首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
浙江省安吉县西苕溪流域非点源污染负荷研究   总被引:5,自引:1,他引:4  
为探究浙江省安吉县西苕溪流域非点源污染现状,运用污染输出系数法对非点源污染负荷进行估算,并应用地理信息系统(GIS)技术对非点源污染负荷的空间分布特征进行分析.结果表明,2007年浙江省安吉县西苕溪流域非点源污染COD、TN、TP、NH3-N输出总量分别为2 236.12t、1007.22t、78.11t、82.90t,分别占西苕溪流域污染物总量的71.91%、70.05%、83.52%、23.64%,其中农村生活污水、农林用地和村镇工业废水是COD的主要污染源,农林用地是TN的主要污染源,农村生活垃圾、畜禽养殖和农林用地是TP的主要污染源,畜禽养殖和村镇工业废水是NH3-N的主要污染源.在空间尺度上,非点源污染负荷主要集中在西苕溪流域中下游地区,COD、TP、NH3-N输出量从上游至下游逐渐增加,但TN输出量相近.  相似文献   

2.
西苕溪流域非点源氮污染特征   总被引:4,自引:3,他引:4       下载免费PDF全文
通过对西苕溪流域不同用地类型的子流域出口设置监测点并进行定期水质监测,探讨该流域非点源氮污染特征及其区域性差异。不同月份的监测结果表明,总氮(TN)、溶解性总氮(DTN)、硝态氮(NO3--N)浓度在12月最高,7月次之,4月最低;铵态氮(NH4+-N)浓度在7月最高,12月次之,4月最低。典型子流域日监测数据表明:林地子流域水质监测点测得的氮明显低于耕地,降雨期林地子流域出口的氮浓度增加,耕地子流域降低,干旱期则相反。研究表明流域非点源氮污染主要受农业耕地用地类型的控制,降雨径流是西苕溪流域非点源氮输出的主要驱动因素,用地类型、不同形态氮的理化性质差异导致流域非点源氮呈现明显的季节、空间分布特征。  相似文献   

3.
农田土壤氮素循环及其对土壤氮流失的影响   总被引:1,自引:1,他引:1  
李琴 《安徽农业科学》2007,35(11):3310-3312
分析了土壤氮素循环及其对土壤氮流失的影响,提出了加强氮肥管理、重视平衡施肥、提高作物氮素吸收能力、优化耕作制度及灌溉方式等降低我国农田土壤氮素流失的主要对策.  相似文献   

4.
选择珠三角地区典型水田为径流监测点,在2008年4~7月和2009年4~7月期间,定点收集早造稻田径流样品,探讨了天然降雨下当季施肥对氮素径流流失的影响。结果表明:2008年和2009年的产流率分别达到90%和80%以上,常规处理(F)与对照处理(F0)之间的历次径流量均无显著差异;整个早稻期间,2008年和2009年常规处理(F)的总氮平均流失浓度分别比对照处理(F0)高出286%和80.7%,总氮流失量分别达到28.4kg/hm2和21.0kg/hm2,分别比对照处理(F0)高出89.7%和41.2%,表明施肥是早造稻田氮素径流流失的主要贡献因子。2008年和2009年的氮素径流流失系数分别为12.6%和3.6%,施肥量对不同年份间的流失系数影响很大。  相似文献   

5.
刘宏伟  余钟波  崔广柏 《安徽农业科学》2009,37(28):13759-13762
分析了太湖地区农业小流域逐日降雨径流和暴雨事件对氮素营养物输出的影响规律。结果表明:总氮、铵态氮和硝态氮流失日平均浓度随降雨量和径流量的增大而增大,总氮最大,硝态氮次之,铵态氮最小。暴雨事件中,径流起涨初期氮素浓度迅速升高,之后逐渐降低,在退水时期会有所反弹。暴雨事件中的瞬时流量与氮素输出浓度关系按流量大小可分为3段:在小流量段,氯素浓度低且数量平稳;中流量段,各态氮素流失浓度变化大;高流量段,总氮和铵态氮流失浓度显著降低并逐渐平稳,硝态氮浓度略为降低但变化较大。  相似文献   

6.
基于多元统计分析方法的西苕溪流域水质时空变化研究   总被引:3,自引:1,他引:3  
基于太湖上游西苕溪流域38个采样点2009年6月至2010年7月完整周年的水质监测数据,综合运用聚类分析、单因素方差分析、因子分析及多维尺度分析等多元统计分析方法,对西苕溪流域水质时间与空间变化进行了分析。根据聚类分析将整个流域河段在空间上分为四个部分,即上游林区的河段、紧邻城镇的下游河段、下游平原区的干流河段和分散于农业灌溉区的河段;利用因子分析的旋转因子载荷矩阵从时间维度研究不同水质参数的季节敏感性,氮素在整个研究时间段与旋转因子的相关系数都大于0.900,表现出整个研究时间段内的敏感性;利用单因素方差分析和多维尺度分析实现时空的统一分析,相同时间不同河段间差异性显著且都与其地理位置特点相吻合,所有河段在时间维度上均显现出丰水期的水质与另两个水期差异显著的特点,紧邻城镇的下游河段水质是整个流域中不同水期间差异性最小的,凸显了人为干扰的持续性。研究结果表明,运用多元统计方法对西苕溪流域水质的时空变化特点进行分析,可以为流域水质监测与污染防控提供有益参考。  相似文献   

7.
不同雨强和植被盖度对稻田径流及氮素流失的影响   总被引:1,自引:1,他引:1  
阐明径流及养分流失特征对制定农田径流削减策略、降低面源污染发生风险具有重要意义。为明确稻田径流和氮素流失对雨强的响应,分别在水稻生育前期(低植被盖度)和后期(高植被盖度)选择3个降雨强度[低雨强(SI),30 mm·h-1;中雨强(MI),60 mm·h-1;高雨强(LI),90 mm·h-1]进行了田间降雨模拟试验。结果表明:稻田径流率均呈先上升后下降的趋势,且径流率峰值随雨强增大而增加。不同降雨强度下径流率峰值分别为72.58 (SI)、126.45 (MI)、234.90 (LI) m3·hm-2·h-1(低植被盖度)和41.94(SI)、70.02 (MI)、83.30 (LI) m3·hm-2·h-1(高植被盖度)。径流氮素浓度在初始产流期较高,不同植被盖度和雨强下径流氮素浓度随径流时间的变化均可以用对数函数方程进行描述[Y=a-b×ln (X+c),P<0.01]。与浓度表现不同,受径流率影响,径流发生后的前40min内的氮素流失风险较高,特别是在径流发生后的20~30 min (流失率峰值时间)。低植被盖度下氮素流失率更易受降雨强度影响,两种植被盖度下氮素流失率峰值分别为0.07 (SI)、0.10 (MI)、0.27 (LI)kg·hm-2·h-1(低植被盖度)和0.05 (SI)、0.04 (MI)、0.06 (LI)kg·hm-2·h-1(高植被盖度)。因此,不同雨强下氮素流失负荷在低植被盖度条件下差异显著,且高降雨强度的氮素流失量(10.02mg·m-2)显著高于中、低降雨强度,铵态氮(NH4+-N)是稻田径流氮素流失的主要形态(占比约41%~52%)。氮素流失负荷与径流发生前期(0~20 min)和中期(20~40 min)的径流率及氮素浓度密切相关。结果表明,初始产流期是稻田氮素流失的高浓度风险期,而径流发生后的20~30 min内氮素流失最快,低植被盖度下径流发生更易受雨强影响。  相似文献   

8.
从合溪水库集水区合理利用土地资源和保护水库水体质量的角度出发,在集水区选择旱地、水旱轮作地、林地、休闲地、苗木地五种不同土地利用方式,利用田间试验方法研究不同土地利用方式下的径流氮流失特征。结果表明:在自然降雨条件下,五种土地利用方式下土壤氮素流失量和流失浓度表现出明显差异,地表径流液态总氮的流失大小顺序为水旱轮作地(156.92 kg·hm~(-2)·a~(-1))旱地(114.24 kg·hm~(-2)·a~(-1))苗木地(35.61 kg·hm~(-2)·a~(-1))休闲地(3.99 kg·hm~(-2)·a~(-1))林地(1.59 kg·hm~(-2)·a~(-1)),人为耕种强度较大的水旱轮作地和旱地氮流失量较大,而耕种强度较小的休闲地和林地氮流失量较小,说明选择耕种强度较小的土地利用方式可有效削减合溪水库集水区径流氮素流失及其对合溪水库水质的潜在影响。结果还表明:不同试验区径流氮素流失的首要形态均为颗粒态氮,其次为硝态氮,最后为铵态氮;旱地、水旱轮作地、林地、休闲地、苗木地径流年均流失的颗粒态氮占总氮的比例分别是61.67%、61.42%、75.56%、65.09%和69.11%,年均流失的硝态氮占总氮的比例分别是26.21%、28.56%、16.35%、21.30%和23.20%,年均流失的铵态氮占总氮的比例分别是8.90%、7.87%、6.92%、11.78%和4.83%,意味着合溪水库集水区氮素的流失关键在于土壤表层的侵蚀,可见减少土壤表层的侵蚀是控制合溪水库集水区氮素流失和减少其对合溪水库水质负面影响的关键。  相似文献   

9.
水稻田面水氮素动态径流流失特性及控制技术研究   总被引:19,自引:6,他引:19  
通过测坑和大田试验,对上海市黄浦江上游水稻田面水氮素动态、径流(排水)流失规律和控制对策进行了研究。结果表明,(1)在基肥期和第1次追肥(碳铵)后,稻田水中氮素浓度下降均较快,施肥后1~2d,TN含量即可下降为施肥当天浓度的25.13%~50.25%,平均为30.17%,到第4d则下降到10%以下;(2)在第2、3次追肥(尿素)后,坑面水氮素浓度减少趋势不同于基肥期和第1次追肥,施肥后开始1~3d浓度先稍有升高,此后下降趋势同前2次施肥;(3)人工降雨试验表明,如施肥后遇暴雨,则可能导致氮素的大量流失。以基肥期为例,施肥后第2d,40mm雨量引起的TN流失量为5.54~7.95kg·hm-2,80mm雨量引起的TN流失量可达16.74~24.02kg·hm-2,氮素的径流流失以NH4+-N为主;(4)应严格控制播期排水和烤田排水,否则会引起氮素的大量流失;(5)经测产,增施有机肥而减少化肥用量对水稻产量没有影响,但可以在很大程度上减少水稻田面水氮素的径流(排水)流失。  相似文献   

10.
土地利用类型变化是非点源污染呈现时空分布不均匀性和随机性的重要原因.以松涛水库上游为研究区构建SWAT模型,分析28年来流域内非点源污染氮负荷的时空分布以及不同土地利用类型与氮负荷的关系.结果表明:(1)构建的SWAT模型适用于松涛水库上游地区非点源污染氮负荷的估算;(2)1988—2002年流域全年总氮负荷增加了11...  相似文献   

11.
不同管理措施对黄壤坡耕地径流氮输出的控制效果   总被引:2,自引:1,他引:2  
以黔中黄壤坡耕地氮磷流失长期定位监测基地为平台,于2008—2012年连续5 a进行观测,研究玉米-油菜种植模式下,6种管理措施对黄壤坡耕地地表径流、径流氮输出的控制效果。结果表明:黄壤坡耕地产流系数为15.1%~20.1%,平均18.1%;氮肥流失系数为0.81%~1.34%,平均0.99%;径流氮输出以颗粒态氮所占TN比例46.9%最高,可溶性总氮流失以硝态氮为主,占TN流失的31.1%。优化施肥+横坡垄作+秸秆覆盖+等高植物篱的耕作管理措施截流效果、氮输出控制效果最佳,产流量较CK减少25%;氮肥流失系数最小,为0.81%;TN平均输出总量最小,为4.63kg·hm-2。顺坡常规耕作条件下,优化施肥与常规施肥径流量相当,TN输出量减少23.2%;优化施肥条件下,横坡垄作较顺坡常规耕作径流量减少6.7%,TN输出量减少7.3%;优化施肥+横坡垄作条件下,秸秆覆盖较无秸秆覆盖径流量减少4.8%,TN输出量减少3.4%;秸秆覆盖+等高植物篱较秸秆覆盖径流量减少11.6%,TN输出量减少6.8%。横坡垄作、优化施肥、秸秆覆盖、等高植物篱是控制黄壤坡耕地地表径流、径流中氮输出的有效措施。  相似文献   

12.
不同土地利用方式下黑土氮素含量变化特征   总被引:2,自引:0,他引:2  
利用中国科学院海伦农业生态实验站长期定位试验,比较不同土地利用方式下黑土全氮、碱解氮、铵态氮和硝态氮的变化特征;同时研究不同土样种植作物(玉米)所表现的土壤生产力。结果表明:(1)不同土地利用方式下全氮含量存在显著差异(P〈0.05),自然土壤植被被破坏或转为农田,土壤全氮含量持续下降,但农田化肥和有机肥配施后,土壤全氮含量显著增加;草地经过20年的植被恢复,土壤全氮含量显著高于农田化肥和无肥处理,土壤氮库储量显著提高。(2)土地利用变化对土壤碱解氮和铵态氮含量影响显著,草地、化肥+有机肥耕地土壤碱解氮和铵态氮含量显著高于裸地、无肥耕地和化肥耕地,而草地土壤硝态氮含量则显著低于裸地、无肥耕地、化肥耕地和化肥+有机肥耕地。(3)不同土地利用方式下的土壤,在种植玉米后,玉米相对生物量最大的为化肥+有机肥耕地,其次为草地和化肥耕地,最低为无肥耕地。  相似文献   

13.
自然降雨条件下农田地表产流及氮磷流失规律研究   总被引:15,自引:2,他引:15  
基于淮北平原自然降雨条件下2个连续汛期观测的降雨-径流试验数据,分析不同试验处理下农田地表产流规律和氮磷浓度及其构成,探讨地表径流氮磷浓度和流失量的时间变化过程及其分布差异。结果表明,当地农田地表径流氮磷浓度构成分别以颗粒态氮和可溶性磷为主,而可溶性氮中又以溶解性有机氮为主,且硝态氮是农田地表径流无机氮流失的主要成分。汛初7月不同土地利用方式下农田地表径流量及铵态氮、硝态氮、可溶性氮磷和颗粒态氮磷的浓度及流失量间的差异相对较小,但8月期间的差异却明显增加,低秆高密度作物种植模式下的相应流失量最低。在淮北平原夏季种植黄豆、棉花等矮秆高密度作物,可起到有效减少地表径流氮磷流失量的作用,减缓因农业非点源污染对地表水体富营养化产生的潜在威胁。  相似文献   

14.
土地利用方式对径流中N、P输出的影响   总被引:2,自引:0,他引:2  
王爱国  王雯 《安徽农学通报》2010,16(11):153-156,161
不同土地利用方式对径流中N、P输出的影响有很大差异。降雨和地表径流是农田营养物质流失的主动力。该文综述了有关农用地N、P流失的研究现状,通过对农用地,特别是坡地降雨径流中N、P浓度的讨论,以及对旱地和水田中N、P流失量差异的比较,研究不同土地利用方式对径流中N、P输出的影响。最后,结合近年来国内外研究进展,提出了将来的研究重点。  相似文献   

15.
以农作型小流域为研究对象,建立小流域土壤侵蚀模数、轻度以上侵蚀土地占地率与平耕地、坡耕地、有林地、其它林地、荒草地、其它用地占地率无截距模型,以及小流域土壤侵蚀模数与不同侵蚀强度土地占地率无截距多元回归模型.分析不同类型土地的侵蚀模数、土壤流失率、土壤流失比、土壤流失面积比.不同侵蚀强度土地侵蚀模数、土壤流失比.结果表明:①无明显侵蚀、轻度侵蚀、中度侵蚀、强度及其以上侵蚀土地土壤侵蚀模数分别为:-397.78t/km2a、1639.95t/km2·a、5000.00t/km2·a、9119.12t/km2·a,土壤流失比分别为:-7%、6%、34%、67%,在不同小流域变幅为:-3%--23%、0%-21%、8%-100%、11%-98%,有80%的小流域强度侵蚀土地是土壤流失的主要源地,有20%的小流域土壤流失主要发生在中度侵蚀土地;②平耕地、坡耕地、有林地、其它林地、荒草地、土壤侵蚀模数分别为:458.27t/km2·a、6410.8t/km2·a、-2083.89t/km2·a、2668.43t/kin2·a、6639.33 t/km2·a、-759.6 t/km2·a;土壤流失比分别为:-6%、89%、-4%、11%、12%、-3%,流失面积比为1%、72%、0%、18%、9%、0%,水土流失的首要用地类型是坡耕地,平耕地、有林地、其他用地对土壤流失起到抑制作用.  相似文献   

16.
在环太湖丘陵地区选择4种有代表性的土地利用类型进行野外原位试验,研究了自然降雨条件下磷素随地表径流的迁移特征。结果表明,各场降雨水相总磷的“次降雨径流平均浓度”呈对数正态分布。悬浮颗粒态磷是水相磷素迁移的主要形态,占水相总磷的76%~89%,其浓度主要由表土总磷含量及地表径流量决定;而溶解态磷(DP)主要与表土中的有效磷含量以及径流与表土相互作用深度有关。溶解态无机磷(DIP)占溶解态磷的57%~85%,竹林的DIP浓度最高。菜地径流的有机磷含量(DOP)明显高于另外3种土地利用。不同土地利用下溶解态和悬浮态磷的迁移通量分别为23~92.7mg·m^-2·a^-1和113.4~364.3mg·m^-2·a^-1,与地表径流量表现出较强的相关性。  相似文献   

17.
[目的]通过研究秸秆还田对稻田磷素径流损失及其对环境的影响,探索减少径流损失、提高巢湖水质的有效耕作措施。[方法]以巢湖流域稻田为研究对象,采用野外定位观测试验结合室内分析的研究方法。[结果]径流液TP含量为0.087~0.495 mg/L。PP是稻田P素随径流迁移的主要形态,约占TP的40%~70%。秸秆还田能够降低水稻生育前期径流液TP、DP和PP的浓度,减少P素径流流失风险。在当地常规耕作条件下(CT),2008和2009年稻季P素径流流失负荷分别为222.76和297.17 g/hm2,P肥表观流失率分别为0.68%和0.91%,平均为0.79%。与CT相比,秸秆还田处理(CTS)P素径流流失负荷分别减少了5.13%和18.98%,平均为12.05%。[结论]秸秆还田作为源头控制稻田磷素流失的较好措施可以在巢湖流域使用。  相似文献   

18.
施氮量对番茄生长发育和氮肥利用率的影响   总被引:5,自引:0,他引:5  
为了确定番茄生产中氮肥适宜施用量,通过田间试验研究了施氮量对番茄生长、产量、氮素吸收量和氮肥利用率的影响。结果表明,随着施氮量的增加,番茄的株高表现出逐渐增加的趋势,施氮量为324 kg/hm2时表现为徒长,但各处理之间茎粗无显著差异;施氮处理番茄叶片叶绿素含量高于无氮处理,施氮量为162 kg/hm2时达到最高。施氮量低于243 kg/hm2时,随着施氮量的增加,番茄产量和植株地上部吸氮量逐渐增加,但进一步增施氮肥会导致番茄产量和吸氮量下降。随着施氮量的增加,番茄氮肥偏生产力逐渐降低,氮肥农学效率和氮肥回收利用率表现出先增加后减少的趋势,在施氮量为162 kg/hm2时达到最高。综合分析施氮量对番茄生长、产量、氮素吸收量和氮肥利用率的影响可以发现,本试验条件下番茄合理施氮量应控制在162~243 kg/hm2。  相似文献   

19.
地表管理与施肥方式对太湖流域旱地氮素流失的影响   总被引:21,自引:4,他引:17  
太湖富营养化日益严重,其中农业非点源氮污染对太湖富营养化有着相当大的贡献,探明该地区农田土壤氮素随地表径流向水体迁移的形态与通量对水体富营养化治理具有重要的现实意义。采用田间试验方法,研究了太湖流域旱地氮素随地表径流排放特征。结果表明,常规管理下典型旱地氮向水体迁移的年负荷为12.66kg·hm^-2左右,约占年施肥量的5.63%,其中硝态氮和颗粒态氮是径流损失的主要形式,分别约占总流失量的48.74%和38%左右。随着降雨的进行,NO3^--N浓度逐渐增大,而NH4^+-N浓度逐渐降低,氮向水体迁移具有明显的季节特征,夏季和秋季为氮高负荷季节,6~11月占全年氮输出总量的83.4%。地表覆盖和氮肥深施均能有效地降低氮流失量,其中地表覆膜、秸秆覆盖、肥料条施及穴施分别可降低60.3%、59.8%、50.1%、52.4%的氮流失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号