首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Headspace solid-phase microextraction (SPME), followed by gas chromatography (GC)-mass spectrometry (MS) determination, has been used for the analysis of honey volatiles. Two SPME fibers were employed to study the composition of volatiles from various types of Spanish honeys. The best results were obtained with the Carboxen/PDMS fiber, using a homogenization time of 1 h at 70 degrees C and a sampling period of 30 min. A total of 35 compounds were detected, most of them identified by GC-MS and quantified using external standards. Differences in the composition of honey volatiles were obtained, and these results allowed the differentiation of honeys. However, further studies are necessary to confirm the utility of this technique as an alternative tool for the characterization of the floral origin of honeys.  相似文献   

2.
Solid-phase microextraction (SPME) with a polydimethylsiloxane fiber coupled with gas chromatography-mass spectrometry (GC-MS) was applied to the study of variability in volatiles released by 13 apple varieties. The relative amounts of 40 esters and alpha-farnesene were determined. Principal component analyses of these results clustered the apples into three groups according to skin color: red, green, and red-green. Total ester contents were highest with the red cluster apples, and the green cluster apples had the highest alpha-farnesene levels. This technology was also applied to the monitoring of changes in volatiles for apples removed from controlled-atmosphere storage with subsequent storage at 4 degrees C and room temperature. Total ester contents increased 25-fold, with the greater increases coming at room temperature, whereas alpha-farnesene levels increased only 5-fold. For apples stored at room temperature, after 11 days, the amount of increase was inversely proportional to the size of the ester: levels of smallest esters (molecular weight 116) increased 12.5-fold, and the largest esters (molecular weight 228) increased approximately 1.3-fold.  相似文献   

3.
An analytical multiresidue method for the simultaneous determination of various classes of pesticides in soil was developed. Pesticides were extracted from soil with ethyl acetate. Soil samples were placed in small columns, and the extraction was carried out assisted by sonication. Pesticides were determined by gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode. Spiked blank samples were used as standards to counteract the matrix effect observed in the chromatographic determination. Pesticides were confirmed by their retention times, their qualifier and target ions, and their qualifier/target abundance ratios. Recovery studies were performed at 0.2, 0.1, and 0.05 microg/g fortification levels of each pesticide, and the recoveries obtained ranged from 87.0 to 106.2% with a relative standard deviation between 2.4 and 10.6%. Good resolution of the pesticide mixture was achieved in approximately 41 min. The detection limits of the method ranged from 0.02 to 1.6 microg/kg for the different pesticides studied. The developed method is linear over the range assayed, 25-1000 microg/L, with determination coefficients >0.999. The proposed method was used to determine pesticide levels in real soil samples, taken from different agricultural areas of Spain, where several herbicides and insecticides were found.  相似文献   

4.
The solid-phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS) was used for the analysis of phenolic and other aromatic compounds in honey samples from different floral origin. Different parameters affecting the efficiency of the extraction, such as the type of the stationary phase of the fiber, NaCl and acetic acid addition, and extraction time, were optimized for the detection of the maximum number of compounds in the shortest analysis time. A total of 31 compounds were detected, with most of them identified and quantified by GC-MS. The principal component analysis (PCA) was applied to the data matrix; the results allowed for the differentiation between honeydew and nectar honeys on the basis of the salicylic acid concentration. It was found that this acid has a high contribution in the honeydew group (71.2-705.9 microg/100 g of honey) compared to the nectar honey group (0-47.6 microg/100 g of honey). The comparison of data in each honey group enabled us to characterize the floral source of some honeys using some aromatic compounds as markers.  相似文献   

5.
Analytical difficulties in the rapid and accurate determination of diacetyl (DA), an important flavor compound in wine, at low concentrations have been overcome by the use of solid-phase microextraction (SPME) with deuterated diacetyl-d(6) (d6-DA) as an internal standard followed by gas chromatography-mass spectrometry (GC-MS). The GC-MS analyses showed that the values of the ion response ratio of DA to d6-DA were consistent regardless of the conditions of SPME headspace and were not influenced by the presence of sulfur dioxide in wine. The quantitation value of DA was represented as the concentration of free plus bound with sulfur dioxide forms of DA. The detection limit of DA in wine was as low as 0.01 microg/mL with linearity through to 10 microg/mL.  相似文献   

6.
Benzothiazoles are a part of the molecular structure of a large number of natural products, biocides, drugs, food flavors, and industrial chemicals. They also appear in the environment mainly as a result of their production and use as rubber vulcanization accelerators. A new headspace solid-phase microextraction (HS-SPME) method for analysis of benzothiazole (BTH) in wine is described. This method is fast, inexpensive, and does not require solvents. The detection limit of BTH in wine was 45 ppt with linearity up to 100 ppb. The quantification of BTH is performed by the standard additions method and does not require the use of an internal standard. We have analyzed 12 wines from different grape varieties grown in several regions, using SPME extraction and gas chromatography-mass spectrometry (GC-MS) detection. Under these experimental conditions, benzothiazole was found in all wines analyzed. Concentration levels in samples varied from 0.24 microg/L (Vermentino) to 1.09 microg/L (Franciacorta).  相似文献   

7.
The essential oil of leaves and flowers of sachalinmint [Mentha sachalinensis (Briq.) Kud?] grown in Norway (Trondheim) has been studied by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry analysis (GC-MS). The essential oil content increased linearly in acropetal direction from 1.08% (0-20 cm plant height) to 1.75% (60-80 cm; young leaves and flowers). The steam-distilled samples showed a minor complex matrix with a very high menthol and a much lower menthone content (87.89 and 4.05%, respectively). From testing of HS-SPME unequilibrated exposure times ranging from 10 s to 5 min, an extraction time of 30 s was found to be sufficient to detect both low- and high-eluting compounds. Comparison of HS-SPME and steam-distilled samples established that the same tendencies of increasing menthol/menthone content in the basipetal/acropetal direction could be detected by both analysis methods. With regard to the extraction efficiency, HS-SPME gave additional detailed information about less important terpenic compounds.  相似文献   

8.
Two headspace techniques based on mass spectrometry detection (MS), electronic nose, and solid phase microextraction coupled to gas chromatography-mass spectrometry (SPME-GC/MS) were evaluated for their ability to differentiate various infant formula powders based on changes of their volatiles upon storage. The electronic nose gave unresolved MS fingerprints of the samples gas phases that were further submitted to principal component analysis (PCA). Such direct MS recording combined to multivariate treatment enabled a rapid differentiation of the infant formulas over a 4 week storage test. Although MS-based electronic nose advantages are its easy-to-use aspect and its meaningful data interpretation obtained with a high throughput (100 samples per 24 h), its greatest disadvantage is that the present compounds could not be identified and quantified. For these reasons, a SPME-GC/MS measurement was also investigated. This technique allowed the identification of saturated aldehydes as the main volatiles present in the headspace of infant milk powders. An isotope dilution assay was further developed to quantitate hexanal as a potential indicator of infant milk powder oxidation. Thus, hexanal content was found to vary from roughly 500 and 3500 microg/kg for relatively non-oxidized and oxidized infant formulas, respectively.  相似文献   

9.
A new, fast, sensitive, and solventless extraction technique was developed in order to analyze beer carbonyl compounds. The method was based on solid-phase microextraction with on-fiber derivatization. A derivatization agent, O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBOA), was absorbed onto a divinyl benzene/poly(dimethylsiloxane) 65-microm fiber and exposed to the headspace of a vial with a beer sample. Carbonyl compounds selectively reacted with PFBOA, and the oximes formed were desorbed into a gas chromatograph injection port and quantified by mass spectrometry. This method provided very high reproducibility and linearity. When it was used for the analysis of aged beers, nine aldehydes were detected: 2-methylpropanal, 2-methylbutanal, 3-methylbutanal, pentanal, hexanal, furfural, methional, phenylacetaldehyde, and (E)-2-nonenal.  相似文献   

10.
A selective and fast method for the quantitative determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wine was developed. Microextraction in packed syringe (MEPS) was optimized for the extraction and preconcentration of the analytes using extremely small volume samples (0.1-1 mL). For GC-EI-MS, the limit of detection (LOD) for red and white wine was in the range 0.17-0.49 microg L(-1) for TCA and TBA. In addition to GC-EI-MS both GC-NCI-MS and GC-HRMS were used to further improve both selectivity and sensitivity. The lowest LODs were achieved using GC-HRMS in the EI mode. In red and white wine samples the LODs were between 0.22-0.75 ng L(-1) for TCA and TBA. The reproducibility and linearity for the GC-HRMS method was good, with RSD-values of 4-10% for spiked red wine samples at 1 ng L(-1) and linearity with R (2) > 0.962 over a concentration range of 1 to 100 ng L(-1).  相似文献   

11.
trans-Cinnamaldehyde, the principal component of cinnamon flavor, is a potent antimicrobial compound present in essential oils such as cinnamon. In the course of studies designed to discover its maximum microbial lethality under food-processing conditions, a gas chromatographic-mass spectrophotometric procedure was developed for the extraction and analysis of essential oil components such as cinnamaldehyde from commercial cinnamon-containing foods (several brands of cinnamon breads, cereals, cookies, puddings, applesauces, and fruit juices). The cinnamaldehyde content ranged from trace amounts in orange juice to 12.2 mg/100 g (122 ppm) in apple cinnamon cereals and 31.1 mg/100 g (311 ppm) for cinnamon swirl bread (highest value). To ascertain the heat stability of cinnamaldehyde, pure cinnamaldehyde, pure eugenol, cinnamon oil, and mixtures consisting of cinnamaldehyde plus eugenol or cinnamon oil were heated at graded temperatures up to 210 degrees C and 60 min, and then possible compositional changes were examined. Eugenol was stable to heat, as were the components of cinnamon oil: carvone, eugenol, and linalool. In contrast, starting at approximately 60 degrees C, pure cinnamaldehyde undergoes a temperature-dependent transformation to benzaldehyde under the influence of heat. Eugenol, both pure and in cinnamon oil, when added to pure cinnamaldehyde protected the aldehyde against heat destruction. The protection may due to an antioxidative action of eugenol. The possible mechanism of this effect and the significance of these findings for food chemistry and microbiology are discussed.  相似文献   

12.
This paper investigated the components, especially aldehydes, in the fume condensates from four kinds of cooking oil using ultraviolet (UV) spectrometry and gas chromatography-mass spectrometry (GC-MS). It was observed that there was a great change of the UV absorption spectra from the results of the unheated oil to the results of the fume after heat treatment (190-200, 230-240, and 270-280 degrees C). There was a strong peak within the wavelength range of 260-270 nm in each condensate sample. From the GC-MS results, it was tentatively deduced that there were some 2,4-dialkylenaldehydes and other conjugated compounds in the condensates. The results showed there were large amounts of hexanal and 2-heptenal in the cooking oil fume and that the total aldehyde peak areas of the condensates from four kinds of oil were around 30-50% of the total peak area at 270-280 degrees C.  相似文献   

13.
Volatile esters contribute important floral and fruity sensory properties to wine. Numerous factors influence the biosynthesis and hydrolysis of esters throughout yeast fermentation; however, methods to monitor the dynamic changes in ester production that occur during winemaking processes are limited. In this study, we showed that solid phase microextraction (SPME), a rapid, solventless sampling procedure, combined with GC/MS analysis is a useful method for the nearly continuous analysis of volatile compounds such as esters that are produced during fermentation. Accuracy, precision, and limits of quantification were comparable to those of other sample preparation methods such as liquid-liquid extraction. Using GC/MS-SPME to monitor fatty acid ethyl esters and acetate esters, we obtained detailed information on the production patterns of ester formation during fermentation. This method now enables the monitoring of volatiles during fermentation and can provide greater insight into yeast metabolism and flavor formation.  相似文献   

14.
An accurate, sensitive method is described for the determination of monensin residue in chicken tissues by liquid chromatography (LC), in which monensin is derivatized with a fluorescent labeling reagent, 9-anthryldiazomethane (ADAM), to enable fluorometric detection. Samples are extracted with methanol-water (8 + 2), the extract is partitioned between CHCl3 and water, and the CHCl3 layer is cleaned up by silica gel column chromatography. Free monensin, obtained by treatment with phosphate buffer solution (pH 3) at 0 degrees C, is derivatized with ADAM and passed through a disposable silica cartridge. Monensin-ADAM is identified and quantitated by normal phase LC using fluorometric detection. The detection limit is 1 ppb in chicken tissues. Recoveries were 77.6 +/- 1.8% at 1 ppm, 56.7 +/- 7.1% at 100 ppb, and 46.5 +/- 3.7% at 10 ppb fortification levels in chicken. Gas chromatography-mass spectrometry is capable of confirming monensin methyl ester tris trimethylsilyl ether in samples containing residues greater than 5 ppm.  相似文献   

15.
A rapid confirmatory method for monitoring chloramphenicol (CAP) residues in honey, whole milk, and eggs is presented. This method is based on the polymer monolith microextraction (PMME) technique and high-performance liquid chromatography (HPLC)-electrospray ionization mass spectrometry (MS). A poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium. To obtain optimum extraction efficiency, several parameters related to PMME were investigated. After dissolution in 20 mM phosphate solution at pH 4.0 and centrifugation, honey, eggs, or milk samples were directly passed through the extraction tube. The LC-MS instrument was equipped with an electrospray ion source and a single quadrupole. The eluates were analyzed by LC-MS in the negative-ion mode and by monitoring a pair of isotopic ions for the target compound. The in-source collision-induced dissociation process produced confirmatory ions. The recoveries of CAP from real samples spiked at 0.1-10 ng/g (honey), 0.2-10 ng/mL (milk), and 0.2-10 ng/g (egg) were in the range of 85-102%, with relative standard deviations ranging between 2.1% and 8.9%. The limits of detection (S/N = 3) were 0.02 ng/g, 0.04 ng/mL, and 0.04 ng/g in honey, milk, and eggs, respectively. The proposed method was proved to be robust in monitoring CAP residue in honey, milk, and eggs.  相似文献   

16.
17.
A headspace solid-phase microextraction (HS-SPME) and gas chromatography-selective ion monitoring/mass spectrometry (GC-SIM/MS) method was optimized for analysis of 22 volatile compounds in orujo spirit samples from the Geographic Denomination "Orujo de Galicia/Augardente de Galicia". HS-SPME experimental conditions, such as fiber coating, extraction temperature, extraction and pre-equilibrium time, sample volume, and the presence of salt, were studied to improve the extraction process. The best results were obtained using a 65 microm Carbowax-divinylbenzene fiber during a headspace extraction at 40 degrees C with constant magnetic stirring for 15 min and after a 5 min period of pre-equilibrium time. The sample volume was 6 mL of orujo containing 25% of NaCl, placed in 12 mL glass vials equipped with a screw cap and PTFE/silicone septum. Desorption was performed directly in the gas chromatograph injector port for 5 min at 250 degrees C using the splitless mode. The proposed method is sensible (with detection limits between 0.0045 and 0.2399 mg/L), precise (with coefficients of variation in the range 0.99-8.18%), and linear over more than 1 order of magnitude. The developed method presented recoveries comprised between 76.0 and 112.4%. The applicability of the new method was demonstrated by determining the considered 22 volatile compounds in nine orujo commercial samples with quality and origin brands.  相似文献   

18.
Optimization of the solid-phase extraction cleanup procedure enabled the GC-MS analysis of acrylamide in tea samples without the interference of bromination by tea catechins. Although polyvinylpolypyrrolidone (PVPP) is available for removing tea catechins from tea extract, the peaks derived from PVPP had the same retention time as brominated acrylamide in mass chromatograms obtained by GC-MS. A considerable amount of acrylamide was formed at roasting temperatures of > or =120 degrees C; the highest acrylamide level was observed when tea samples were roasted at 180 degrees C for 10 min. Higher temperatures and longer processing times caused a decrease in the acrylamide content. Furthermore, an analysis of 82 tea samples showed that rather than the reducing sugar content, the asparagine content in tea leaves was a significant factor related to acrylamide formation in roasted products. The acrylamide level in roasted tea products was controlled by asparagine in the presence of reducing sugars.  相似文献   

19.
Proteins or poly-L-lysine which were incubated in the presence of ascorbic acid, dehydroascorbic acid (ascorbylation), or various sugars (glycation) were analyzed by gas chromatography-mass spectrometry (GC-MS). To also detect more labile reaction products, the Maillard modified proteins or poly-L-lysine were enzymatically hydrolyzed and reacted with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide to form the N(O)-tert-butyldimethylsilyl (tBDMS) derivatives prior to GC analysis. Under these conditions, the known Maillard products N (epsilon)-(carboxymethyl)lysine (1), oxalic acid mono-N (epsilon)-lysinylamide (2), and N (epsilon)-(carboxyethyl)lysine (3) could be simultaneously detected and quantified in glycated and ascorbylated proteins. Additionally, N (epsilon)-(1-carboxy-3-hydroxypropyl)-L-lysine (4) was identified for the first time as a Maillard product of proteins. Under the conditions applied here, 4 was found only in ascorbylated proteins or poly-L-lysine, but not in glycated proteins. Maillard-modified poly-L-lysine was further subjected to high-performance liquid chromatography (HPLC) analysis after enzymatic hydrolysis and formation of the phenyl isothiocyanate derivatized amino acids. Using this method, N (epsilon)-formyl-L-lysine (5), which cannot be distinguished from 2 by GC-MS analysis, was identified for the first time as a glycation product. Compound 5 is mainly formed from ribose, lactose, and fructose. The indicated Maillard products were quantified in beta-lactoglobulin (GC-MS) or poly-L-lysine (HPLC) which were glycated or ascorbylated using different precursors.  相似文献   

20.
A new analytical method for the determination of 18 carbonyl compounds [2,3-pentadione, hexanal, (E)-2-hexen-1-al, octanal, acetoin, (E)-2-octenal, furfural, decanal, (E)-2-nonenal, benzaldehyde, 5-methylfurfural, (E,E)-2-cis-6-nonadienal, β-damascenone, phenylacetaldehyde, acetophenone, (E,E)-2,4-decadienal, benzophenone, and vanillin] in wines using automated headspace solid-phase microextraction (HS/SPME) coupled to gas chromatography-ion trap mass spectrometry (GC-ITMS) was developed. Five fibers with different polarities were tested, and a study of the influence of various factors such as time and extraction temperature, desorption time and temperature, pH, and ionic strength and content in tannins, anthocyans, sucrose, SO(2), and alcoholic degree was conducted. These factors were optimized using a synthetic wine doped with the different analytes. The proposed method affords wide ranges of linearity, good linearity (r(2) > 0.998), values of repeatability and reproducibility lower than 5.5% of RSD, and detection limits ranging from 0.62 μg/L for β-damascenone to 129.2 μg/L for acetoin. Therefore, the optimized method was applied to the quantitative analysis of the aforementioned analytes in real samples of wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号