首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以季铵盐氯化胆碱(ChCl)与乳酸(Lac)、尿素(U)、草酸(OA)、甲酸(FA)分别合成低共熔溶剂(DES)并对工业碱木质素(AL)进行改性,研究了由不同氢键供体与ChCl合成的DES体系、反应条件及催化剂对碱木质素改性的木质素提取率的影响。研究发现使用氯化胆碱/乳酸低共熔溶剂(ChCl/Lac)时,木质素的提取率最高。通过单因素试验得到ChCl/Lac改性的最优条件为:在120℃时,Lac与ChCl物质的量比值(nLac/nChCl)为12,DES添加量为碱木质素质量的20倍(mDES/mAL=20),反应时间12 h,木质素提取率达95.37%;当反应温度降低到100℃,无催化剂时,木质素提取率为40.39%,使用8%碳酸钠为催化剂时,木质素提取率提高至74.87%。采用FT-IR、13C NMR、TG和DTG对木质素样品进行表征,由FT-IR、13C NMR结果可得,改性中β-O-4键断裂并引入羟甲基和甲氧基,改性后木质素主要结构单元为紫丁香基结...  相似文献   

2.
研究氯化胆碱和丙三醇在不同物质的量比、不同温度条件下合成氯化胆碱/丙三醇低共熔离子液体(Ch Cl/Glycerol DES)的最佳合成工艺,并用其处理木质素(Dealkaline CAS9005-53-2)。通过傅里叶红外光谱(FTIR)、离子化差示光谱、热重(TG)、核磁共振氢谱(1H-NMR)等分析手段对氯化胆碱/丙三醇低共熔离子液体处理前后木质素的分子结构及热稳定性变化进行表征。研究结果表明:反应温度为100℃,氯化胆碱和丙三醇物质的量比为1∶2时,体系的反应效率最高,所制备的离子液体黏度适中、稳定性好。木质素经Ch Cl/Glycerol DES改性处理后酚羟基总含量明显增加,反应活性明显提高,其中,木质素中紫丁香基结构(S)被降解,说明Ch Cl/Glycerol DES处理木质素可显著提高其反应活性。经Ch Cl/Glycerol DES处理后的木质素按10%,20%,30%和40%的替代量替代苯酚,制备的木质素-酚醛树脂胶黏剂的胶合强度均可达到国标GB/T 8942.3—2004中Ⅰ类胶合板标准要求。  相似文献   

3.
以高灰分含量麦糠(WWS)为原料,考察了水热预处理,以及预水洗后水热预处理对麦糠化学组分及其酶水解性能的影响。研究结果表明:麦糠在固液比1∶10(g∶mL)和180℃条件下水热预处理40 min,预处理麦糠的酶水解性能和酶解可发酵糖生成量最高,葡聚糖和木聚糖酶水解得率分别为40.84%和39.67%,可发酵糖生成量为15.74 g(其中葡萄糖11.68 g、木糖4.06 g)。进一步对预处理麦糠酶水解过程中酶用量进行优化,发现在纤维素酶用量40 FPU/g(以葡聚糖质量计)、木聚糖酶用量140 U/g(以木聚糖质量计)和β-葡萄糖苷酶用量48 U/g(以葡聚糖质量计)条件下,预处理麦糠葡聚糖和木聚糖酶水解得率可达最优值,分别为48.98%和49.06%。麦糠吸附型灰分的酸缓冲作用是制约其水热预处理效果的关键因素,预水洗可有效降低麦糠的灰分,同时提高葡聚糖和木聚糖含量;麦糠经洗涤比500∶1(mL∶g)预水洗后进行水热预处理,预处理麦糠的葡聚糖和木聚糖酶解得率分别从未水洗时的48.98%和49.06%提高到65.59%和70.11%,此时酶水解液中葡萄糖和木糖质量浓度分别可达17.50和4.75 g/L。同时,麦糠预水洗可有效降低后续酶解过程的纤维素酶用量。  相似文献   

4.
4种木质纤维素预处理方法的比较   总被引:3,自引:0,他引:3  
采用4种方法对玉米秸秆预处理,研究了不同预处理方法对酶水解性能和可发酵性糖得率的影响,分析了预处理物料主要成分,预水解液中糖组成、碳水化合物降解产物及木质素降解产物含量.100 g玉米秸秆经稀酸、稀酸磨浆、中性蒸汽爆破和稀酸蒸汽爆破预处理、洗涤后,物料中纤维素由37.17g分别降为33.96、33.54、32.63和32.88 g,木聚糖由22.84 g分别降为2.77、2.47、3.56和2.05 g,木质素由18.76 g分别降为17.63、17.42、16.90和17.25 g.稀酸蒸汽爆破预处理物料在底物质量浓度100 g/L、纤维素酶用量20 FPIU/g(以纤维素计,下同)、β-葡萄糖苷酶用量3 IU/g下酶水解48 h,纤维素水解得率为75.91%.玉米秸秆经稀酸蒸汽爆破预处理、纤维素酶水解后可发酵性糖得率为44.93%(以玉米秸秆为基准).  相似文献   

5.
研究了不同的两步法预处理对杨木酶水解和木质素吸附性能的影响,结果显示:未处理原料中木质素为29.05%,其酶水解得率仅为15.24%;蒸汽爆破一步法预处理后物料中木质素为34.88%,酸性基团仅为10.16 mmol/kg,酶水解得率为56.88%,预处理过程中木质素几乎没有脱除,因此未能回收作为吸附剂使用。碱性氧化-蒸汽爆破和碱性磺化-蒸汽爆破两步法预处理后物料中木质素减少至21.06%和17.68%,酸性基团增加至101.34和107.69 mmol/kg,酶水解得率由一步法的56.88%提高至74.38%和81.09%,两步法预处理脱除了原料中50%左右的木质素,经回收可作为重金属离子吸附剂使用,对Pb(Ⅱ)的最大吸附量分别为158.73和142.86 mg/g。分析表明:碱性磺化-蒸汽爆破两步法预处理既可大量脱除木质素,增强纤维素酶水解,又可对木质素进行改性,提高木质素对重金属离子Pb(Ⅱ)的吸附性能。  相似文献   

6.
以制糖工业副产物甘蔗渣(SCB)作为木质纤维原料,使用具有优异相转移催化能力的三乙基苄基氯化铵(TEBAC)、无毒无害的甘油(GL),以及高价态路易斯酸六水合氯化铝(ACH)组成的三元低共熔溶剂(DES)对SCB进行预处理,系统考察了DES物质的量之比、预处理温度、预处理时间、固液质量比对SCB中各组分含量和纤维素酶解效率的影响。研究结果表明:最佳预处理条件为nTEBAC∶nGL∶nACH为1∶2∶0.05、预处理时间30 min、预处理温度120℃和固液质量比1∶15,此优化条件下木质素去除率达到(86.23±2.11)%,纤维素保留率为(94.51±2.03)%,酶解纤维素转化率达到(98.21±1.02)%,相较于未处理SCB提高了2倍,葡萄糖得率高达(81.94±1.98)%,提高了1.5倍。SEM、FT-IR和XRD分析结果表明:三元DES预处理能够有效去除SCB中的木质素和半纤维素,从而使纤维素的结晶度由未预处理的41.19%提高到预处理后的65.87%。DES经过5次循环利用后,纤维素转化率和葡萄糖得率仍达...  相似文献   

7.
以两种生物基极性非质子溶剂γ-戊内酯(GVL)和二氢左旋葡萄糖酮(Cyrene),分别与对甲苯磺酸水溶液(TsOH aq)构成耦合体系,对竹粉定向解聚及其酶解过程开展了研究。实验结果表明:质量浓度为75 g/L的TsOH,溶剂体积比为4∶1的GVL/TsOH aq体系在130℃预处理毛竹60 min后,半纤维素和木质素分离效率更高,半纤维素分离率(SH)和木质素分离率(SL)分别达到98.5%和98.4%,同时纤维素保留率(RC)为91.5%;而质量浓度为30 g/L的TsOH,溶剂体积比为0.8∶1的Cyrene/TsOH aq体系在120℃预处理毛竹60 min后,RC达到87.3%,SH和SL仅为85.5%和79.4%。预处理后固体样品的表征结果表明:竹粉经GVL/TsOH aq预处理后的样品木质纤维致密结构被有效破坏,无定形的半纤维素和木质素绝大部分被分离,结晶度达68.27%,结构更接近于微晶纤维素,同时暴露出更多的游离羟基,有利于后续酶解。而酶...  相似文献   

8.
研究了绿液预处理对麦秆酶水解的影响.比较了不同绿液预处理条件下麦秆的浆得率、成分组成与纤维素酶解率,结果表明,预处理条件越剧烈,原料损失越大,而木质素脱除率越高,且在相同酶水解条件下,纤维素酶解率却越高,其中适宜的条件是预处理温度150℃,总碱量8%(Na2O计,对绝干原料)和硫化度40%,浆得率62.0%,葡聚糖、木聚糖和木质素质量分数50.0%、18.9%和16.2%,葡萄糖和木糖得率分别为74.2%和73.5%.考察了质量浓度和酶用量对绿液预处理麦秆酶水解的影响,优化了商品纤维素酶酶系结构和Tween-80的添加量,表明绿液预处理麦秆纤维素酶水解的适宜条件为质量浓度100 g/L,纤维素酶用量15 FPU/g(以纤维素计,下同),β-葡萄糖苷酶9 IU/g,木聚糖酶30 IU/g,Tween-800.05 g/g.在以上条件下,酶水解72 h,葡萄糖得率和木糖得率分别达到了82.5%和77.8%,是优化前的2.6和1.6倍.  相似文献   

9.
利用磷酸联合过氧化氢(H_3PO_4-H_2O_2,PHP)预处理玉米芯,并以纤维素酶水解预处理后玉米芯,以酶解效率为指标优化预处理条件。研究结果表明:玉米芯经H_3PO_4-H_2O_2混合液(H_3PO_4质量分数80%)于50℃下预处理4 h后,纤维素质量分数57.38%,纤维素回收率95.84%,半纤维素和木质素的脱除率分别为62.36%和68.97%。在酶用量10 FPIU/g(以葡聚糖质量计)的条件下,72 h酶水解得率为39.12%,相比未经预处理玉米芯的72 h酶水解得率(10.84%)提高了2.61倍。利用红外光谱分析物料预处理后结构的变化,H_3PO_4和H_2O_2在预处理过程中起到了协同作用,能同时去除半纤维素和木质素。相比单独使用H_3PO_4预处理(16.78%)或H_2O_2预处理(20.71%),H_3PO_4-H_2O_2预处理玉米芯的72 h酶水解得率分别提高了133.13%和88.89%。  相似文献   

10.
采用一步合成法制备氯化胆碱/丙三醇(ChCl/Glycerol)低共熔溶剂(deep-eutectic solvent,DES),研究该低共熔溶剂在不同条件下催化活化木质素磺酸钠的最佳工艺,并探讨了处理前后木质素磺酸钠的结构与性能,及其用于环氧树脂乳化剂的可行性。结果表明:在不加搅拌的条件下,木质素磺酸钠与DES的质量比为1∶12,处理温度为90℃,处理时间为5 h时,体系的反应效率最高,所得木质素磺酸钠的综合性能最好。木质素磺酸钠经DES催化活化处理后酚羟基总含量得到增加,苯环等大分子有所降解,表面张力和泡沫性能也得到了提高和改善。经ChCl/Glycerol DES处理后的木质素磺酸钠与OP-10乳化剂作为复合乳化剂,以环氧树脂E-44为油相,采用相反转法,可制得较为稳定的环氧树脂乳液。  相似文献   

11.
为改善高底物浓度酶水解过程中产物抑制问题,采用三段酶水解方法,通过在水解过程中及时移除反应产物纤维二糖和葡萄糖,降低产物抑制作用,增加酶反应速率,从而提高酶水解得率、缩短酶反应时间。与原料和经NaOH预处理的桑木比较,NaOH-Fenton预处理后的桑木中木聚糖含量明显降低,纤维素含量相对增加,木质素含量变化较小。无论是一段水解还是三段水解,纤维素酶水解得率均随底物质量浓度的升高而下降。在0.30 g/m L(m/V)底物质量浓度下,当酶用量增加为40 U/g(以纤维素质量计)时,三段(10+10+10)h酶水解得率74.16%,比一段水解72 h得率45.61%增长了62.60%,并且水解时间缩短了42 h。该研究结果对提高纤维素酶水解得率、降低纤维资源制取燃料乙醇成本具有指导意义。  相似文献   

12.
采用聚乙二醇6000/柠檬酸钠的双水相木聚糖酶水解体系制备木二糖,以10 g/L桦木木聚糖为底物,木聚糖酶的酶用量为20 IU/g(以木聚糖质量计),在50℃、p H值5.6条件下,水解8 h制备木二糖,木二糖的酶解得率为13.8%。双水相水解体系对木聚糖酶回收率为66.4%,对木二糖回收率为87.2%;采用凝胶层析纯化方法,以葡聚糖凝胶LH-20为分离介质,脱气超纯水为洗脱剂,在柱温35℃、洗脱溶剂流速0.1 m L/min、上样量0.3 m L条件下,分离纯化木二糖,木二糖纯度为98.5%。  相似文献   

13.
在稀酸等化学预处理过程中,木质素会降解生成酚类等产物进入后续糖化阶段,研究表明这些木质素降解产物会抑制木质纤维降解酶的水解效率,然而其抑制机制尚不清楚。笔者选择了3种典型的木质素降解产物:香草醛、4-羟基苯甲醛和丁香醛,考察了它们对商品纤维素酶和木聚糖酶,以及单一关键纤维素酶组分和β-木糖苷酶水解的影响,并探讨其抑制规律。实验结果表明,这3种木质素降解产物对纤维素酶和木聚糖酶的水解均有抑制,其抑制能力随降解产物浓度的增加而增强。当3种木质素降解产物的质量浓度为10 mg/m L时,纤维素酶水解微晶纤维素48 h的葡萄糖得率由71.17%分别减少到33.80%、29.52%和32.03%,说明这3种木质素降解产物对纤维素酶的抑制作用差异不明显。3种木质素降解产物对β-葡萄糖苷酶水解纤维二糖的效率没有影响,但是会强烈抑制外切葡聚糖酶CBH I的酶活。当木质素降解产物的质量浓度为2 mg/m L时,与未添加木质素降解产物的酶活相比,CBH I酶活分别降低至79.64%、86.76%和71.89%,抑制强弱顺序为:丁香醛香草醛4-羟基苯甲醛。此外,3种木质素降解产物对木聚糖酶和β-木糖苷酶的抑制强弱顺序均为:4-羟基苯甲醛香草醛丁香醛,当3种木质素降解产物的质量浓度为10 mg/m L时,木聚糖酶水解木聚糖48 h的木糖得率由57.28%分别减少到12.26%、20.16%和30.43%。抑制动力学试验表明,4-羟基苯甲醛对CBH I的抑制属于竞争性抑制,对β-木糖苷酶的抑制属于非竞争性抑制。  相似文献   

14.
为研究水溶性硫酸盐木质素对不同预处理杨木酶水解的影响,将硫酸盐木质素(KL)进行分级处理形成水溶性硫酸盐木质素(KL5)后,分别添加到纤维素酶(CTec2)水解体系中,考察KL与KL5对绿液(GL)、酸性亚硫酸氢钠(AS)及亚硫酸钠-甲醛(SF)预处理杨木底物浆料酶水解糖化效率的影响。结果表明:在GL预处理条件下,随着KL5用量的增加,各聚糖转化率和酶水解反应速率均显著提高,当KL5用量为0.1 g/g时,底物总糖转化率达到最大值83.1%,但添加KL会抑制酶水解糖化效率;在AS和SF预处理条件下,底物中添加KL5后各聚糖转化率与GL预处理酶水解各聚糖转化率相似;在较低浓度条件下,KL5对GL预处理酶水解效率的促进作用明显优于Reax 85A和PEG 4000添加剂。改性工业废渣硫酸盐木质素作为酶水解助剂能够明显提高酶水解糖化效率,为高效利用过程废液废渣组分、减少水解酶的用量成本提供理论依据。  相似文献   

15.
徐红  徐勇  勇强  余世袁 《林业科学》2012,48(11):92-97
以红柳为材料研究蒸汽爆破预处理强度系数lgR对木质组分和纤维素酶水解性能的影响。结果表明:蒸汽爆破处理对红柳中纤维素和木质素含量的影响并不显著,但是它可以有效破坏红柳的天然物理结构,并且导致大部分半纤维素(木聚糖)产生自水解反应生成单糖和低聚糖溶出,同时产生乙酸、甲酸和糠醛等小分子降解产物。基于纤维素回收率和纤维素酶水解得率分析,在蒸汽爆破强度系数达到4.239时(爆破温度210℃和保温时间10min)对红柳的预处理效果最佳,汽爆物料中纤维素的含量可达到52.4%,残余木聚糖含量仅为2.01%,并生成0.76%甲酸和3.17%乙酸。采用每克纤维素20.0FPIU的纤维素酶用量水解5%(w/w)该汽爆红柳物料48h,纤维素酶水解得率可达到86.6%(未处理的原料仅为15.5%)。这表明无化学品添加的蒸汽爆破是适于红柳糖化及生物炼制的一种有效的预处理方法。  相似文献   

16.
木质素是影响木质纤维原料酶水解的关键因素。本研究通过聚乙氧基接枝修饰制备木质素基表面活性剂,并探究其对预处理玉米秸秆纤维素酶水解的影响机制。结果表明,木质素基表面活性剂对蒸汽爆破预处理玉米秸秆酶水解有显著的促进作用。木质素基表面活性剂的最适添加量为0025 0 g/g(以纤维素计)。在最适添加量下,碱木质素基表面活性剂及醇溶木质素基表面活性剂使得蒸汽爆破预处理玉米秸秆72 h酶水解得率分别提高了275%和281%。与此同时,72 h酶水解液中外切葡聚糖酶酶活力分别提高了493%和410%;β-葡萄糖苷酶酶活力分别提高了196%和137%。说明木质素基表面活性剂可减少纤维素酶的无效吸附,从而起到对酶水解的促进作用。  相似文献   

17.
木聚糖酶水解制取低聚木糖的研究   总被引:19,自引:0,他引:19  
比较了木聚糖酶和纤维素酶水解木聚糖制备低聚木糖的效果,并在10L酶解罐中研究了搅拌速率和酶解时间等因素对木聚糖酶水解的影响。优化了酶解工艺条件,当木聚糖质量浓度为30g/L,木聚糖酶体积用量为1%,搅拌速率180r/min时,酶解2h低聚糖得率可达35.2%。总糖得率为41.9%。产品酶解液中25.9%固形物是聚合度2-5的低聚木糖。  相似文献   

18.
以低共熔溶剂为提取溶剂,用球磨法从毛竹叶中提取黄酮碳苷类化合物,采用高效液相色谱-飞行时间质谱(LC-Q-TOF-MS)测定竹叶中4种黄酮碳苷(异荭草苷、荭草苷、异牡荆苷和牡荆苷)的含量,通过单因素试验和正交试验,对低共熔溶剂的含水量、提取时间、液料比等因素进行考察。结果表明,从竹叶中提取黄酮碳苷的最佳工艺为:低共熔溶剂(氯化胆碱和乙二醇构成)含水量50%、提取时间150 s、液料比6∶1(mL∶g)。在该条件下,从竹叶中提取4种黄酮碳苷的总提取得率为1.55 mg/g,其中,异荭草苷0.99 mg/g、荭草苷0.23 mg/g、牡荆苷0.04 mg/g、异牡荆苷0.29 mg/g。该方法提取得率比浸渍提取法提高了7.6%,且节约了时间和有机溶剂。利用该优化工艺,结合LC-Q-TOF-MS检测,成功应用于以毛竹叶为原料制成竹茶样品的黄酮碳苷提取与测定。  相似文献   

19.
通过合成氯化胆碱与氯化锌物质的量比为1:2体系的低共熔离子液(DES来活化处理木质素,再加水分离得到再生木质素(DL),对比改性前后木质素的结构变化,并分别用其代替部分苯酚(10%、20%、30%、40%)制备酚醛树脂,研究其对酚醛树脂胶黏剂性能的影响。结合红外光谱、紫外光谱和核磁共振氢谱的分析可知经DES改性后的木质素中少量醚键断裂,部分甲氧基脱除,少部分被酚化,木质素反应活性提高。并且,所压制胶合板的胶合强度均优于未改性木质素替代苯酚所制备的酚醛树脂,且在实验范围内均达到了国家标准中Ⅰ类胶合板的要求。  相似文献   

20.
研究了NaOH、Ca(OH)_2、NH_3·H_2O和NaHSO_3等4种化学联合盘磨预处理方法对玉米秸秆酶解性能的影响,考察了不同预处理方法对物料得率、木质素脱除率、还原糖得率、聚糖转化率和结晶度的影响。结果表明,预处理后,玉米秸秆的结晶度均降低。机械盘磨可以减小纤维长度和颗粒尺寸,增大比表面积,暴露出更多的纤维素活性位点,增加纤维素和纤维素酶的反应活性,提高其酶解性能。确定了酶解适宜的条件:纤维素酶用量30 U/g,β-葡萄糖苷酶用量10 U/g,酶解温度50℃和时间72 h,在此条件下NaOH、Ca(OH)_2、NH_3·H_2O和NaHSO_3联合盘磨预处理后玉米秸秆的还原糖得率分别为41.00%,23.02%,65.77%和22.22%,聚糖转化率分别为39.04%,18.53%,70.49%和21.33%。在最优条件下,NH_3·H_2O联合盘磨预处理玉米秸秆的还原糖得率和聚糖转化率最高,是一种具有前景的预处理方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号