首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nuclear gamma resonance measurements for the nuclide (57)Fe in lunar material were made in transmission on lunar fines and in scattering on intact lunar rock chips. No appreciable amnount of ferric iron was detected. Resonances were observed for ilmenite in all samples. Strong resonances attributed to ferrous iron in silicates, including pyroxenes and, in some samples, glasses and olivine, were also present. Metallic iron, alloyed with nickel, and troilite were also detected in the lunar fines. Differences in the spectra of various samples of lunar material and their significance are discussed.  相似文献   

2.
Data from total melt and step-by-step heating experiments on the Apollo 11 lunar samples suggest a close affinity between lunar and meteoritic rare gases. Trapped neon-20/neon-22 ratios range from 11.5 to approximately 15, resembling those for the gas-rich meteorites. Trapped krypton and xenon in the lunar fines and in the carbonaceous chondrites are similar except for an interesting underabundance of the heavy isotopes in both lunar gases which suggests that the fission component found in carbonaceous chondrites is depleted in lunar material. Spallation gases are in most cases quite close to meteoritic spallation gases in isotopic composition.  相似文献   

3.
During the Surveyor V landing, a footpad with an attached permanent magnet assembly slid for about a meter through lunar surface material at a depth of about 10 centimeters. Subsequent pictures showed material adhering to the magnetic pole edges, where the magnetic field strength is greatest. Comparison of these pictures with those made under simulated laboratory conditions permits three conclusions. (i) Iron is present on the lunar surface in one of the forms attracted to a 500-gauss magnet. (ii) A 1-percent addition by volume of powdered free iron to a powdered terrestrial rock represents an upper limit for the lunar results. (iii) The lunar results are most similar to a terrestrial plateau basalt with no addition of free iron.  相似文献   

4.
Apollo 11 and Apollo 12 lunar rock suites differ in their potassium-uranium abundance systematics. This difference indicates that relatively little exchange of regolith material has occurred between Mare Tranquillitatis and Oceanus Procellarum. The two suites appear to have been derived from materials of identical potassium and uranium content. It appears unlikely that bulk lunar material has the ratio of potassium to uranium found in chondrites. However, systematic differences in the potassium-uranium ratio between Apollo samples and crustal rocks of the earth do not preclude a common potassium-uranium ratio for bulk earth and lunar material.  相似文献   

5.
Evidence has been obtained for a radioactive deposit on the lunar surface at Mare Tranquillitatis with a total intensity of 0.09 +/- 0.03 alpha disintegration per second per square centimeter. The presence of polonium-210 in amounts that are close to equilibrium indicates a continuous turnover rate of lunar material at this site of less than 0.1 micrometer per year. The lack of such a deposit at two other lunar sites suggests lower local concentrations of uranium there.  相似文献   

6.
More precise and comprehensive analytical results for lunar surface material in a terra region have been derived from the data of the alpha-scattering experiment on Surveyor 7. The silicon content and the low sodium abundance are close to that of mare material. The abundances of titanium and iron are at least a factor of 2 lower, whereas the abundances of aluminum and calcium are significantly higher. The analytical results provide direct evidence for chemical differentiation in the moon and indicate a lunar crust of appreciably lower density than the whole moon and with lower density and higher albedo than lunar mare material.  相似文献   

7.
A chemically distinct group of lunar rocks with the trace element characteristics of basaltic lunar rocks is apparently ubiquitous on the lunar surface. Such rocks have been found at the Apollo 15, Apollo 16, and Luna 20 landing sites. They may be derived from the plains-forming material that has been designated Cayley Formation.  相似文献   

8.
The lunar atmosphere is the likely source of excess argon-40 in lunar surface material; about 8.5 percent of the argon-40 released into the lunar atmosphere will be implanted in the surface material by photoionization and subsequent interaction with fields in the solar wind. The atmosphere is also likely to be the source of other unexpected surface elements or of solar wind elements that impact from non-solar wind directions.  相似文献   

9.
Abundance and distribution of iron on the moon   总被引:3,自引:0,他引:3  
The abundance and distribution of iron on the moon is derived from a near-global data set from Clementine. The determined iron content of the lunar highlands crust ( approximately 3 percent iron by weight) supports the hypothesis that much of the lunar crust was derived from a magma ocean. The iron content of lower crustal material exposed by the South Pole-Aitken impact basin on the lunar farside is higher ( approximately 7 to 8 percent by weight) and consistent with a basaltic composition. This composition supports earlier evidence that the lunar crust becomes more mafic with depth. The data also suggest that the bulk composition of the moon differs from that of the Earth's mantle. This difference excludes models for lunar origin that require the Earth and moon to have the same compositions, such as fission and coaccretion, and favors giant impact and capture.  相似文献   

10.
Elemental abundances, so far obtained, derived from the analysis of Apollo 11 lunar material are reported. Similarities and differences exist between lunar material, the eucritic achondrites, and the augite achondrite Angra dos Reis, the analysis of which is also reported.  相似文献   

11.
Discovery of vapor deposits in the lunar regolith   总被引:1,自引:0,他引:1  
Lunar soils contain micrometer-sized mineral grains surrounded by thin amorphous rims. Similar features have been produced by exposure of pristine grains to a simulated solar wind, leading to the widespread belief that the amorphous rims result from radiation damage. Electron microscopy studies show, however, that the amorphous rims are compositionally distinct from their hosts and consist largely of vapor-deposited material generated by micrometeorite impacts into the lunar regolith. Vapor deposits slow the lunar erosion rate by solar wind sputtering, influence the optical properties of the lunar regolith, and may account for the presence of sodium and potassium in the lunar atmosphere.  相似文献   

12.
Results for multielement analysis of lunar soil and of seven rocks returned by Apollo 11 are presented. Sixty-six elements were determined with spark source mass spectrography and neutron activation. U. S. Geological Survey standard W-1 was used as a comparative stanadard. Results indicate an apparent uniformity of composition among the samples. Comparison with solar, meteoritic, and terrestrial abundances reveals depletiozt of volatile elements and enrichment of the rare earths titaniunm, zirconium, yttriuntm, and hafnium. Althouglh there is an overall similarity of the lunar material to basaltic achondrites amid basalts, the differences suggest detailed geochemical processes to the history of this material.  相似文献   

13.
Three kinds of experiments were performed in an effort to detect and identify organic compounds present in the lunar material (fines 10,086): (i) vaporization of the volatilizable components directly into the ion source of a high-resolution mass spectrometer, and (ii and iii) extraction of the material with organic solvents before and after dissolving most of the inorganic substrate in hydrochloric and hydrofluoric acid. The extracts were investigated by a combination of gas chromatography and mass spectrometry. Although a number of organic compounds or compound types have been detected, none appears to be indigenous to the lunar surface.  相似文献   

14.
A troilite-rich nickel-iron particle ("mini-moon") recovered from the moon may be a mound detached from a sphere of silicate glass. Erosion and pitting of the particle may have been caused by passage through a cloud of hot gas and particulate matter formed by meteorite impact on the lunar surface. This explanation is in contrast to the theory that the particle was meteoritically derived molten material that was furrowed during solidification after lunar impact, subsequently pitted by high-velocity particles, and then abraded and polished by drifting dust while on the lunar surface.  相似文献   

15.
Copernicus crater central peak: lunar mountain of unique composition   总被引:1,自引:0,他引:1  
Olivine is identified as the major mafic mineral in a central peak of Copernicus crater. Information on the mineral assemblages of such unsampled lunar surface material is provided by near infrared reflectance spectra (0.7 to 2.5 micrometers) obtained with Earth-based telescopes. The composition of the deep-seated material comprising the Copernicus central peak is unique among measured areas. Other lunar terra areas and the wall of Copernicus exhibit spectral characteristics of mineral assemblages comparable to the feldspathic breccias returned by the Apollo missions, with low-calcium orthopyroxene being the major mafic mineral.  相似文献   

16.
Unusually long reverberations were recorded from two lunar impacts by a seismic station installed on the lunar surface by the Apollo 12 astronauts. Seismic data from these impacts suggest that the lunar mare in the region of the Apollo 12 landing site consists of material with very low seismic velocities near the surface, with velocity increasing with depth to 5 to 6 kilometers per second (for compressional waves) at a depth of 20 kilometers. Absorption of seismic waves in this structure is extremely low relative to typical continental crustal materials on earth. It is unlikely that a major boundary similar to the crustmantle interface on earth exists in the outer 20 kilometers of the moon. A combination of dispersion and scattering of surface waves probably explains the lunar seismic reverberation. Scattering of these waves implies the presence of heterogeneity within the outer zone of the mare on a scale of from several hundred meters (or less) to several kilometers. Seismic signals from 160 events of natural origin have been recorded during the first 7 months of operation of the Apollo 12 seismic station. At least 26 of the natural events are small moonquakes. Many of the natural events are thought to be meteoroid impacts.  相似文献   

17.
Lunar meteorites represent a more random sampling of lunar material than the Apollo or Luna collections and, as such, lunar meteorite impact melt ages are the most important data in nearly 30 years with which to reexamine the lunar cataclysm hypothesis. Within the lunar meteorite breccias MAC 88105, QUE 93069, DaG 262, and DaG 400, seven to nine different impact events are represented with 40Ar-39Ar ages between 2.76 and 3.92 billion years ago (Ga). The lack of impact melt older than 3.92 Ga supports the concept of a short, intense period of bombardment in the Earth-moon system at approximately 3.9 Ga. This was an anomalous spike of impact activity on the otherwise declining impact- frequency curve.  相似文献   

18.
The magnetic material in the lunar soils makes them potentially strong carriers of remanence and magnetically viscous. The soils therefore block remanence in the temperature range of the lunar diurnal cycle. This remanence is stable against alternating-field demagnetization. A mechanism whereby such hard natural remanent magnetization may be acquired by material buried in the regolith is proposed.  相似文献   

19.
Concentrations of potassium, rubidium, strontium, barium, and rareearth elements have been determined by mass spectrometric isotope dilution for eight Apollo 11 lunar samples and for some separated phases. Potassiumn and ritbidium are at chondritic levels, strontium at 15 times, and barium and rare earths at 30 to 100 times chondritic levels. There are trace element similarities between the lunar samples and basaltic achondrites, terrestrial dredge basalts and the bulk earth. The trace element data appear to be consistent with these lunar samples being the result of limited partial fusion of some material similar to the brecciated eucrite meteorites.  相似文献   

20.
Data on terrestrial eruptions of pyroclastic material and ballistic considerations suggest that in the lunar environment (vacuum and reduced gravity) low-rimmed pyroclastic rings are formed rather than the high-rimmed cinder cones so abundant on the earth. Dark blanketing deposits in the Taurus-Littrow region (Apollo 17 landing area) are interpreted as being at least partly composed of lunar counterparts of terrestrial cinder cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号