首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P.M. Gaur  V.K. Gour 《Euphytica》2002,128(2):231-235
Chickpea (Cicer arietinum L.) has a racemose type of inflorescence and at each axis of the raceme usually one or two and rarely three flowers are borne. Plants producing 3 to 9 flowers, arranged in acymose inflorescence, at many axis of the raceme, were identified in F2 of an interspecific cross ICC 5783 (C. arietinum) × ICCW 9 (C. reticulatum)in which both the parents involved were single-flowered. A spontaneous mutation in one of the two parents or in the F1was suspected. However, the possibility for establishment of a rare recombination of two interacting recessive genes could not be ruled out. The number of pods set varied from 0 to 5 in each cyme. Inheritance studies indicated that a single recessive gene, designated cym, is responsible for cymose inflorescence. The allelic relationship of cym with sfl, a gene for double-flowered trait, was studied from a cross involving multi flowered plants and the double-flowered line ICC 4929. Thecym gene was not allelic to sfl, suggesting that two loci control the number of flowers per peduncle in chickpea. The cym locus segregated independently of the locus sfl, ifc (inhibitor of flower color) and blv (bronze leave). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Mutations were induced in chickpea (Cicer arietinum L.) cultivar ‘JG 315’ through treatment of seeds with ethyl methane sulphonate (EMS). One of the mutants, named JGM 1, had brachytic growth (compact growth), characterized by erect growth habit, thick and sturdy stem, short internodal and interleaflet distances and few tertiary and later order branches. It was isolated from M2 derived from seeds treated with 0.6% EMS for 6 h. Segregation analyses in F2 progenies of its crosses with normal chickpea genotypes (JG 315, ICC 4929, and ICC 10301) suggested that a single recessive gene controlled brachytic growth in JGM 1. This gene was not allelic to the br gene for brachytic growth in spontaneous brachytic mutant E100YM. Thus, the gene for brachytic growth in JGM 1 was designated br2 and the br gene of E100YM was redesignated br1. Efforts are being made to use JGM 1 in development of a plant type with short internodes and erect growth habit. Such plant type may resist excessive vegetative growth in high input (irrigation and fertility) conditions and accommodate more plants per unit area.  相似文献   

3.
S. Srinivasan    P. M. Gaur    B. V. Rao 《Plant Breeding》2008,127(3):319-321
Stem fasciation is a morphological abnormality observed in plants where the stem is widened and leaves and flowers or pods are clustered at the apex. Several spontaneous mutants and one induced mutant for stem fasciation are found in chickpea (Cicer arietinum L.). This study was aimed at determining allelic relationship between spontaneous and induced mutant genes controlling stem fasciation and effects of stem fasciation on grain yield. Two spontaneous (ICC 2042 and ICC 5645) and one induced (JGM 2) stem fasciation mutants were crossed in all combinations, excluding reciprocals. The F1 and F2 plants from a cross between the two spontaneous mutants had fasciated stem. This indicated the presence of a common gene (designated fas1) for stem fasciation in the two spontaneous mutants. The F1s of the crosses of the induced mutant JGM 2 with both spontaneous mutants had normal plants and segregated in a ratio of 9 normal : 7 fasciated plants in F2. Thus, the gene for stem fasciation in the induced mutant JGM 2 (designated fas2) is not allelic to the common gene for stem fasciation in spontaneous mutants. The two genes in dominant condition produced normal non‐fasciated stem. The fasciated and the non‐fasciated F2 plants did not differ significantly for number of pods per plant, number of seeds per plant, grain yield per plant and seed size, suggesting that it is possible to exploit the fasciated trait in chickpea breeding without compromising on yield.  相似文献   

4.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

5.
Summary Seed size as determined by seed weight, is an important trait for trade and component of yield and adaptation in chickpea (Cicer arietinum L.). Inheritance of seed size in chickpea was studied in a cross between ICC11255, a normal seed size parent (average 120 mg seed−1) and ICC 5002, a small seed size parent (average 50 mg seed−1). Seed weight observations on individual plants of parents, F1, F2, and backcross generations, along with reciprocal cross generations revealed that the normal seed size was dominant over small seed size. No maternal effect was detected for seed size. The numbers of individuals with normal, small and medium (average 150 mg seed−1) seed sizes in F 2 population were 1237, 323 and 111 fitting well to the expected ratio of 12:3:1 (χ2 = 0.923, P = 0.630). The segregation data of backcross generations also indicated that seed size in chickpea was controlled by two genes with dominance epistasis. We designate the genotype of ICC 11255 as Sd 1 Sd 1 sd 2 sd 2, and ICC 5002 as sd 1 sd 1Sd2 Sd 2 wherein Sd 1 is epistatic to Sd 2 and sd 2 alleles.  相似文献   

6.
The inheritance of resistance to dry root rot of chickpea caused by Rhizoctonia bataticola was studied. Parental F1 and F2 populations of two resistant and two susceptible parents, along with 49 F1 progenies of one of the resistant × susceptible crosses were rested for their reaction to dry root rot using the blotting-paper technique. All F, plants of the resistant × susceptible crosses were resistant; the F2 generation fitted a 3 resistant: 1 susceptible ratio indicating monogenic inheritance, with resistance dominant over susceptibility. F3 family segregation data confirmed the results. No segregation occurred among the progeny of resistant × resistant and susceptible × susceptible crosses.  相似文献   

7.
Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R 2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.  相似文献   

8.
R. Ecker  A. Barzilay  E. Osherenko 《Euphytica》1993,74(1-2):133-136
Summary The inheritance and linkage relationships of a leaf morphology gene of Matthiola incana were investigated. The allele for sinuate leaf shape, c, was found to be recessive to the allele for normal entire leaf, C. The c allele was tightly linked to the recessive allele for double flowering, s. The recombination frequency between the two loci was close to zero. The mode of inheritance of the C gene was in accordance with the hypothesis that a pollen lethal gene is responsible for the constant 1:1 segregation ratio of double-flowered (= male sterile) to single-flowered (= fertile) plants in most M. incana breeding lines. The sinuate leaf allele seemed to reduce the frequency and delay the flowering of double-flowered plants. The importance of the C gene as a double flowering marker in the cultivation and the breeding of M. incana is discussed.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 1128-E, 1993 series.  相似文献   

9.
N. Rewal  J. S. Grewal 《Euphytica》1989,44(1-2):61-63
Summary Chickpea (Cicer arietinum L.) line ICC 1069 was selected as resistant parent after screening for resistance to grey mould (Botrytis cinerea Pers.) under artificial inoculation conditions. It was crossed with four high yielding susceptible varieties of chickpea. Crosses ICC 1069 × BGM 413 and ICC 1069 × BG 256 showed monogenic dominant resistance in ratio of 3R (resistant): 1S (susceptible). However, in crosses, ICC 1069 × BGM 419 and ICC 1069 × BGM 408, a ratio of 13S (susceptible) : 3R (resistant) was obtained indicating the presence of epistatic interaction. The results pointed towards the presence of a type of major gene resistance to grey mould in chickpea.  相似文献   

10.
Seed size, determined by 100-seed weight, is an important yield component and trade value trait in kabuli chickpea. In the present investigation, the small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) and F1, F2 and F3 populations were developed to study the gene action involved in seed size and other yield attributing traits. Scaling test and joint scaling test revealed the presence of epistasis for days to first flower, days to maturity, plant height, number of pods per plant, number of seeds per plant, number of seeds per pod, biological yield per plant, grain yield per plant and 100-seed weight. Additive, additive?×?additive and dominance?×?dominance effects were found to govern days to first flower. Days to maturity and plant height were under the control of both the main as well as interaction effects. Number of seeds per pod was predominantly under the control of additive and additive?×?additive effects. For grain yield per plant, additive and dominance?×?dominance effects were significant in the cross ICC 16644?×?KAK 2, whereas, additive?×?additive effects were important in the cross ICC 16644?×?JGK 2. Additive, dominance and epistatic effects influenced seed size. The study emphasized the existence of duplicate epistasis for most of the traits. To explore both additive and non-additive gene actions for phenological traits and yield traits, selection in later generations would be more effective.  相似文献   

11.
Inheritance of a novel corolla colour in periwinkle [Catharanthus roseus (L) G. Don], viz. magenta, was studied by crossing an accession MJ, possessing this corolla colour, with cultivar Nirmal, possessing white corolla. The accession MJ was also crossed with another accession OR, possessing another novel corolla colour, viz. orange-red, to determine the relationship between genes governing magenta corolla and orange-red corolla. The F1 plants of the cross MJ× Nirmal had pink corolla and red eye. In the F2 generation, five kinds of corolla colours were observed: (i) pink corolla and red eye, (ii) rose corolla and red eye, (iii) magenta corolla and red eye, (iv) white corolla and red eye and (v) white corolla. The observed frequencies of the five kinds of plants fitted a ratio of 144:27:9:12:64. The progeny of the backcross, F1 × MJ, segregated into three kinds of plants, (i) pink corolla and red eye, (ii) rose corolla and red eye and (iii) magenta corolla and red eye, in the ratio of 2:1:1, while the backcross, F1 × Nirmal, segregated into two kinds of plants, (i) pink corolla and red eye and (ii) white corolla, in the ratio of 1:1. Two new genes (proposed symbols Om and J) appeared to be involved in the determination of magenta and rose corolla colours. Interaction between four independent genes R, W, Om and J, appeared to explain the observed segregation in the cross MJ × Nirmal. The F1 plants of the cross MJ × OR had scarlet-red corolla and red eye. The segregation data of F2 and backcross generations suggested that genes governing orange-red corolla and magenta corolla were allelic to each other. Two new and non-parental corolla colours viz., rose corolla and scarlet-red corolla, were observed in the progeny of the crosses of the present study.  相似文献   

12.
Chickpea (Cicer arietinum L.) is known to be salt-sensitive and in many regions of the world its yields are restricted by salinity. Recent identification of large variation in chickpea yield under salinity, if genetically controlled, offers an opportunity to develop cultivars with improved salt tolerance. Two chickpea land races, ICC 6263 (salt sensitive) and ICC 1431 (salt tolerant), were inter-crossed to study gene action involved in different agronomic traits under saline and control conditions. The generation mean analysis in six populations, viz. P1, P2, F1, F2, BC1P1 and BC1P2, revealed significant gene interactions for days to flowering, days to maturity, and stem Na and K concentrations in control and saline treatments, as well as for 100-seed weight under salinity. Seed yield, pods per plant, seeds per plant, and stem Cl concentration were controlled by additive effects under saline conditions. Broad-sense heritability values (>0.5) for most traits were generally higher in saline than in control conditions, whereas the narrow-sense heritability values for yield traits, and stem Na and K concentrations, were lower in saline than control conditions. The influence of the sensitive parent was higher on the expression of different traits; the additive and dominant genes acted in opposite directions which led to lower heritability estimates in early generations. These results indicate that selection for yield under salinity would be more effective in later filial generations after gene fixation.  相似文献   

13.
A series of half-diallel crosses involving early, medium and late maturity desi and kabuli type chickpea (Cicer arietinum L.) genotypes with stable resistance to Helicoverpa pod borer, along with the parents, were evaluated at two locations in India to understand the inheritance of pod borer resistance and grain yield. Inheritance of resistance to pod borer and grain yield was different in desi and kabuli types. In desi type chickpea, the additive component of genetic variance was important in early maturity and dominance component was predominant in medium maturity group, while in the late maturity group, additive as well as dominance components were equally important in the inheritance of pod borer resistance. Both dominant and recessive genes conferring pod borer resistance seemed equally frequent in the desi type parental lines of medium maturity group. However, dominant genes were in overall excess in the parents of early and late maturity groups. In the kabuli medium maturity group, parents appeared to be genetically similar, possibly due to dispersion of genes conferring pod borer resistance and susceptibility, while their F1s were significantly different for pod borer damage. The association of genes conferring pod borer resistance and susceptibility in the parents could be attributed to the similarity of parents as well as their F1s for pod borer damage in kabuli early and late maturity groups. Grain yield was predominantly under the control of dominant gene action irrespective of the maturity groups in desi chickpea. In all the maturity groups, dominant and recessive genes were in equal frequency among the desi parental lines. Dominant genes, which tend to increase or decrease grain yield are more or less present in equal frequency in parents of the early maturity group, while in medium and late maturity groups, they were comparatively in unequal frequency in desi type. Unlike in desi chickpea, differential patterns of genetic components were observed in kabuli chickpea. While the dominant genetic component was important in early and late maturity group, additive gene action was involved in the inheritance of grain yield in medium duration group in kabuli chickpea. The dominant and recessive genes controlling grain yield are asymmetrically distributed in early and medium maturity groups in kabuli chickpea. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in desi and kabuli chickpea cultivars.  相似文献   

14.
An intraspecific (Tetir × ILL 323) and an interspecific (Alpo × L. odemensis) lentil hybrid were multiplied in vitro in three consecutive micropropagation cycles to increase the production of F2 seeds. Cloning efficiencies were slightly higher for Tetir × ILL323 (83%) compared to Alpo × L. odemensis (67%). A total of 982 F2 seeds were produced in the experiment with Alpo × L. odemensis, consisting of the 334 F2 seeds of the original hybrid and 648 F2 seeds produced by the 12 plants cloned; consequently, F2 seed production was increased three-fold over the original hybrid (194%). A total of 6050 F2 seeds were produced in the experiment with Tetir × ILL 323, made up of the 483 F2 seeds of the original hybrid and 5567 F2 seeds produced by the 15 plants cloned; therefore, F2 seed production was increased by more than twelve-fold over the original hybrid (1153%). In both hybrids the F2 seed production of cloned plants diminished in the three consecutive multiplication cycles, with the plants having experienced less vegetative development. In lentil, F2 seed production of cloned plants is related for the first time to the length of their period of vegetative development. In conclusion, micropropagation of hybrids is an interesting tool to construct from a single individual large F1 populations that enable to increase by a manifold the production of F2 seeds useful for genetic studies and breeding.  相似文献   

15.
Introgression of unadapted genes from the wild Cicer species could contribute to the widening of genetic base of important traits such as yield, yield attributes and resistance to major biotic and abiotic stresses. An attempt was made successfully to intercross two wild annual Cicer species with three cultivated chickpea cultivars. Four interspecific cross‐combinations were made, and their true hybridity was ascertained through morphological and molecular markers. These cross‐combinations were also studied for some important quantitative traits under real field conditions. The range, mean and coefficient of variation of agro‐morphological traits were assessed in the parental lines, their F1 and F2 generations to determine the extent of variability generated in cultivated chickpea varieties. A high level of heterosis was recorded for number of pods/plant and seed yield/plant in F1 generation. Three cross‐combinations of ‘Pusa 1103’ × ILWC 46, ‘Pusa 256’ × ILWC 46 and ‘Pusa 256’ × ILWC 239 exhibited substantially higher variability for important yield‐related traits. The present research findings indicate that these wild annual Cicer species can be easily exploited to broaden the genetic base of cultivated gene pool for improving seed yield as well as adaptation.  相似文献   

16.
Broad-few-leaflets and outwardly curved wings: two new mutants of chickpea   总被引:3,自引:0,他引:3  
This study was aimed at the induction of morphological mutations for increasing genetic variability and making available additional genetic markers for linkage studies in chickpea (Cicer arietinum L.). A wilt‐resistant, well‐adapted chickpea cultivar of central India,‘JG 315’(Jawahar gram 315), was used for the induction of mutations. Seeds presoaked in distilled water for 2 h were treated with ethyl methane sulphonate (EMS) using six different concentrations (0.1, 0.2, 0.3, 0.4, 0.5 and 0.6%) and two different durations (6 and 8 h). Several morphological mutants were identified in M2. One of the mutants, isolated from a treatment of 0.3% EMS for 8 h, had five to nine large leaflets per leaf in comparison with 11‐17 normal‐sized leaflets per leaf observed in the parental cultivar ‘JG 315′. The mutant was designated broad‐few‐leaflets. Many leaves of this mutant showed a cluster of three to five overlapping leaflets at the terminal end. The other mutant, designated outwardly curved wings, was isolated from the 0.5% EMS treatment for 6 h. In this mutant, the wings were curved outwards, exposing the keel petal, while the wings in typical chickpea flowers are incurved and enclose the keel. The lines developed from the broad‐few‐leaflets and outwardly curved wings mutants were named JGM 4 (Jawahar gram mutant 4) and JGM 5, respectively. Inheritance studies indicated that each of these mutant traits is governed by a single recessive gene. The gene for broad‐few‐leaflets was designated bfl and the gene for outwardly curved wings was designated ocw. The locus bfl was found to be linked with the locus lg (light green foliage) with a map distance of 18.7 ± 6.3 cM.  相似文献   

17.
S. Kumar 《Plant Breeding》1998,117(2):139-142
The inheritance of resistance to Fusarium wilt (race 2) of chickpea was studied in a set of three crosses, i.e. ‘WR315’בC104’ (resistant × susceptible), ‘WR315’בK850’ (resistant × tolerant) and ‘K850’בGW5/7’ (tolerant × tolerant) in order to investigate the number of genes involved, their complementation and to find out whether resistant segregants are possible in a cross between two tolerant cultivars. Tests of F1, F2 and F3 generations of these crosses under controlled conditions at ICRISAT, Patancheru, India, indicated involvement of three loci (two recessive and one dominant alleles). The homozygous recessive form at the first two loci conferred resistance whereas susceptibility occurred when the first two loci were in the dominant form. A dominant allele at the third locus can complement the dominant alleles at the other two loci to confer tolerance. Occurrence of resistant segregants in a cross between two tolerant cultivars was observed.  相似文献   

18.
Genetic Analysis of Developmental Traits in Chickpea   总被引:1,自引:0,他引:1  
Chickpea (Cicer arietinum L.) is an important legume crop in India. The present study was conducted to investigate the inheritance of several developmental traits in three crosses of chickpea, viz., WFWG III’בT20’, ‘T88’בBold Seeded’, and ‘NP34’בP1528-1-1’, each having seven generations. The seven generations were P1, P2, F1, B1, B2, F2, and F3. The experimental lay-out was randomized complete block design with three replications. Data were acquired on days to flowering (DF), days to maturity (DM), plant height in cm (PH), number of primary branches (PB), and number of secondary branches (SB). Generation mean analysis was used to estimate the genetic components; narrow sense heritability was estimated using variance components; and correlation analysis to estimate correlation coefficients among different traits. Genetic differences were found in all three crosses for all traits studied. Additive, dominance, and epistatic effects were found for many traits'. Duplicate epistasis was observed for all traits except number of PB. Higher order interactions and/or linkage were detected for DM and SB. For many traits the relative magnitudes of the genetic effects differed among crosses, thus the extrapolation to other crosses may be difficult. The inheritance becomes more complex as the fate of the character is decided at a later stage in the life cycle. Positive heterosis was observed for some traits, but the exploitation of this component may not Feasible since stable male sterile lines are not available. Early maturity and high yield ‘may be selected independently because of the absence of any significant correlation between these two traits.  相似文献   

19.
The peach root‐knot nematode, Meloidogyne floridensis (MF), infects majority of available nematode‐resistant peach rootstocks which are mostly derived from peach (Prunus persica) and Chinese wild peach (P. davidiana). Interspecific hybridization of peach with its wild relative, Kansu peach (P. kansuensis), offers potential for broadening the resistance spectrum in standard peach rootstocks. We investigated the inheritance of resistance to MF in segregating populations of peach (‘Okinawa’ or ‘Flordaguard’) × P. kansuensis. A total of 379 individuals from 13 F2 and BC1F1 families were challenged with a pathogenic MF isolate “MFGnv14” and were classified as resistant (R) or susceptible (S) based on root galling intensity. Segregation analyses in F2 progeny revealed the involvement of a major locus with a dominant or recessive allele determining resistance in progeny segregating 3R:1S and 1R:3S, respectively. Testcrosses with a homozygous‐susceptible peach genotype (‘Flordaguard’ or ‘UFSharp’) confirmed P. kansuensis as a source of new resistance and the heterozygous allelic status of P. kansuensis at the locus conferring resistance to MF. We propose a single‐locus dominant/recessive model for the inheritance of resistance.  相似文献   

20.
E. J. Knights 《Euphytica》1993,69(3):163-166
Summary A spontaneous fasciated mutant was detected in the chickpea cv. Amethyst. It was characterised by broad, strap-like stems, irregular leaf arrangement and clustering of pods towards the stem apices. F2 and F3 segregations showed that fasciation was controlled by a single, recessive gene for which the symbol fas is proposed. Field trials comparing the fasciated mutant with its non-fasciated isoline showed that fasciation was associated with lower yield, larger seeds, delayed flowering and increased lodging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号