首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
针对主从导航收获协同卸粮作业过程中作业车辆纵向相对位置控制需求以及拖车驱动系统非线性度较高的问题,该研究设计了一种适用于主从导航协同收获卸粮作业的纵向相对位置协同控制方法。根据协同系统几何关系获得纵向相对位置偏差的平行协同模型,基于动力学原理和位速耦合控制方法设计了纵向相对位置控制器;通过面积辨识方法获取车速系统传递函数,基于传递函数构建仿真模型进行控制器参数全因子仿真优化试验,并与传统PD方法进行仿真对比试验,结果表明该研究方法的最优参数适应性优于传统PD。不同初始偏差的纵向协同田间空载试验结果表明,在主机速度为1 m/s时,3、7和10 m初始纵向偏差下,系统响应平均调节时间分别为7.73、17.2和23.2 s,9组试验的平均稳态绝对偏差为0.091 8 m,平均相对速度稳态误差为0.012 3 m/s,表明该方法具有较好的初始偏差适应性;田间协同收获作业表明,在主机速度为1 m/s时,平均稳态纵向相对位置偏差绝对值为0.077 8 m,标准差为0.091 3 m,协同精度能够满足收获协同卸粮的作业要求。研究结果可为自主收获作业系统研究提供支持。  相似文献   

2.
为了提高农机路径跟踪系统控制性能对作业速度变化的适应性,该研究提出一种基于预瞄运动学模型的快速预测控制方法。采用预瞄跟随理论建立预瞄航向误差模型,并将其作为输出方程与路径跟踪误差常规状态方程联立,构建预瞄运动学状态空间误差模型,进而运用模型预测控制算法与输入参数化衰减策略设计路径跟踪控制律。仿真试验结果表明,在不同作业速度下,预瞄模型预测控制器的直线路径跟踪横向误差均渐近趋于0,行驶曲线均无超调;当作业速度为1、3与5 m/s时,预瞄模型预测控制器的圆形路径跟踪横向最大绝对误差分别为8.52、10.42和10.82 cm,标准差分别为3.96、5.83和6.17 cm;当控制时域为10、30与60时,预瞄模型预测控制器的运算周期相对常规模型预测控制器分别减小7.5%、43.0%和48.5%;与常规模型预测控制相比,预瞄模型预测控制能够在确保路径跟踪系统控制精度的同时有效改善系统的动态性能和提高系统的实时性,使不同作业速度下的跟踪效果更加均衡。田间测试结果表明,在0.5~5 m/s作业速度范围内,预瞄模型预测控制器对作业速度变化具有较强的适应性,能够使农机快速平稳地跟踪参考路径并具有较高的控制精度,其直线路径跟踪的横向最大绝对误差均值小于5.5 cm、标准差均值小于2.5 cm,圆形路径跟踪的横向最大绝对误差均值小于15.5 cm、标准差均值小于8.5 cm,跟踪效果满足农机实际作业要求,适于复杂作业环境或高速作业场合。  相似文献   

3.
联合收获机单神经元PID导航控制器设计与试验   总被引:5,自引:4,他引:1  
针对联合收获机在田间直线跟踪作业中在维持高割幅率条件下易产生漏割的问题,设计了一种基于单神经元PID(Proportion Integration Differentiation)的联合收获机导航控制器。以轮式联合收获机为平台,通过对原有液压转向机构进行电控液压改装,搭载相关传感器构建了导航硬件系统。开展了常规PID控制和单神经元PID控制的仿真以及实地对比试验,仿真结果表明单神经元PID控制具有超调小和进入稳态快等特点;路面试验表明,当收获机速度为0.7 m/s时,单神经元PID控制最大跟踪偏差为6.10 cm,平均绝对偏差为1.21 cm;田间试验表明,收获机速度为0.7 m/s时,单神经元PID控制田间收获最大跟踪偏差为8.14 cm,平均绝对偏差为3.20 cm。试验表明所设计的联合收获机导航控制器能够满足自动导航收获作业要求,为收获作业自动导航提供了技术参考。  相似文献   

4.
为实现节能、节水,提高灌溉和土地利用效率,在对太阳能技术、节水灌溉技术、全球定位系统(global positioning system,GPS)导航技术等进行研究的基础上,研制一种基于 GPS 导航的太阳能驱动平移式喷灌机,并在此基础上设计开发导航控制系统。整个机组以太阳能光伏组件和蓄电池为电源,直流电动机作为动力,采用四轮差速转向。以喷灌机横向偏差和航向偏差作为控制输入变量,直流电机脉冲调制(pulse width modulation,PWM)转速调节电压增量作为输出变量,构建基于线性比例控制的导航控制器,实现了对喷灌机两侧车轮转速的调节控制。导航控制系统以32位先进精简指令集机器(advanced RISC machine,ARM)微控制器 STM32F103芯片为核心,集成导航控制器、转速操纵控制器、GPS、电子罗盘和转速传感器,采用控制器局域网(controller area network,CAN)总线结构进行通讯,实现喷灌机的自主导航控制。路径跟踪试验结果表明:喷灌机自动导航控制系统能基本满足喷灌作业要求,并能较好地实现路线跟踪,在以0.4、0.8 m/min 速度行驶30 m 过程中直线跟踪最大横向偏差不超过20 cm,系统可靠性较高。研究可为实现农业机械与太阳能技术相结合提供参考,对类似自走式喷灌机的发展提供依据。  相似文献   

5.
针对速度因素对拖拉机自动导航系统稳定性的影响,提出了基于横向位置偏差和航向角偏差的双目标联合滑模控制方法,在建立两轮拖拉机-路径动力学模型和直线路径跟踪偏差模型的基础上,应用Matlab/Simulink进行整体系统仿真,验证了控制方法的可靠性;以雷沃TG1254拖拉机为载体搭建了自动导航控制系统田间试验平台,分别在定速和变速条件下,进行了拖拉机直线路径跟踪控制的田间试验;分析了不同速度条件下的动态跟踪控制效果,验证了设计的自动导航控制系统的稳定性和控制精度。试验结果表明:在拖拉机田间作业常见的定速直线行驶工况下,采用基于速度自适应的双目标联合滑模控制方法,拖拉机直线路径跟踪控制的横向位置偏差最大值为10.60 cm,平均绝对偏差在3.50 cm以内;航向角偏差最大值为3.87°,平均绝对偏差在1.70°以内;在进入稳态以后,前轮转向角最大摆动幅度为3°,摆动标准差为0.80°。结论表明,该文提出的基于速度自适应的拖拉机自动导航控制系统,能基本实现不同速度下的直线路径自动跟踪控制。  相似文献   

6.
小型履带式油菜播种机导航免疫PID控制器设计   总被引:9,自引:7,他引:2  
针对适应于长江中下游地区稻茬田土壤黏湿、小田块的轻简化播种机智能化问题,设计了一种基于免疫PID的小型履带式油菜播种机导航控制器。以小型履带式油菜播种机为基础,利用电磁铁对其转向系统进行电控改装,采用高精度北斗定位模块和电子罗盘进行组合导航,获取履带式播种机的位置和航向信息作为导航控制器的输入,设计了小型履带式油菜播种机自动导航控制系统。建立了履带式油菜播种机运动学模型和转向角传递函数,利用Matlab仿真和实地导航试验对常规PID控制和免疫PID控制进行了对比试验。仿真表明:在相同参数条件下,与常规PID相比,免疫PID控制具有响应快、超调量小、平均跟踪误差小等特点;路面试验表明:当播种机速度为0.50m/s时,免疫PID控制器直线跟踪的平均绝对偏差为4.2 cm,最大跟踪偏差为11.9 cm。田间试验表明:当播种机速度为0.50 m/s时,免疫PID控制器直线跟踪平均绝对偏差为5.8 cm,最大偏差不超过15.2 cm,能够较好地满足播种机导航作业要求,该研究可为履带式播种机的自主导航提供了技术参考。  相似文献   

7.
双激光雷达温室运输机器人导航系统研制   总被引:10,自引:9,他引:1  
为解决机器人在温室环境下的自主导航问题,该研究研制了基于双激光雷达的温室运输机器人导航系统,实现温室环境下的地图构建、路径规划和定位导航。融合激光雷达与编码器信息,使用cartographer算法及时定位与地图构建。根据地图与检测点信息,采用Dijkstra算法规划全局路径,使用动态窗口算法规划局部路径,完成自主导航。试验表明,车载系统分别以0.2、0.5和0.8 m/s速度运行时,实际导航路径与目标路径的横向平均偏差小于13 cm,标准差小于5 cm;导航目标点处横向偏差、纵向偏差的平均值不超过9 cm,均方根误差不超过11.2 cm,标准差小于5 cm,航向偏差的平均值小于10°,均方根误差小于12°,标准差小于6°,满足机器人温室运输作业的导航精度需求。  相似文献   

8.
基于预瞄追踪模型的农机导航路径跟踪控制方法   总被引:17,自引:12,他引:5  
农机导航系统的上线性能和复杂路面抗干扰能力影响着农田作业的质量和效率,为提高农机导航系统的上线速度、上线稳定性和对复杂路面的适应性,提出了一种预瞄追踪模型的农机导航路径跟踪控制方法。该方法实质是对农机运动学模型方法的改进,针对农机运动学模型小角度线性化算法中近似条件的缺点,采用预瞄追踪辅助直线引导农机快速稳定跟踪规划路径。该文参考农机运动学模型极点最优配置算法证明过程,分3步证明了该控制方法的可行性,并通过仿真和试验验证了该方法的有效性。仿真结果显示在不同的初始位置偏差和航向偏差条件下该方法都可以迅速消除偏差以稳定跟踪规划路径,位置偏差校正曲线平滑且超调量微小,说明预瞄追踪模型方法对提高农机导航系统的上线性能和抗干扰能力是有效的。田间试验结果:在初始航向偏差为0,初始位置偏差分别为0.5、1、1.5 m条件下,上线时间分别为6.8、8.2、9.4 s,上线距离分别为6.73、8.11、9.33 m,超调量分别为5.2、7.0、8.5 cm;颠簸不平旱地路面直线路径跟踪的最大误差不超过4.23 cm,误差绝对值的平均值为1 cm,标准差为1.25 cm。数据表明采用该文提出的控制方法具有良好的上线和直线路径跟踪效果,满足农业机械的导航作业要求。  相似文献   

9.
改进AOA模式的大田农机无人驾驶导航参数检测系统设计   总被引:1,自引:1,他引:0  
卫星导航、视觉导航和雷达导航的成本昂贵、系统构成复杂和适用作业场景有限,在生产特征呈现区域化、适度小规模和分布零散的国内南方水田难以实现便捷跨区域作业和无法适用多农业场景。针对上述问题,该研究以大田环境下无人驾驶农机的牛耕式往复作业路径模式为背景,提出了改进AOA(信号到达角度,Angle-of-Arrival)模式的农业机械无人驾驶导航参数检测系统。该系统采用UWB(超宽带通信,Ultra Wide Band)基站-标签作为检测传感器,设计了TBZ(田边双基站-车身纵向双标签)和TBH(田边双基站-车身横向双标签)2种传感器布置方式,实现农业机械无人驾驶过程中导航参数的快速精准检测。静态试验结果表明:对于2种传感器布置方式,在固定的基站间距和标签间距下,随着标签间距或基站间距的增大导航参数检测精度均有所提高,横向偏差检测误差≤8 cm,航向偏差趋近于0,但不大于1°,并通过正交组合试验方差分析明确了2种传感器布置方式的关键参数对横向偏差和航向偏差检测精度影响的显著性,确定了主次因素和较优参数组合。动态试验结果表明:随着车速增大,横向偏差和航向偏差的检测精度有所降低,横向偏差误差均不超过10 cm,航向偏差的检测误差均小于3°,变异系数均小于10%,说明动态环境下自主导航参数检测系统仍具有较高的检测精度,可满足农机大田自主导航作业需求。研究结果可为研制低成本、高精度和便捷的无人驾驶系统提供参考。  相似文献   

10.
针对农业自动导航、电动自动转向、农机自动控制、精量施药控制等关键技术的集成应用问题,该研究以高地隙喷杆喷雾机为平台,基于机电液一体化控制与软硬件标准化,研制了用于高地隙施药机的自动驾驶系统。根据底盘机构和工作原理设计了电控执行机构,实现发动机启停、转向、油门调节、车速调节、液泵启停、喷杆伸缩的自动控制。设计了基于CAN总线的整车通信控制网络,实现手动遥控和自动导航2种模式的自由切换。设计了基于姿态测量的定位误差校正方法,补偿导航定位过程中因机体倾斜造成的位置测量误差,提出地头转弯过程中的直线作业路径规划方法,以提高调头的准确性并保证邻接行的上线精度。在验证自动操控机构和通信控制网络稳定性的基础上进行了手动遥控和自动导航的对比试验。结果表明:作业速度3.6km/h时,遥控操作和自动导航2种模式下横向偏差最大值分别为20.81和8.84 cm,航向偏角最大值为7.86°和2.48°、横向偏差的均方根误差最大值为7.47和4.66 cm。该研究设计的高地隙施药机自动驾驶系统能够实时准确执行手动遥控和自动导航2种模式下的操作指令,自动导航模式下的路径跟踪精度较高,满足田间施药作业需求。  相似文献   

11.
喷头安装高度对圆形喷灌机灌水质量的影响   总被引:1,自引:0,他引:1  
根据作物高度适时调整喷头安装高度,是保证圆形喷灌机灌水均匀度和喷灌效率的重要措施之一。该研究通过引入自主研发的喷头安装高度调节装置,以安装D3000低压折射式非旋转喷头的圆形喷灌机为研究对象,研究了不同喷灌机出流量(8.8、16.7、24.2 m3/h)情况下喷灌机水力性能的稳定性,测试了喷灌机3种出流量在喷头安装高度(0.5、1.0、1.5、2.0、2.6 m)改变时的灌水均匀系数和灌水深度。结果表明,在喷头标准安装高度(1.5 m)下,圆形喷灌机水力性能稳定,喷灌机3种出流量的灌水深度沿径向均呈锯齿形波动,灌水均匀系数为82.5%~84.0%。喷头安装高度小于标准高度时,灌水深度沿径向的分布出现了较大波动,0.5 m时波动最剧烈,灌水均匀系数最大降低23.9%。喷头安装高度大于标准高度时,灌水深度沿径向的分布更为均匀,灌水均匀系数与标准高度的均匀系数无显著差异。与标准高度时的灌水深度测量值相比,喷头安装高度调节后的测量水深相对误差在10%以内。为保证喷灌均匀性和灌水深度,建议作物高度大于1.5 m时,可根据作物高度适时升高喷头安装高度。  相似文献   

12.
电驱动铰接式工程车辆操纵稳定性控制分析   总被引:1,自引:1,他引:0  
铰接式工程车辆因其铰接转向机构布置,使整车行驶过程中的横向稳定性降低。该文针对电驱动铰接式车辆的结构特点,建立了三自由度整车行驶动态数学模型,利用其各轮可独立控制的特性,提出基于直接横摆力矩(direct yaw-moment control,DYC)的车辆稳定性控制策略。分别以前车体质心侧偏角和横摆角速度、后车体质心侧偏角和横摆角速度为控制变量,建立了2种基于不同控制变量下的铰接式车辆最优直接横摆力矩控制策略。通过对地下35t铰接式自卸车的瞬态响应进行仿真分析,从响应速度、精确性等方面,探讨了2种控制策略下铰接式车辆稳定性的实现与性能。该研究可为电驱动铰接式车辆的稳定性控制提供有益的参考。  相似文献   

13.
拖拉机自动导航变曲度路径跟踪控制   总被引:2,自引:2,他引:0  
针对当前拖拉机自动导航曲线跟踪控制精度不能满足生产需要的问题,该研究提出一种基于前轮转角前馈补偿策略的变曲度路径跟踪控制方法。综合考虑农机作业速度和目标路径曲度对前视距离的影响,通过调整前视区域和计算预瞄点,动态调整前视距离和前轮转角前馈量,在追踪预瞄点的过程中,利用农机与目标路径偏差设计变曲度路径跟踪模糊控制器,通过实时调整拖拉机前轮转角补偿量减小稳态误差。以DF2204无级变速拖拉机为试验平台,设计并研发了自动导航系统,开展21组变曲度路径跟踪控制试验。试验结果表明,拖拉机以1、1.5、2和3 m/s速度行驶时的平均绝对误差的平均值分别为2.7、2.7、3.3和4.0 cm,均方根误差的平均值分别为3.4、3.7、4.6和5.0 cm,满足农业生产需求。所提方法可有效提高农机曲线路径跟踪精度,减少漏耕,提高农田利用率。  相似文献   

14.
研究旨在设计出一套农用车辆自动导航控制系统,让机器人代替农民进行田间作业,实现农用车辆自动驾驶,从而可以有效提高农业机械的作业精度、生产效率和使用安全性,并且为精细农业研究提供技术支持,改善农业生产的方法。该文通过GPS/INS(global positioning system/inertial navigation system)组合导航技术实时获得载体的导航信息(位置、速度、航向、姿态),根据导航信息与预设轨迹参数计算出载体的目标前轮转向角,并以该目标前轮转向角与当前前轮转角的差值作为控制输入,实现对转向执行电机的精确控制,从而实现载体的路径跟踪控制。同时对整个系统的软硬件进行设计,并对系统控制策略进行仿真和试验验证。最终结果表明,本文所设计的组合导航系统定位精度高,其定位精度可达到0.1~0.5 m;路径跟踪系统误差小,当车速分别为0.5 m/s和1 m/s时,路径跟踪的最大横向误差分别为0.16 m和0.27 m;整个系统响应速度快,可达到0.1s。通过将GPS/INS组合导航技术与线控转向技术相结合,能够实现农用车辆的自动驾驶。  相似文献   

15.
针对水稻收获机与转运车双机协同自主作业环节多、粮食转运过程复杂等问题,该研究设计了一种基于有限状态机(FSM,Finite State Machine)的水稻收获机与转运车协同作业策略。分析了水稻收获机与转运车协同作业模式,建立有限状态机模型。首先,基于作业环节设计触发条件、评估方法和执行流程等基础模块;然后,根据双机协同的各项状态建立状态信息矩阵;最后,依据协同触发事件与状态转移的逻辑设计状态转移链。构建协同作业时分复用控制逻辑框架,并运用Stateflow软件进行仿真分析,为验证所设计策略的田间实际作业效果,搭建了履带式水稻收获转运双机协同试验系统,收获速度为0.8 m/s,收割幅宽1.9 m,共28条收获边,协同路径选择在短边的机耕道上,连续协同工作时间大于120 min,采用套圈路径自主收获0.7 hm2水稻,期间共进行6次自动协同转运作业,将所收获的粮食转运到卡车上。试验结果表明,该策略可以实现水稻收获/卸粮转运自主作业,收获效率为0.35 hm2/h,为实现水稻收获双机智能转运协同功能奠定了基础,可为水稻无人农场建设提供技术支持。  相似文献   

16.
农用轮式机器人四轮独立转向驱动控制系统设计与试验   总被引:1,自引:8,他引:1  
针对一般农用轮式机器人转向方式单一、难以适应田间复杂作业环境以及推广应用成本较高等问题,该文设计了一种农用轮式机器人四轮独立转向驱动控制系统,采用模块化设计方法构建了该控制系统的底层硬件部分,结合控制器局域网络(controller area network,CAN)总线、串口通讯和传感器技术实现了该机器人移动轮转角、转速等数据的采集功能且应用了有效的硬件电路隔离保护方案;基于低速阿克曼四轮转向模型与比例积分微分(proportion,integration,differentiation,PID)控制算法分析并验证了该机器人四轮独立转向驱动控制策略的有效性。试验结果表明:该机器人能够通过上位机或遥控器实现其四轮独立转向与转速控制功能,移动轮在0~360°转向过程中,控制效果鲁棒性强、稳定且转角控制的最大平均绝对误差为0.10°,通过上位机设定转速后经0.5~1 s左右,移动轮转速达到稳态,并具有较高转速控制精度。该研究为农用轮式机器人的四轮独立转向驱动控制方法提供了参考。  相似文献   

17.
为提高农业车辆导航路径自动跟踪精度,提出一种基于线性时变模型预测控制的路径跟踪方法。该方法将农业车辆非线性运动学模型线性化和离散化处理,作为控制器预测方程;建立以系统控制增量为状态量的目标函数,为防止无可行解,引入松弛因子;设计系统控制量、控制增量和状态量约束条件,并将目标函数求解转为带约束的二次规划问题;采用内点法进行求解,将求得的控制输入增量第一个元素作用于系统;重复以上过程,实现优化控制。基于Matlab/Simulink平台进行了模型预测控制器设计,并分别进行了导航坐标系下的直线和圆形路径跟踪试验。结果表明,所设计的控制器能够实现直线路径的完全跟踪(误差始终为0);跟踪圆形路径时,1 m/s时的横向平均跟踪误差为7.5 cm,3 m/s时的横向平均跟踪误差为10 cm;整个跟踪过程,前轮转角始终被限定在约束范围内。不同控制器参数下的仿真结果表明,增大预测时域和控制周期能够减小跟踪误差和前轮转角变化幅度,控制时域的变化对控制器路径跟踪响应速度影响较小。同时基于设计的模型预测控制器进行了场地试验。结果表明,试验小车以1m/s的速度跟踪直线路径时,横向最大误差均值为1.622 cm,横向平均误差均值为0.865 cm;跟踪圆形路径时,当行走速度低于1 m/s时,横向最大误差小于10 cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号