首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
Summary The influence of vesicular-arbuscular mycorrhizae on the efficiency of triple superphosphate and rock phosphate fertilizers was compared in two tropical, acid, P-fixing soils (Ivory Coast) in which the available P was labelled with 32PO inf4 sup3- . Both soils were planted with micropropagated oil palms. The growth reponses to the fertilizer applications were low unless accompanied by VAM inoculation, but both fertilizers were equally available to plants. Isotopic-dilution kinetics analyses indicated that the rock phosphate was solubilized in both soils and there was an enrichment of the labile pool of plant-available P, similar to that with superphosphate. The specific activity and the fraction of P derived from either fertilizer was similar in both mycorrhizal and non-mycorrhizal plants, showing that both absorbed P from the same labile pool of P in the fertilized soils. However, VAM inoculation increased the fertilizer utilization coefficient of plants 2.7- to 5.6-fold, depending on the soil and fertilizer. We conclude that VAM inoculation increases fertilizer efficiency, as much of rock phosphate as of superphosphate, for plants growing in acid, P-fixing soils, and the processes involved are not different for the two fertilizers.  相似文献   

2.
Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests   总被引:3,自引:0,他引:3  
Thirty-eight soils from forest sites in central Germany dominated by beech trees (Fagus sylvatica L.) were sampled to a depth of about 10 cm after careful removal of the overlying organic layers. Microbial biomass P was estimated by the fumigation — extraction method, measuring the increase in NaHCO3-extractable phosphate. The size of the microbial P pool varied between 17.7 and 174.3 g P g-1 soil and was on average more than seven times larger than NaHCO3-extractable phosphate. Microbial P was positively correlated with soil organic C and total P, reflecting the importance of soil organic matter as a P source. The mean microbial P concentration was 13.1% of total P, varying in most soils between 6 and 18. Microbial P and microbial C were significantly correlated with each other and had a mean ratio of 14.3. A wide (5.1–26.3) microbial C: P ratio indicates that there is no simple relatinship between these two parameters. The microbial C: P ratio showed strong and positive correlations with soil pH and cation exchange capacity.  相似文献   

3.
We evaluated the effect of elemental S (S0) under three moisture (40, 60, 120% water-filled pore space; WFPS) and three temperature regimes (12, 24, 36°C) on changes in pH and available P (0.5 N NaHCO3-extractable P) concentrations in acidic (pH 4.9), neutral (pH 7.1) and alkaline (pH 10.2) soils. Repacked soil cores were incubated for 0, 14, 28 and 42 days. Application of S0 did not alter the trends of pH in acidic and neutral soils at all moisture regimes but promoted a decrease in the pH of alkaline soil under aerobic conditions (40%, 60% WFPS). Moisture and temperature had profound effects on the available P concentrations in all three soils, accumulation of available P being greatest under flooded conditions (120% WFPS) at 36°C. Application of S0 in acidic, neutral and alkaline soils resulted in the net accumulation of 16.5, 14.5 and 13 g P g–1 soil after 42 days at 60% WFPS, but had no effect under flooded conditions. The greatest available P accumulations in the respective soils were 19, 19.5 and 20 g P g–1 soil (equivalent to 38, 41, 45 kg P ha–1) with the combined effects of 36°C, 60% WFPS and applied S0. The results of our study revealed that oxidation of S0 lowered the pH of alkaline soil (r=–0.88, P<0.01), which in turn enhanced available P concentrations. Also, considering the significant relationship between the release of sulphate and accumulation of P, even in acidic soil (r=0.92, P<0.01) and neutral soil (r=0.85, P<0.01) where the decrease in pH was smaller, it is possible that the stimulatory effect of sulphate on the availability of P was due to its concurrent desorption from the colloidal surface, release from fixation sites and/or mineralization of organic P. Thus, in the humid tropics and irrigated subtropics where high moisture and temperature regimes are prevalent, the application of S0 could be beneficial not only in alleviating S deficiency in soils but also for enhancing the availability of P in arable soils, irrespective of their initial pH.  相似文献   

4.
Summary Topsoils (0–75 mm) from four soil types with different sulphate retention capacities were collected from stock camp and non-camp (main grazing area) sites of grazed pastures in New Zealand which had been annually fertilized with superphosphate for more than 15 years. These soils were analysed for different S fractions and incubated at 30°C for 10 weeks using an open incubation technique in order to assess the extent of S mineralization and the release of soluble soil organic S from camp and non-camp soils during incubation. The soils were preleached with 0.01 M KCl, followed by 0.04 M Ca(H2PO4)2 before being incubated. Pre-incubation leachates and weekly 0.01 M KCl leachates were analysed for mineralized S (i.e., hydriodic acid-reducible S) and total S. Soluble organic S was estimated as the difference between these two S fractions. Results obtained show higher cumulative amounts of all three S fractions in leachates over a 10-week incubation period in camp than in non-camp soils, suggesting that higher mineralization occurred in camp soils. Cumulative amounts of mineralized S from camp and non-camp soils showed a linear relationship with duration of incubation (R 20.985***), while the cumulative release of soluble organic S followed a quadratic relationship (R 20.975***). A significant proportion (14.6%–40.8%) of total S release in KCl leachates was soluble organic S, indcating that organic S should be taken into account when assessing S mineralization. Mineralized S and soluble organic S were best correlated with 0.01 M CaCl2-extractable soil inorganic S (R 2=0.767***) and 0.04 M Ca(H2PO4)2-extractable soil inorganic S(R 2=0.823***), respectively. Soil sulphate retention capacity was found to influence amounts of mineralized S and soluble organic S, and thus periodic leaching with KCl to remove mineralized S from soils may not adequately reflect the extent of soil S mineralization in high sulphate-retentive soils. In low (<10%) sulphateretentive soils, increasing the superphosphate applications from 188 to 376 kg ha–1 year–1 increased S mineralization but not amounts of C-bonded and hydriodic acid-reducible soil S fractions.  相似文献   

5.
Summary Pot-culture studies were carried out to examine the response of barley (Hordeum vulgare L.) to inoculation with Azospirillum brasilense and Glomus versiforme, singly and/or in combination, under varying levels of nitrogenous [(15NH4)2SO4] and soluble phosphatic (single superphosphate) fertilizers. The interaction between both the endophytes led to increased growth and nutrition of the barley plants. Roots from plants inoculated with Azospirillum brasilense and Glomus versiforme exhibited very low acetylene reduction activity. N2 fixation in the plants increased with the increase in plant growth but the mycorrhiza alone gave a low level of N2 fixation in the plants compared to combined inoculation with both the endophytes.  相似文献   

6.
Summary The interaction between soil pH and inoculation with rhizobia and vesicular-arbuscular mycorrhizae (VAM) was studied in an industrially polluted soil contaminated with high levels of Zn and Cd. A silt loam soil (pH 6.7) was amended with Ca(OH)2 or elemental S to adjust the soil pH to 4.3, 5.3, 6.0, and 7.2. Alfalfa (Medicago sativa L.) was planted in each treated soil an subsequently inoculated with Rhizobium meliloti and/or a mixed VAM spore population. Alfalfa growing in soils at a pH of 4.3 and 5.3 failed to survive as a result of soil acidity and heavy metal toxicity. At the three higher pH values, growth and foliar N and P were significantly increased by inoculation with rhizobia or VAM. The greatest increase was observed when both VAM and rhizobia were inoculated together into the soil. With a soil pH of 6.0 and 6.7, the available heavy metal concentration in the soil was high and the VAM significantly decreased heavy metal uptake from these soils. The foliar concentration of Zn was reduced from 455 to 306 g g–1 by inoculation with VAM (pH 6.0). At the highest soil pH (7.2), however, available heavy metal concentrations were generally lower and NAM significantly increased the heavy metal uptake. The influence of VAM on heavy metal uptake thus appears to be partly a function of the available heavy metal content in the soil.  相似文献   

7.
Summary Topsoils (0–75 mm) from four different soil types were collected from stock camp and non-camp (main grazing area) areas of grazed pastures in New Zealand, which had been fertilised annually with superphosphate for more than 15 years, in order to assess the effects of grazing animals on the status and distribution of soil S fractions and organic matter. These soils were analysed for organic C, total N, total S, C-bonded S, hydriodic acid-reducible S, 0.01 M CaCl2, and 0.04 M Ca(H2PO4)2-extractable S fractions, and soil pH. Soil inorganic and organic S fractions extracted by NaHCO3 and NaOH extractants were also determined. The results obtained showed that camp soils contain higher soil pH, organic C, total N, total S, organic (C-bonded S and hydriodic acid-reducible S) and inorganic S fractions, NaHCO3-and NaOH-extractable soil S fractions but a lower anion retention capacity than non-camp soils, attributed to a higher return of plant litter and animal excreta to camp soils. In both soils, total S, organic S, C-bonded S, and hydriodic acid-reducible S were significantly correlated with organic C (r0.90***, ***P0.001) and total N (r0.95***), suggesting that C, N, and S are integral components of soil organic matter. However, C: N : S ratios tended to be lower in camp (60: 5.6: 1–103: 7.2: 1) than in non-camp soils (60:6.1:1–117:8.3:1). Most (>95%) of the total soil S in camp and non-camp soils is present as organic S, while the remainder is readily soluble and adsorbed S (i.e. Ca(H2PO4)2-extractable S). C-bonded S and hydriodic acid-reducible S constituted 55%–74% and 26%–45% of total S, respectively, reflecting a regular return of plant litter and animal excreta to the grazed pastures. NaHCO3, and especially NaOH, extracted significantly higher amounts of total soil S (13%–22% and 49%–75%, respectively) than Ca(H2PO4)2 or CaCl2 (<5%). In addition, NaHCO3 and NaOH-extractable soil S fractions were significantly rorrelated with soil organic S (r0.94***), C-bonded S (r0.90***) and hydriodic acid-reducible soil S (r0.93***). Differences between soils in either camp or non-camp areas were related to their sulphate retention capacities, as soils with high sulphate retention capacities (>45%) contain higher levels of C-bonded and hydriodic acid-reducible S fractions than those of low sulphate retention soils (<10%). Long-term annual superphosphate applications significantly increased the accumulation of soil organic and inorganic S fractions, and organic C and total N in the topsoil, although this accumulation did not occur when the superphosphate application rates were increased from 188 to 376 kg ha-1 year-1.  相似文献   

8.
Summary The effectiveness of six phosphoroamides for retardation of urea hydrolysis in soils was studied by determining the effects of 10 g g–1 soil of each compound on the amounts of urea hydrolyzed when soils treated with urea were incubated at 10°, 20°, 30°, and 40°C for 3, 7, and 14 days. The phosphoroamides used wereN-(diaminophosphinyl)-cyclohexylamine,N-benzyl-N-methyl phosphoric triamide, diethyl phosphoric triamide, trichloroethyl phosphorodiamidate, dimethyl phosphoric triamide, andN-butyl phosphorothioic triamide [N-(n-butyl) thiophosphoric triamide]. The soils used were selected to obtain a range in properties, and the effects of the six phosphoroamides studied were compared with those of two compounds known to be among the most effective compounds thus far proposed for retardation of urea hydrolysis in soils (phenylphosphorodiamidate and hydroquinone). The data obtained showed that all six of the phosphoroamides evaluated compared favorably with hydroquinone as soil urease inhibitors and that two of them [N-butyl phosphorothioic triamide andN-(diaminophosphinyl)-cyclohexylamine] were superior to phenylphosphorodiamidate for retardation of urea hydrolysis in soils at 20°, 30°, or 40°C.  相似文献   

9.
Summary To investigate the effect of single versus dual inoculation of peas (Pisum sativum L.) with Rhizobium leguminosarum biovar viceae and Penicillium bilaji (a soil fungi capable of solubilizing soil P) on N2 fixation an experiment was carried out under controlled conditions. A sandy loam soil was selected which contained low levels of available N and P. P fertilizer [Ca(H2PO4)2] and P. bilaji significantly increased dry matter production. Peas inoculated with R. leguminosarum showed only a small increase in dry matter, but the additional application of P significantly increased the yield. The total N accumulation was highly dependent on the presence of R. leguminosarum. Using the 15N method for estimating N2 fixation, the highest level of N2-fixing activity was observed in peas inoculated with R. leguminosarum and fertilized with inorganic P. Dual inoculation of peas with P. bilaji and R. leguminosarum significantly decreased the amount of N2 fixed. Total P uptake was solely dependent on the P fertilizer.  相似文献   

10.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   

11.
Summary This study is an attempt to describe the dominant N2-fixing microflora associated with the roots of wetland rice. Rice cultivar Giza 171 was grown in a phytotron on two alluvial Egyptian soils for 8 days, a stage when the nitrogenase activity of undisturbed plants reached a level of 245 × 10–6 mol C2H4 h–1 g–1 dry weight of leaf. The roots and rhizosphere soils were then used for counting and isolating dominant diazotrophs. Counts and initial enrichment steps were carried out on a selective medium made of an axenic rice plantlet, the spermosphere model, incubated under 1 % acetylene. The counts were very high, exceeding 108 bacteria g–1 dry weight of rhizosphere soil. Enterobacteriaceae were dominant; most isolates were Enterobacter cloacae belonging to different biotypes in the two soils. Enterobacter agglomerans, Citrobacter freundii and Klebsiella planticola were also present as members of the dominant microflora. Azospirillum brasilense and Azospirillum lipoferum were present as well, but less abundant.  相似文献   

12.
A pot trial was conducted to investigate the single, dual, and triple inoculation of earthworms or plant growth–promoting rhizobacteria (PGPR), including nitrogen-fixing bacteria (NFB) (Azotobacter chroococcum HKN-5) and phosphate-solubilizing bacteria (PSB) (Bacillus megaterium HKP-1), on the growth of Brassica parachinenesis and nitrogen (N) and phosphorus (P) availability in soils. All of the five inoculation treatments significantly (P < 0.05) increased the shoot growth of B. parachinenesis. The greatest shoot and root biomass were recorded in the triple inoculation of earthworm, NFB, and PSB. All of the five inoculation treatments significantly (P < 0.05) increased the concentrations of ammonium (NH4 +)-N, NOx-N, and sodium bicarbonate (NaHCO3)–extractable P in soils. Based on plant growth and availability of N and P in soils, the present study suggested that the triple inoculation may be a promising approach for reducing the need for chemical fertilizers in growing vegetables.  相似文献   

13.
Summary The competitive ability of inoculated and indigenous Rhizobium/Bradyrhizobium spp. to nodulate and fix N2 in grain legumes (Glycine max, Vigna unguiculata, Phaseolus vulgaris) and fodder legumes (Vicia sativa, Medicago sativa, and Trifolium subterraneum) was studied in pots with two local soils collected from two different fields on the basis of cropping history. The native population was estimated by a most-probable-number plant infectivity test in growth pouches and culture tubes. The indigenous rhizobial/bradyrhizobial population ranged from 3 to 2×104 and 0 to 4.4×103 cells g-1 in the two soils (the first with, the second without a history of legume cropping). Inoculated G. max, P. vulgaris, and T. subterraneum plants had significantly more nodules with a greater nodule mass than uninoculated plants, but N2 fixation was increased only in G. max and P. vulgaris. A significant response to inoculation was observed in the grain legume P. vulgaris in the soil not previously used to grow legumes, even in the presence of higher indigenous population (>103 cells g-1 soil of Rhizobium leguminosarum bv phaseoli). No difference in yield was observed with the fodder legumes in response to inoculation, even with the indigenous Rhizobium sp. as low as <14 cells g-1 soil and although the number and weight of nodules were significantly increased by the inoculation in T. subterraneum. Overall recovery of the inoculated strains was 38–100%, as determined by a fluorescent antibody technique. In general, the inoculation increased N2 fixation only in 3 out of 12 legume species-soil combinations in the presence of an indigenous population of rhizobial/bradyrhizobial strains.  相似文献   

14.
An experiment was conducted under greenhouse conditions to evaluate the effects of vesicular arbuscular mycorrhizal (VAM) fungi on the external P requirements of barley and soybeans. The plants were grown in pots containing a P-deficient soil. A range of 10 P levels was obtained by adding 0, 20, 30, 40, 50, 60, 70, 110, 160, or 310 mg P kg-1 as NaH2PO4 2H2O. Half of the pots were inoculated with the VAM fungus Glomus intraradices. The P concentration in the soil solution was determined using an adsorption isotherm and plotted against the relative yield. Barley did not respond to mycorrhizal inoculation and we concluded that P nutrition was not the limiting factor on the growth of this lowmycotrophic plant. In contrast, mycorrhizal inoculation stimulated the growth of soybeans. The external P requirements were 0.110 g ml-1 for mycorrhizal and 0.148 g ml-1 for non-mycorrhizal soybeans to obtain 80% of the maximum yield. In terms of P fertilization this corresponds to a saving of 222 kg P2O5 ha-1. The mycorrhizal dependency of the soybean was highly correlated with the P concentration in the soil solution and it is proposed that both values should be displayed together.  相似文献   

15.
Summary Fifty-six isolates of Rhizobium and Bradyrhizobium spp. (Cajanus) were studied for their plasmid profile and N2-fixation efficacy. One to three plasmids were reproducibly detected in all the Rhizobium spp. strains but no plasmid was detected in the Bradyrhizobium spp. strains. Rhizobium sp. strain P-1 was mutagenized by Tn5 and three nod and six nod+fix were screened for symbiotic parameters. Neomycin-sensitive mutants were isolated by elevated temperatrue (40°C) from tranconjugants carrying Tn5 insertions. The high temperature cured these mutants from the single large plasmid present in the parent strain P-1. All these cured mutants were nod, indicating that the genes for nodulation were present on this plasmid, which is readily cured at a high temperature (40°C). The high temperature in the semi-arid zones of Haryana could be responsible for the low nodulation of pigeonpea because the plasmid carrying the nodulation genes is cured at 40°–45°C giving rise to non-nodulating mutants.  相似文献   

16.
Precipitation chemistry at sinhagad-a hill station in India   总被引:1,自引:0,他引:1  
The chemistry of precipitation in remote sites such as mountain tops is of interest in the study of atmospheric pollution and acid rain. The chemical composition measured at mountain site which is away from industrial and urban areas is useful as a reference level and it allows to determine the extent of anthropogenic contamination. Hence, rain water samples were collected at Sinhagad (18°21N, 73°45E, 1450 m asl during the monsoon season (June-September) of 1992 and were analysed for major ions. The precipitation samples collected at Sinhagad were alkaline in nature and pH values ranged between 5.9 to 6.76. The ionic composition was dominated by soil dust The concentration of Ca2+ was highest among all the ions. The concentrations of excess SO3 2– and NO4 were small (23.8 and 15.2 eq l–1 respectively) compared to the values of polluted regions in India. The correlation coefficient between the ions and pH values was calculated and it was found to be maximum in case of Ca2+. Precipitation samples collected at Sinhagad were alkaline owing to higher concentration of Ca2+ and lower levels of acidic pollutants (SO4 2– and NO3 ).  相似文献   

17.
A six-year (1999–2005) experiment of drought manipulation was conducted in a Quercus ilex Mediterranean forest (Southern Catalonia) to simulate predicted climatic conditions projected for the decades to come. The aim was to investigate the direct and indirect effects of drought conditions on acid and alkaline phosphatase activity in soil and on P concentrations in soil, leaves and litter throughout the year. Soil acid phosphatase activity was higher than soil alkaline phosphatase activity. Drought reduced acid phosphatase activity in soil in all seasons, including summer and winter, the seasons with less biological activity due to water and cold stress. Reductions of soil water content between 13 and 29% reduced soil acid phosphatase activity between 22 and 27% depending on the season. Drought reduced alkaline phosphatase activity (by 28%) only in winter. Soil acid and alkaline phosphatase activities were positively correlated with soil water content in all seasons. In contrast short-term available-P which increased under drought in several seasons was weakly correlated with soil phosphatase activities. As a result, immediately/short-term available-P concentration ratios decreased in all the seasons (between 10 and 71%). Drought increased foliar P concentration and reduced the C/P concentration ratio in litter fall of the dominant tree Q. ilex. Drought also decreased the ratio between organic C and short-term available-P in soil. The results show that soil phosphatase activity is more directly dependent on changes in water availability than on changes in its substrate, short-term available-P. These effects of drought have several implications: the accumulation in the soil of labile P not directly available to plants, the increase in potential P losses from leaching and erosion during the torrential rainfalls typical of the Mediterranean climate, and changes in plant, litter and soil C:P stoichiometry that may lead to changes in soil trophic chains.  相似文献   

18.
Summary We studied the dominant diazotrophs associated with maize roots and rhizosphere soil originating from three different locations in France. An aseptically grown maize plantlet, the spermosphere model, was used to isolate N2-fixing (acetylene-reducing) bacteria. Bacillus circulans was the dominant N2-fixing bacterium in the rhizosphere of maize-growing soils from Ramonville and Trogny, but was not found in maize-growing sandy soil from Pissos. In the latter soil, Enterobacter cloacae, Klebsiella terrigena, and Pseudomonas sp. were the most abundant diazotrophs. Azospirillum sp., which has been frequently reported as an important diazotroph accociated with the maize rhizosphere, was not isolated from any of these soils. The strains were compared for their acetylene-reducing activity in the spermosphere model. The Bacillus circulans strains, which were more frequently isolated, also exhibited significantly greater acetylene-reducing activity (3100 nmol ethylene day-1 plant-1) than the Enterobacteriaceae strains (180 nmol ethylene day-1 plant-1). This work indicates for the first time that Bacillus circulans is an important maizerhizosphere-associated bacterium and a potential plant growth-promoting rhizobacterium.  相似文献   

19.
Summary The effect of inoculation with a selected isolate of Glomus etunicatum Becker and Gerdemann and one of G. intraradices Schenck and Smith on the growth and nutrient content of Macroptilium atropurpureum Urb. cv. Siratro and Aeschynomene americana L., at applied P levels of 10, 30, 60, and 120 kg ha-1, was studied under field conditions. At all P levels and for all harvests, the shoot dry mass of Siratro and A. americana were greater for the plants inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungi than the control plants. Differences between the VAM fungus-inoculated and the control plants were most marked between 30 and 90 kg ha-1 of applied P and diminished at 120 kg ha-1. At the first harvest of Siratro, the plants inoculated with G. etunicatum had a greater shoot dry mass than those inoculated with G. intraradices, for all levels of applied P. However, for subsequent harvest of Siratro and for the one harvest of A. americana the response of shoot dry mass to the two VAM fungi was equivocal. Fungal inoculation gave at least a 30% saving in the amount of P fertilizer required (40 kg ha-1) for the maximum yield. The plants inoculated with VAM fungi had a greater tissue concentration and total content of P and N than the control plants at low and intermediate levels of applied P. The percentage of root colonized by VAM fungi for the inoculated plants of the two legumes increased linearly with P additions up to 60 kg ha-1. The conclusion is that under amended (limed and fertilized) soil conditions, inoculation with selected VAM fungi can improve the establishement and growth of forage legumes in fields that contain ineffective populations of native VAM fungi.  相似文献   

20.
Summary Physiological and symbiotic characteristics were identified in Rhizobium fredii isolated from subtropical-tropical soils. The generation times of R. fredii Taiwan isolated-SB 357 and -SB 682 were 1.7 and 2.5 h, respectively. These strains were associated with acid production in yeast-extract mannitol medium. They were able to use hexoses, pentose, sucrose, trehalose and raffinose. Strain SB 357 can resist a high concentration of kanamycin (100 g ml–1 and penicillin (400 g ml–1). It can tolerate up to 2.34% NaCl and 1031.3 mosmol kg–1 (23.4 bars). The growth rate of R. fredii SB 357 under the concentration of approximately 450 mosmol kg–1 (10.2 bars) was not affected by salinity, but responded to osmotic pressure. Both strains (SB 357 and SB 682) isolated from subtropical-tropical soils were able to form an effective N2-fixing symbiosis with the US soybean cv Clark lanceolate leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号