalents/100 g of rice db). Their grain integrity was reduced (Δforce = −1 to −63), which was potentially associated with the formation of grain surface cracks (linear relationship of %crack and %juice with R2 = 0.94−0.98). After cooking, the enriched rice grains were linearly elongated with added juice (R2 = 0.88−0.97, up to 1.6‐, 2.0‐, and 2.0‐fold for Sanpatong 1, Khao Dawk Mali 105, and Chainart 1 rice samples, respectively), and the overall volume of the cooked rice was increased (likely not linear, up to 3.2‐, 4.3‐, and 4.8‐fold for Sanpatong 1, Khao Dawk Mali 105, and Chainart 1 rice samples, respectively). Such improvements in cooking qualities were obtained by this simple vacuum‐drying technique, in comparison to existing rice‐aging processes that are more time consuming. The sensorial scores of the resultant rice products were excellent. Vacuum drying is an effective tool to improve the antioxidant value of rice as well as its cooking quality, and the raw quality remains appreciable. It is a simple and rapid process that could be practical for manufacturing healthy rice products.  相似文献   

18.
《Cereal Chemistry》2017,94(5):857-865
This research was conducted to determine if genotypes selected for their superior traditional semolina pasta quality would also make the best whole wheat pasta. Results from 19 durum wheat cultivars and 17 breeding lines grown at 19 different environments in North Dakota showed that physical and cooking qualities varied differently for whole wheat and traditional spaghettis, respectively. Ward's clustering segregated the 36 genotypes into five groups based on whole wheat spaghetti quality. Groups 1 and 2 (21 genotypes) produced good to high‐quality whole wheat pasta that displayed high mean values for cooked firmness (4.3 and 4.1 g·cm), mechanical strength (31.3 and 31.0 g), and color (brightness, 34.92 and 34.54), respectively. Groups 4 and 5 produced poor quality whole wheat pasta that had low cooked firmness (both 3.5 g·cm) and high cooking loss (10.1 and 10.4%). Grain protein content (≥13.9%) was found with high quality of whole wheat spaghetti. Of the 36 genotypes evaluated, 21 and 3 genotypes produced good and poor qualities, respectively, of whole wheat and traditional spaghettis, and 12 other genotypes produced good traditional spaghetti but produced poor quality whole wheat spaghetti. These data indicate the need to select genotypes specifically for their whole wheat pasta quality.  相似文献   

19.
Commercial durum wheat (Triticum durum desf.) semolina was fractionated into starch, gluten, and water extractables. Starch surface proteins and surface lipids were removed, and two starches with manipulated granule size distributions were produced to influence starch properties, affecting its interaction with other semolina components. Reconstituted spaghetti was made with untreated (control) or treated starches. The pasta made from the starting semolina material had lower cooking time and was of lower quality than the samples made from reconstituted material. This was not due to changes in gluten properties as a result of the first step of the fractionation process. For the reconstituted samples, starch interaction behavior was not changed after surface protein or surface lipid removal. Starch surface properties thus do not influence the starch interaction behavior, indicating that starch-gluten interaction in raw (uncooked) pasta is mainly due to physical inclusion. All reconstituted pasta samples also had generally the same cooking quality. It was concluded that the small changes in starch gelatinization behavior, caused by the above-mentioned starch modifications, are of little importance for pasta quality.  相似文献   

20.
The effects of transglutaminase (TG) on the properties of semolina dough and pasta cooking properties in durum‐only and fiber‐enriched pasta were investigated. TG was blended at levels 0, 0.05, 0.1, 0.25, 0.5, and 1% of semolina weight with semolina and semolina‐pollard (60% w/w) and semolina‐guar gum (15%) mixtures. The addition of TG increased dough maximal resistance, making the dough inextensible at >1%. Optimum effects on dough strength were obtained at 0.5% TG; this dough gave the firmest and least sticky pasta. A more extensive and thicker protein matrix was observed in the TG pasta by confocal scanning laser microscopy, indicating more cross‐links were formed, a finding supported by measuring percentage of unextracted polymeric protein. TG was unable to overcome the negative effect of 60% pollard on cooking loss or 15% guar gum on stickiness. Gluten was generally more effective than TG in restoring the properties of pastas with added fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号