共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhi Quan Xin Chen Bin Huang Yongzhuang Wang 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(3):199-207
Soil extractable organic nitrogen plays an important role in nitrogen transformation and migration in many ecosystems. However, it is generally ignored due to its low content in agricultural soils. The objective of this study was to evaluate the leaching risk of soil extractable organic nitrogen affected by manure application in an intensively irrigated greenhouse vegetable cropping system through investigating its spatial (vertical profile) and temporal dynamics. Results showed that extractable organic nitrogen was present in appreciable quantities, despite that nitrate was the main soluble nitrogen form in 0–60 cm soil profile. Both the extractable organic and inorganic nitrogen were enriched in the surface and subsurface soils, and showed a high temporal variability throughout the cucumber growing season. Manure application increased the stocks of extractable organic nitrogen significantly in the soil profile. Average extractable organic nitrogen reserves in 0–60 cm layer were 47, 71, and 131 kg ha?1 for the treatments of 0, 20, and 30 t dry chicken-manure application ha?1, respectively, during the cucumber growing season. As a result, while extractable organic nitrogen only accounted for a small part of total extractable nitrogen, its high contents and large temporal variation demonstrated its leaching risk in intensively irrigated vegetable cropping systems. Soil extractable organic nitrogen should be taken into account when an advanced environment management strategy is to be developed in greenhouse vegetable planting practice. 相似文献
2.
不同施磷量对蔬菜地土壤硝态氮淋失的影响 总被引:2,自引:1,他引:2
【目的】在两种蔬菜地土壤上研究不同磷肥施用量对土壤硝态氮淋失的影响,为武汉城郊蔬菜合理施用磷肥和安全生产提供理论依据。【方法】利用大型原状土柱渗漏装置,2种实验土壤(粉质粘土和粉质粘壤土)均为武汉城郊典型蔬菜土壤,分别采自华中农业大学校内蔬菜基地和湖北新洲。试验期间共种植了四种蔬菜(小白菜、 辣椒、 苋菜及萝卜)。试验设置了4个P2O5水平处理(0、 125、 250、 375 kg/hm2),氮肥施用量均为N 750 kg/hm2,钾肥施用量均为K2O 500 kg/hm2。试验期间年降雨量为1043.0 mm,各土柱总灌溉量为120.1 L。秋冬季每15天、 春夏季每10天收集一次淋洗液,另外根据天气和降雨情况适当调节,每次收集淋洗液时记录淋洗液体积并测定淋洗液硝态氮浓度。在每季蔬菜生长成熟后将蔬菜收获称重,烘干后测定蔬菜中氮素含量。【结果】1)与不施磷肥相比,施用磷肥显著增加了两种土壤上小白菜、 苋菜、 萝卜产量以及四季蔬菜总产量,其产量随磷肥施用量增加而增加或显著增加,在磷肥施用量最大时产量达到最大值。粉质粘土上的产量显著低于粉质粘壤土上的产量,粉质粘壤土总产量约是粉质粘土总产量的1.63~2.36倍。2)施用磷肥显著增加了小白菜、 苋菜氮素吸收累积量以及四季蔬菜总吸收累积量,且两种土壤上总氮素吸收累积量均在磷肥施用量最大时达到最大值。粉质粘壤土上氮素总吸收累计量显著高于粉质粘土上氮素总吸收累积量。3)磷肥水平对土壤总渗漏液体积并无显著影响(粉质粘壤土P2O5 125 kg/hm2处理除外),粉质粘土渗漏水量显著大于粉质粘壤土。4)施用磷肥降低或显著降低土壤淋失液硝态氮浓度(粉质粘土苋菜季除外),随着磷肥施用量的增加硝态氮淋失浓度不断降低,4季蔬菜平均淋失浓度最大降低了38.6%(粉质粘土)和28.8%(粉质粘壤土)。5)磷肥施用显著降低了两种土壤上硝态氮淋失量(苋菜季除外),且在粉质粘土上随着磷肥施用量的增加硝态氮淋失量不断降低,而在粉质粘壤土上硝态氮淋失量先降低后上升。粉质粘土硝态氮淋失量显著大于粉质粘壤土,磷肥施用降低硝态氮淋失量分别达到达26.4%~33.7%和23.5%~39.9%。【结论】磷肥施用增加了蔬菜产量和作物氮素吸收累积量,从而显著降低了两种土壤上硝态氮的淋失; 土壤质地对硝态氮淋失有较大影响,质地较轻的粉质粘壤土硝态氮淋失显著小于质地较重的粉质粘土; 粉质粘壤土上施用P2O5量为250 kg/hm2时能提高产量同时减少硝态氮淋失,而粉质粘土上施用P2O5量为375 kg/hm2时能获得较大产量和较少硝态氮淋失量。 相似文献
3.
研究在等氮条件下有机无机肥配施及添加硝化抑制剂DMPP(3,4-二甲基吡唑磷酸盐)对蔬菜产量、品质及土壤硝态氮淋失的影响,旨在为蔬菜安全生产和地下水环境质量保护提供理论依据。采用大型原状土柱系统,连续种植3季蔬菜(蕹菜、苋菜和萝卜),以施有机肥的氮素量占总氮施用量的质量分数为依据,设置8个施肥处理:不施肥(CK)、纯化肥(CF)、30%有机肥+70%无机肥(30%OM)、50%有机肥+50%无机肥(50%OM)、70%有机肥+30%无机肥(70%OM)、纯化肥+DMPP(CF+DMPP)、30%有机肥+70%无机肥+DMPP(30%OM+DMPP)和50%有机肥+50%无机肥+DMPP(50%OM+DMPP)。结果表明:1)随有机肥施用比例增大,蔬菜产量呈下降趋势,但施用比例不高于50%时产量下降不显著;随有机肥施用比例增大土壤硝态氮淋失量及蔬菜硝酸盐均降低,50%OM处理土壤淋失液硝态氮平均浓度及淋失量较CF处理显著降低了29.29%和25.39%,氮肥表观利用率及表观淋失率分别为22.60%和8.82%。2)硝化抑制剂DMPP对蔬菜产量和硝酸盐含量的影响与蔬菜种类和种植季候密切相关,降低土壤硝态氮淋失的效果为CF+DMPP30%OM+DMPP50%OM+DMPP,但DMPP的抑制效果会随有机肥的比例增加而降低。50%OM+DMPP处理氮肥表观淋失率和表观利用率分别为4.70%和26.26%。3)试验期间,3季蔬菜水分输入(降雨和灌溉)分别为总水分输入量的49.82%(蕹菜季)、23.03%(苋菜季)和27.15%(萝卜季);水分淋失量为总淋失量的46.75%(蕹菜季)、19.66%(苋菜季)和33.59%(萝卜季);硝态氮淋失量为总淋失量的73.77%(蕹菜季)、2.31%(苋菜季)和23.92%(萝卜季)。研究表明,50%OM+DMPP处理,是保证蔬菜产量品质,同时有效降低土壤硝态氮淋失量的最优处理;降雨和施肥措施是影响土壤硝态氮淋失的重要因素,合理配施有机肥及添加DMPP并根据蔬菜生长需肥特性进行施肥能有效应对连续降雨造成的硝态氮大量淋失。 相似文献
4.
Min Cui Xuecheng Sun Chengxiao Hu Hong J. Di Qiling Tan Changsheng Zhao 《Journal of Soils and Sediments》2011,11(5):722-730
Purpose
Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO3−) leaching, and nitrous oxide (N2O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3− leaching and N2O emissions in vegetable production systems. 相似文献5.
武汉市城郊区集约化露天菜地生产系统硝态氮淋溶迁移规律研究 总被引:2,自引:0,他引:2
以武汉市及其周边区域的典型露天菜地为研究对象,对菜地土壤、土壤溶液及菜地附近井水中硝态氮(NO3--N)含量进行了周年监测分析。结果表明:菜地土壤100 cm内各土层NO3--N平均含量为11.2 mg/kg,其中0~20 cm土壤剖面NO3--N含量为21.1 mg/kg;60 cm深度处土壤溶液中NO3--N含量为27.5 mg/L;井水中NO3--N含量为19.6~39.8 mg/L,其含量达到了饮用水安全标准的2~4倍。由此说明:武汉城郊菜地土壤NO3--N淋失量较大,已造成地下水NO3--N污染;且硝酸盐淋失量随着氮肥施用量和水分输入量的增加而增大,同时与种植蔬菜的种类有一定相关关系;由于土壤理化性质不同,土壤硝酸盐含量在正常范围内并且尚能够安全种植作物时,地下水可能已受到严重的污染,这种情况在砂性土壤中表现更为明显。本文的研究为科学评价露天菜地土壤和地下水NO3--N污染提供了科学理论依据。 相似文献
6.
Background and Objectives
Soil nitrate nitrogen (NO3 −-N) accumulation is related closely to NO3 − leaching, which is an important issue in groundwater pollution, especially in intensive agricultural areas with saline soils where volumes of water are used in irrigation to avoid salt accumulation in the root zone. However, in the saline environment in Hai River Basin, China, the importance of detailed research into NO3 −-N distribution in the root zone has not been adequately recognized. Considering the impacts of eco-environmental system N and crop production, the present study aimed at contributing to an understanding of the effects of N application rate on soil NO3 −-N distribution, NO3 −-N residue, N loss, and maize (Zea mays L.) yield in this region. 相似文献7.
施肥量和种植密度是影响大豆高产的重要因素。在收集了大量的大豆试验数据(1998~ 2017年)基础上,通过拟合氮、磷、钾肥用量和种植密度与产量之间的二次函数,得出最佳的施肥量和种植密度,通过逐步回归分析了施肥量和种植密度对大豆产量的影响。结果表明,我国春大豆和夏大豆的产量逐年增加,平均产量分别为 2 610和 2 724 kg/hm2。夏大豆最高产量下的氮、磷、钾肥用量分别为 N 96 kg/hm2、P2O5 80 kg/hm2和K2O 126 kg/hm2;春大豆最高产量下的氮、磷、钾肥用量分别为 N 71 kg/hm2、P2O5 108 kg/hm2和K2O 74 kg/hm2;实现夏、春大豆高产的最佳密度分别为 27万和 34万株/hm2。逐步回归分析显示,磷用量对春大豆产量影响最大,其次为钾肥和密度;在夏大豆产区,密度对产量影响最大,其次为磷肥用量。种植密度是大豆高产的关键因素,春、夏大豆需要提高种植密度获得高产,同时均应注重磷肥施用。 相似文献
8.
Comparison of type and depth of lysimeter for measuring the leaching losses of nitrogen under urine patches 总被引:1,自引:0,他引:1
Abstract. A study of the leaching losses of nitrate under urine patches in irrigated and non-irrigated dairy pastures in the South East of South Australia was undertaken with repacked and monolith lysimeters 1 m deep, and with monolith lysimeters 150, 300 and 450 mm deep. The aim was to quantify differences in measurements of drainage and nitrogen fluxes for these different lysimeters. Drainage of water and N flux were found to vary significantly between types and depths of lysimeters. Drainage volumes in repacked lysimeters were 78% and 33% more than in monolith lysimeters in irrigated and non-irrigated paddocks, and N fluxes were 5 and 3 times higher in repacked lysimeters respectively. The results indicate that lysimeter estimates of recharge rates and N fluxes to water tables are best determined by leaching studies which are longer term, and use deep monolith lysimeters. Shorter term studies and the use of shallow or repacked lysimeters have potential to distort conclusions. 相似文献
9.
Meta分析养分管理措施对菜田土壤硝酸盐累积淋溶阻控效应 总被引:1,自引:0,他引:1
根系密集层以下土壤剖面硝态氮累积导致的土壤氮淋溶是活性氮损失的主要途径,然而不同养分管理措施对菜田土壤硝酸盐累积和淋溶的系统性影响尚不清楚。该研究通过搜集整理2000-2021年间发表的国内外相关文献数据,分别以农民传统施肥(TF)、单施化肥(CF)和不添加抑制剂(WI)为对照组,应用Meta分析方法整合分析了减量施氮(RF)、有机无机配施(OF)和抑制剂调控(IF)三种主要优化养分管理措施对菜田土壤硝酸盐累积淋溶的影响。结果表明,与各自的对照相比,三种养分管理措施均可以有效降低0~100 cm土壤剖面的硝酸盐累积量及淋溶量。RF、OF和IF分别显著降低0~100、60~80和0~80 cm土层硝酸盐累积量;RF的氮淋溶阻控效应值为-4.301,硝酸盐淋溶量下降43.19%;OF的氮淋溶阻控效应值为-4.279,淋溶量下降36.79%,但有机氮肥替代率大于60%时阻控效应反而下降;对于IF来说,单施脲酶抑制剂或硝化抑制剂,以及二者同时配施对硝酸盐淋溶均具有显著的阻控效应,但以二者同时配施最好,效应值为-4.373,淋溶量下降37.12%。施氮量和水分投入量是影响菜田硝酸盐累积淋溶的两个主要因素,二者总的贡献度达43.2%~47.3%。综合分析表明:对于减氮施肥措施而言,水分、纯氮投入量分别为430.74 mm和646.53 kg/hm2左右时,减氮比例以30%~50%为宜;对于有机无机配施措施而言,在土壤有机质含量较高的土壤上,水分、纯氮投入量分别为360.28 mm和432.18 kg/hm2左右时,有机肥替代化肥比例以30%~60%为宜;抑制剂调控氮素转化则以脲酶/硝化抑制剂配合施用效果最佳。该研究可为蔬菜生产中制定适宜的养分管理策略提供依据。 相似文献
10.
Brendon G. Welten Stewart F. Ledgard Amanda A. Judge Mike S. Sprosen Alec W. McGowan Moira M. Dexter 《Soil Use and Management》2019,35(4):653-663
A soil lysimeter field study assessed the efficacy of different pasture species to reduce nitrogen (N) leaching loss from cow urine deposited in different seasons. A single application of cow urine (15N‐labelled; equivalent to 622 kg N ha?1) was applied in three different seasons (summer, autumn or winter) to three pasture species monocultures (perennial ryegrass, plantain or lucerne) on a free‐draining volcanic soil and monitored over 362 days. Leachate analyses revealed consistently large leaching losses of inorganic‐N from lucerne (>200 kg N ha?1) across different urine application times due to the relatively low plant growth rates during winter (<15 kg DM ha?1 day?1) that led to low total recovery of urine‐N by lucerne plants (<20% of the applied urine‐15N). Conversely, plant uptake of the urine‐N was higher by plantain (ranging from 30% to 45% of that applied) driven by moderately higher winter plant growth rates (30 to 60 kg DM ha?1 day?1). Plantain exhibited large seasonal variation in its efficacy to reduce urine‐N leaching relative to ryegrass (ranging from 15% to 50% reduction for summer or winter urine applications, respectively) with an overall reduction of 39% in the total amount of inorganic‐N leached across the three seasons (53 vs. 87 kg N ha?1 leached relative to ryegrass). This study has demonstrated the potential benefit of using plantain to reduce N leaching losses from urine deposited in the summer to winter grazing period. However, further research is required to quantify the effects of plantain on annual N leaching losses from grazed pastoral systems. 相似文献
11.
不同水肥措施下华北露地菜地氮淋溶特征 总被引:1,自引:1,他引:1
华北地区典型一年两季露地蔬菜种植系统,蔬菜生长季水热同季、种植管理中水氮供应充足且往往过量,造成大量氮素淋溶到深层土壤,不仅造成水肥资源利用率低,对地下水质也造成威胁。本文以华北潮褐土黄瓜-白菜一年两季典型露地蔬菜为研究对象,利用田间试验研究不同氮肥用量及优化措施(包括抑制剂、生物炭、秸秆还田)以及控制灌溉量对蔬菜产量、土壤氮淋溶及氮平衡的影响。研究结果表明:1)华北典型露地菜地氮肥主要损失去向为深层土壤中积累及氮淋溶。2)农民常规施肥处理[黄瓜季和白菜季各施550 kg(N)·hm~(-2)]淋洗出80cm土壤剖面的总氮占当季氮肥施用量的10.0%,减氮20%和50%分别使总氮淋溶量降低23.8%和45.6%;减氮20%对蔬菜产量没有显著影响,减氮50%对水肥需求量较高的黄瓜产量有显著影响(减产19.6%)。3)减氮20%配合脲酶抑制剂和硝化抑制剂、施用生物炭和添加秸秆还田分别使全年总氮淋溶量比常规水肥处理降低40.7%、43.0%和34.3%,而对蔬菜产量没有显著影响。4)减少灌溉量15%和30%分别使总氮淋溶比常规水肥处理降低43.1%和50.5%,水氮协同调控对降低氮淋溶效果显著;对需水量较高的黄瓜季,灌溉量降低30%黄瓜产量显著降低13.9%。5)高量水肥投入条件下连续种植蔬菜3年6季后,0~80cm土壤剖面硝态氮积累量占0~200 cm土壤剖面积累量的38.2%~50.7%,土壤剖面积累了大量硝态氮而且向深层土壤中移动。因此,合理控制水肥管理,特别是减氮结合脲酶抑制剂和硝化抑制剂配合水分管理,是经济可行的有效阻控土壤氮淋溶的措施。 相似文献
12.
氮肥的不合理施用是造成氮素淋失和地下水污染的主要原因之一,蔬菜生产地由于水肥投入不合理而引起的土壤氮素淋溶问题日趋严重。试验以保定地区露地蔬菜(黄瓜 -茄子)为研究对象,应用渗漏池法研究氮淋失与水肥响应的关系以及控水、控肥、增效剂对氮素淋溶的影响,揭示不同水肥管理措施下的氮素淋溶特征及阻控效果。结果表明:1)在农民常规施氮水平(全年施用氮肥 N 890 kg/hm2)下氮素在蔬菜生育期总氮淋溶量为 N 307.5 kg/hm2,占施氮量的 24.9%,总氮淋失量和施氮量呈显著线性关系。2)相比常规施氮量,减氮 20%和减氮 50%,全年总氮淋溶量可分别减少 12.8%和 36.3%。3)在减氮 20%基础上添加氮肥增效剂或改良剂(有机肥、联合抑制剂、生物炭、秸秆还田)能够减少总氮淋溶量 3.7%~ 10.4%,而不影响产量。4)在减氮 20%基础上减少灌溉量 20%,能够减少总氮淋溶量 33.4%。5)由于基肥施肥方式为种植行上小高畦开沟施用并覆土,有机肥和无机肥配施对减少氮淋溶量无显著影响。在大水大肥管理条件下,氮淋溶是华北典型露地菜地氮损失的主要途径之一,减氮 20%配合联合抑制剂和减氮 20%配施生物炭均可在一定程度上减少氮淋溶,且施肥的环境负荷小。 相似文献
13.
14.
Abstract. Atmospheric nitrogen (N) makes a significant contribution to the N inputs to agricultural systems and is a major eutrophying and acidifying input to natural and semi-natural ecosystems. We have estimated the nitrogen deposited to arable land at Rothamsted and at two Nitrate Vulnerable Zones (NVZs) in the UK, Lichfield and the River Waveney. Using the SUNDIAL N cycle model calibrated against measured soil mineral N and leaching losses at Rothamsted, we have calculated the contribution of deposited N to nitrate leaching under a range of crops growing on the major soil series in the NVZs. Approximately 44, 46 and 28 kg N/ha per yr are deposited to arable land around Rothamsted and in the Lichfield and Waveney NVZs, respectively. Most of this is dry-deposited in oxidized forms: nitrogen dioxide and nitric acid are the main components, arising mostly from industry, home heating and vehicle emissions. SUNDIAL predicts that current total leaching losses from arable crops average 39 kg N/ha per yr in the Lichfield NVZ anti 22 kg/ha per yr in the Waveney NVZ. Atsmospheric N contributes about 28% of the N leached from arable land in the Lichfield NVZ and 17% in the Waveney NVZ, a very significant amount. There is little variation in total leaching or the atmospheric contribution to it between soil series within each NVZ, but much variation with crop type and the weather: atmospheric N can comprise over 40% of the N leached under spring cereals in some years. 相似文献
15.
R. J. DOWDELL C. P. WEBSTER D. HILL E. R. MERCER 《European Journal of Soil Science》1984,35(2):169-181
The objective of this work was to determine the fate of fertilizer nitrogen (labelled with nitrogen-15) applied to an undisturbed shallow soil overlying Chalk contained in 10 lysimeters (80 cm diameter, 135 cm deep). Measurements are reported of the nitrogen uptake by four spring barley crops and the rate and extent of leaching of nitrate beyond the roots. The crops were fertilized with 0, 80 or 120 kg N ha?1 in each of four years, but only the first application in 1977 was labelled with nitrogen ?15. Rainfall and irrigation approximated to the long-term average, but in two treatments dry or wet spring conditions were imposed for the 10 weeks after sowing the first crop in 1977. The dry matter and grain yields of the spring barley crops varied from year to year in the ranges 8.7–14.0 t ha?1 and 3.5–6.1 t ha?1 respectively. The total nitrogen harvested in the crop approximated to the amount of nitrogen applied in each year with an apparent recovery of fertilizer in the range 38–76%. The recovery of nitrogen derived from fertilizer (labelled with nitrogen-15) was 46–54% in the first crop and after 2 years rapidly declined to below 1%. The total amount of nitrogen-15 labelled fertilizer recovered in four barley crops was 49–57% of that applied. Mean annual nitrate concentrations in water draining from the base of the lysimeters were in the range 11.8–26.7 mg N 1?1 and did not differ significantly between nitrogen fertilizer treatments (0, 80 and 120 kg N ha?1 a?1). In all treatments nitrate concentrations varied considerably within each growing season, with a cycle of peaks and troughs. Annual losses of nitrate were in the range 39–128 kg N ha?1, and the mean annual losses over the 4 years varied between lysimeters from 65 to 83 kg N ha?1. Nitrogen-15 labelled nitrate was detected in the first drainage water collected in autumn following its spring application, 5 months earlier. Recovery of fertilizer-derived nitrogen in drainage water was greatest during the winter following the second barley crop, and was 3.4–3.7% of the nitrogen-15 applied. Over the 4 years of the experiment 6.3–6.6% of labelled fertilizer was accounted for in drainage water, representing 2–3% of the total nitrogen lost by leaching. 相似文献
16.
本研究从基质原料选材、前处理措施,混合基质配比、养分提供,栽培基质的科学使用等方面重点介绍了我国无土栽培基质的新研究成果和应用方法,阐述了我国蔬菜无土栽培基质的研究与应用概况及发展趋势。 相似文献
17.
Effects of cropping system and rates of nitrogen in animal slurry and mineral fertilizer on nitrate leaching from a sandy loam 总被引:3,自引:0,他引:3
Abstract. Leaching of nitrate from a sandy loam cropped with spring barley, winter wheat and grass was compared in a 4-year lysimeter study. Crops were grown continuously or in a sequence including sugarbeet. Lysimeters were unfertilized or supplied with equivalent amounts of inorganic nitrogen in calcium ammonium nitrate (CAN) or animal slurry according to recommended rates (1N) or 50% above recommended rates (1.5N).
Compared with unfertilized crops, leaching of nitrate increased only slightly when 1N (CAN) was added. Successive annual additions of 1.5N (CAN) or 1N and 1.5N (animal slurry) caused the cumulative loss of nitrate to increase significantly. More nitrate was leached after application of slurry because organic nitrogen in the slurry-was mineralized.
With 1N (CAN) the leaching losses of nitrate were in the following order: continuous spring barley undersown with Italian ryegrass < continuous ley of perennial ryegrass < spring barley in rotation and undersown with grass < perennial ryegrass grown in rotation = winter wheat grown in rotation < sugarbeet in rotation < continuous winter wheat < continuous barley < bare fallow.
At recommended levels of CAN (1N), cumulative nitrate losses over the four years were similar for the crops when grown in rotation or continuously. When crops received 1.5N (CAN) or animal slurry, nitrate losses from the crops grown continuously exceeded those from crops in rotation. Including a catch crop in the continuous cropping system eliminated the differences in nitrate leaching between the two cropping systems. 相似文献
Compared with unfertilized crops, leaching of nitrate increased only slightly when 1N (CAN) was added. Successive annual additions of 1.5N (CAN) or 1N and 1.5N (animal slurry) caused the cumulative loss of nitrate to increase significantly. More nitrate was leached after application of slurry because organic nitrogen in the slurry-was mineralized.
With 1N (CAN) the leaching losses of nitrate were in the following order: continuous spring barley undersown with Italian ryegrass < continuous ley of perennial ryegrass < spring barley in rotation and undersown with grass < perennial ryegrass grown in rotation = winter wheat grown in rotation < sugarbeet in rotation < continuous winter wheat < continuous barley < bare fallow.
At recommended levels of CAN (1N), cumulative nitrate losses over the four years were similar for the crops when grown in rotation or continuously. When crops received 1.5N (CAN) or animal slurry, nitrate losses from the crops grown continuously exceeded those from crops in rotation. Including a catch crop in the continuous cropping system eliminated the differences in nitrate leaching between the two cropping systems. 相似文献
18.
H. J. Di K. C. Cameron J. P. Shen J. Z. He C. S. Winefield 《Soil Use and Management》2009,25(4):454-461
Nitrate (NO3?) can contribute to surface water eutrophication and is deemed harmful to human health if present at high concentrations in the drinking water. In grazed grassland, most of the NO3?‐N leaching occurs from animal urine‐N returns. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3? leaching in three different soils from different regions of New Zealand under two different rainfall conditions (1260 mm and 2145 mm p.a.), and explore the relationships between NO3?‐N leaching loss and ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA). The DCD nitrification inhibitor was found to be highly effective in decreasing NO3?‐N leaching losses from all three soils under both rainfall conditions. Total NO3?‐N leaching losses from the urine patch areas were decreased from 67.7–457.0 kg NO3?‐N/ha to 29.7–257.4 kg NO3?‐N/ha by the DCD treatment, giving an average decrease of 59%. The total NO3?‐N leaching losses were not significantly affected by the two different rainfall treatments. The total NO3?‐N leaching loss was significantly related to the amoA gene copy numbers of the AOB DNA and to nitrification rate in the soil but not to that of the AOA. These results suggest that the DCD nitrification inhibitor is highly effective in decreasing NO3? leaching under these different soil and rainfall conditions and that the amount of NO3?‐N leached is mainly related to the growth of the AOB population in the nitrogen rich urine patch soils of grazed grassland. 相似文献
19.
缺乏高效的养分管理技术体系,一直是制约永州地区富硒大豆产业发展的重要因素。为优化春大豆钼肥拌种条件下氮、磷肥运筹,提高养分利用效率和产量,以“湘春豆V8”为材料,通过大田小区试验探究不同氮肥和磷肥施用水平组合对春大豆产量和产量构成、干物质和养分累积量,以及养分利用效率的影响。结果表明,(1)单独采用钼肥拌种能显著提高大豆单株有效分枝数和荚果数,增幅分别达71.4% 和10.0%;显著提高大豆的生物产量和地上部分氮素累积量,增幅分别达17.8% 和22.9%。(2)处理MN1P2(80 g/100 kg 钼肥拌种+45 kg/hm2 尿素+300 kg/hm2 钙镁磷肥)和处理MN2P1(80 g/100 kg 钼肥拌种+75 kg/hm2 尿素+150 kg/hm2 钙镁磷肥)产量分别达2675.64 和2576.49 kg/hm2;两处理氮肥农学利用率、氮肥吸收利用率、磷肥利用率、磷利用效率分别为35.15和20.97 kg/kg、181.15% 和111.53%、14.28% 和15.94%、319.69 和450.55 kg/kg。(3)相较于当地常规施肥措施(75 kg/hm2 尿素+450 g/hm2 钙镁磷肥),MN1P2 和MN2P1 两处理施氮、磷肥减施幅度分别达40%、50% 和0%、66.7%。永州贫钼地区春大豆钼肥拌种前提下,氮、磷施用量为45 kg/hm2 尿素+300 kg/hm2 钙镁磷肥或75 kg/hm2尿素+150 kg/hm2 钙镁磷肥,可在减施氮磷肥的基础上,获得较高的产量和提高大豆养分利用率。 相似文献
20.
施氮和秸秆还田对小麦-玉米轮作农田硝态氮淋溶的影响 总被引:12,自引:0,他引:12
连续4 a采用渗漏计测定法研究了陕西关中小麦-玉米轮作区施氮和秸秆还田对土壤剖面90 em处NO3--N淋溶的影响.结果表明,NO3--N淋洗主要发生在7、8、9月份或灌溉后,年际间变异较大.监测期内各处理渗漏液NO3--N浓度和淋失量的变幅为0~103.5 mg L-1和0~21.8 kg hm-2,二者均随施氮量的增加呈增加趋势.小麦施氮150 kg hm-2、玉米施氮180 kg hm-2时,连续4a作物均能获得高产.施氮量继续增加,产量不再增加,0 ~100 cm土层NO3--N累积量和90 cm处NO3--N淋失量却相应增加.秸秆还田2 a后作物显著增产,2010年和2011年分别增产15.1%和14.2%,但对NO3--N累积和淋溶的影响不显著.回归分析显示,NO3--N年淋失量和0~ 100 cm土层累积量均随年施氮量的增加呈指数形式增加,说明施氮量越高,NO3--N年淋失量和累积量越高,二者占施氮量的比例也越高. 相似文献