首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The effects of simulated rain acidified with sulfuric acid were studied on several host-parasite systems. Plants were exposed in greenhouse or field to simulated rain of pH 3.2 ± 0.1 or pH 6.0 ± 0.2. Simulated ‘rain’ of pH 3.2 resulted in: (1) an 86% inhibition in telia production of Cronartium fusiforme on Quercus phellos; (2) a 66% inhibition of reproduction of Meloidogyne hapla on field-grown Phaseolus vulgaris; (3) a 10% decrease in the severity of Uromyces phaseoli on field-grown Phaseolus vulgaris; and (4) an inhibition of Rhizobium nodulation of Phaseolus vulgaris and Glycine max by an average of 73%. Effects on halo blight of kidney bean (caused by Pseudomonas phaseolicola) depended upon the segment of the disease cycle in which the ‘rain’ occurred: (a) simulated rain of pH 3.2 applied to plants before inoculation stimulated disease development; (b) suspension of inoculum in ‘rain’ of pH 3.2 decreased inoculum potential; and (c) ‘rain’ of pH 3.2 applied to plants after infection inhibited disease development. Scanning electron microscopy of epicuticular waxes on leaves of Quercus phellos and Phaseolus vulgaris showed marked erosion of those surfaces by ‘rain’ of pH 3.2, indicating possible influences on the structure and function of plant cuticles. These results suggest that the acidity of rain is a new parameter of environmental concern, and underline the need for study of the consequences of prolonged exposure of both agronomic and natural ecosystems to this stress factor.  相似文献   

2.
酸雨对土壤有机碳氮潜在矿化的影响   总被引:16,自引:0,他引:16  
Acid rain is a serious environmental problem worldwide. In this study, a pot experiment using forest soils planted with the seedlings of four woody species was performed with weekly treatments of pH 4.40, 4.00, 3.52, and 3.05 simulated acid rain (SAR) for 42 months compared to a control ofpH 5.00 lake water. The cumulative amounts of C and N mineralization in the five treated soils were determined after incubation at 25 ℃ for 65 d to examine the effects of SAR treatments. For all five treatments, cumulative CO2-C production ranged from 20.24 to 27.81 mg kg^-1 dry soil, net production of available N from 17.37 to 48.95 mg kg^-1 dry soil, and net production of NO3-N from 9.09 to 46.23 mg kg^-1 dry soil. SAR treatments generally enhanced the emission of CO2-C from the soils; however, SAR with pH 3.05 inhibited the emission. SAR treatments decreased the net production of available N and NO3-N. The cumulative CH4 and N2O productions from the soils increased with increasing amount of simulated acid rain. The cumulative CO2-C production and the net production of available N of the soil under Acmena acuminatissima were significantly higher (P 〈 0.05) than those under Schima superba and Cryptocarya concinna. The mineralization of soil organic C was related to the contents of soil organic C and N, but was not related to soil pH. However, the overall effect of acid rain on the storage of soil organic matter and the cycling of important nutrients depended on the amount of acid deposition and the types of forests.  相似文献   

3.
The mobility of major cations (H+, ammonium, Al, Ca, Na, Mg, K, Fe), heavy metals (Mn, Zn, Ni, Cd) and anions (chloride, sulphate and nitrate) was studied in the laboratory in an acidified brown soil from a Norway spruce forest. Lysimeters containing undisturbed soil columns of the A-horizon and the A- plus B-horizon were watered with 540 mm of throughfall precipitation collected in situ, either directly (pH 3.6) or adjusted to pH 3.3 or 2.8. The pH 3.3 treatment increased leaching of Mn and Cd from the B-horizon. The pH 2.8 treatment increased leaching of ammonium, Na, Ca, Mg, K, Mn, Zn and Cd from the A-horizon and ammonium, Al, Na, Ca, Mg, K, Mn, Zn and Cd from the B-horizon. Fe leaching from the A-horizon was decreased by both acidic treatments, and the pH of the leachates was not significantly affected. Sulphate retention was 138-161 meq m?2 yr?1 by all treatments. Due to experimental conditions nitrate leaching was observed in all lysimeters.  相似文献   

4.
Soybean seedlings (Glycine max) grown in a glasshouse were exposed to simulated acid rain using a solution of deionized water containing sulfate, nitrate and chloride in concentrations and proportions equivalent to those in ambient rain water. Plants were subjected to acid rain treatment twice a week during the growing season, for a 1 hr period at a rate of 5 mm hr?1. When the acid rain was below pH 3.0, visible symptoms developed in the young trifoliate leaves. However, at a pH above 3.0 there was no evidence of visible leaf injury; also tissue dry weights and leaf areas were not affected even after 7 weeks of exposure. The number of root nodules in plants exposed to acid rain at pH 4.0 tended to be higher than those of control plants maintained at pH 5.6, but decreased subsequently with decreasing pH. Based on our results current ambient levels of rain acidity in Japan should not have an adverse impact on seedling growth in soybean.  相似文献   

5.
Samples of the LFH and Bfh horizons of an Orthic Humo-Ferric Podzol were analyzed for S components after irrigation with simulated acid rain solutions of pH 5.7, 3.5, and 2.0 for 720 days. Organic S was preponderant. In the LFH horizon, the mass ratio of ester sulfate: carbon-bonded S was approximately I : 1 for samples treated with solutions of pH 5.7 and 3.5; for the sample treated with the pH-2.0 solution, the ratio was about 2 : 1 and the concentrations of both inorganic sulfate and ester sulfate were markedly higher. In the Bth horizon, carbon-bonded S was the major form of organic S, except in the sample subjected to the high-acid (pH 2.0) simulated rain. The organic S components were further separated into chloroform-soluble, aqueous trifluoracetic acid-soluble, and residual fractions. Significant increases in inorganic sulfate, both water soluble and adsorbed were found after the pH-2.0 treatment.  相似文献   

6.
Using both field and laboratory measurements of CO2 evolution as an index of decomposer activity, forest microcosms were used to evaluate the impact of simulated acidic precipitation on decomposition. The following pH treatments: 5.7, 4.5, 4.0, and 3.5 annual average were applied for a 30 mo period. No statistically significant effect of treatment on decomposition could be found in the field measurements. When the microcosm was partitioned into 01 and 02 litter, mineral soil (A and B horizons), and roots within the mineral soil horizons for laboratory determination of CO2 efflux, only the 02 litter exhibited a statistically significant decrease as a function of treatment. The data collected do not allow a complete evaluation of the potential impact of this decrease. However, efflux of CO2 from the 02 layer was small compared to the other layers, and this may account for the failure to detect a significant response in the field measurements. Although the field data did not exhibit a significant response, there is sufficient question concerning the 02 response to warrant additional investigation, especially since many plants derive a major portion of their nutritional requirements directly from the 02 litter layer.  相似文献   

7.
Summary The effects of simulated acid rain on litter decomposition in a calcareous soil (pHH 2 O 5.8) were studied. Litterbags (45 m and 1 mm mesh size) containing freshly fallen beech leaf litter were exposed to different concentrations of acid in a beech forest on limestone (Göttinger Wald. Germany) for 1 year. Loss of C, the ash content, and CO2–C production were measured at the end of the experiment. Further tests measured the ability of the litter-colonizing microflora to metabolize 14C-labelled beech leaf litter and hyphae. The simulated acid rain strongly reduced CO2–C and 14CO2–C production in the litter. This depression in production was very strong when the input of protons was 1.5 times greater than the normal acid deposition, but comparatively low when the input was 32 times greater. acid deposition may thus cause a very strong accumulation of primary and secondary C compounds in the litter layer of base-rich soils, even with a moderate increase in proton input. The presence of mesofauna significantly reduced the ability of the acid rain to inhibit C mineralization. The ash content to the 1-mm litterbags indicated that this was largely due to transport of base-rich mineral soil into the litter.  相似文献   

8.
The goal of the present study was a qualitative and quantitative determination of chemical and mineralogical changes in forest soils due to acid atmospheric depositions. In the NE/SE Vienna Woods soil samples were taken at 4 depths (0 to 5 cm, 5 to 10 cm, 10 to 20 cm, 20 to 30 cm) in the contaminated infiltration zone of stemflow (S) of 8 beech trees (Fagus sylvatica), strongly influenced by acid atmospheric depositions (soil-pH 2.8 to 3.0) and in their non contaminated reference areas (R) between trees, where acid imput is much smaller (soil-pH 5.0 to 6.0). The results show that intensive weathering processes took place in the contaminated soil areas, which show higher clay and silt contents and smaller aggregates, as well as clay illuviation. Moreover, in the top of the contaminated soil areas higher contents of Ct and St and of the heavy metals Pb, Zn and Cu could be observed, accompanied by extreme low base saturation (expecially of Ca and Mg) and high Al-saturation (50 to 80% of the CEC). These data were confirmed by analysis of the water saturation extract. Moreover, in the contaminated top soils high amounts of Fe-oxides were found, whereas no “secondary” Al-chlorite (due to its instability at pH-values <4.0) could be traced. The desilification process which took place at the same time could be shown through total element analysis. In the clay-fraction strong weathering led to a loss of layer charge and to the genesis of highly expandable three-layer-silicates which could be determined by X-ray diffraction using n-alkylammonium-chloride technics and other chemical treatments.  相似文献   

9.
Permanent field plots containing a dominant ground cover of feather moss (Pleurozium schreberi) and the forage lichen, (Cladina), were established in mature, boreal forest jack pine stands to monitor the effects of simulated acid precipitation. For a five-year period commencing in 1981, bimonthly sprays (pH range 2.5 to 5.6) were given throughout the growing season. The feather moss wefts were extremely sensitive to simulated rains of pH 2.5 and 3.0; but loss of cover and frond blackening were also observed at pH 3.5. The pH 2.5 treatment killed almost all of thePleurozium, while the cover remaining in the pH 3.0 treatment after 5 years was reduced by 44%. In laboratory studies designed to compare the effects of H2S04, HN03 and a 2:1 mixture of both, microcosms sprayed with H2S04 alone (pH 3.0) were more significantly affected than fronds treated with HN03 alone or pH 5.6 sprays of any ratio. Although less sensitive thanPleurozium, field-sprayed lichens were also visibly damaged. At pHs less than 3.5,C. stellaris andC. rangiferina had reduced podetial height and dry weight; whileC. mitis was affected by a combination of the acid rain treatment and other associated factors. While ambient rains of pH 4.2 may not in themselves be harmful to the boreal ground flora, it is apparent that the feather mosses and lichens, lacking a cuticle and true roots, are very sensitive to occasional, extremely acidic rain events.  相似文献   

10.
Humus chemistry and respiration rate, ATP, ergosterol, and muramic acid concentration as measures of chemical properties, microbial activity, biomass, and indicators of fungal and bacterial biomass were studied in a long-term acid rain experiment in the far north of Finnish Lapland. The treatments used in this study were dry control, irrigated control (spring water, pH 6), and two levels of simulated acid rain (pH 4 and pH 3). Originally (1985–1988), simulated acid rain was prepared by adding both H2SO4 and HNO3 (1.9:1 by weight). In 1989 the treatments were modified as follows. In subarea 1 the treatments continued unchanged (H2SO4+HNO3 in rain to pH 4 and pH 3), but in subarea 2 only H2SO4 was applied. The plots were sampled in 1992. The acid application affected humus chemistry by lowering the pH, cation exchange capacity, and base saturation (due to a decrease in Ca and Mg) in the treatment with H2SO4+HNO3 to pH 4 (total proton load over 8 years 2.92 kmol ha-1), whereas the microbial variables were not affected at this proton load, and only the respiration rate decreased by 20% in the strongest simulated acid rain treatment (total proton load 14.9 kmol ha-1). The different ratios of H2SO4+HNO3 in subareas 1 and 2 did not affect the results.  相似文献   

11.
A study was conducted of the influence of the rate of application of simulated acid rain on N mineralization and nitrification in a forest soil. The rates were varied by applying different quantities of simulated rain for varying periods of time. The soil was exposed in the laboratory to simulated rain at pH 3.5, 4.1, or 5.6 at rates equivalent to 1.5, 2.3, 4.6, 7.1 or 15 times the average rate of precipitation in the field, and then mineralization of soil N or oxidation of added ammonium was determined. The rates of N mineralization were inhibited by precipitation at pH 3.5 or 4.1 when applied for 27 to 234 day at rates 1.5 times greater than that which occurs in nature. Nitrogen mineralization was not affected by simulated rain at pH 3.5 or 4.1 in soils exposed for 156 day at 2.3 times the natural rate of precipitation, for 27 or 81 day at 4.6 times the natural rate, for 54 day at 7.1 times the natural rate, or for 234 day at 15 times the natural rate. On the other hand, mineralization was fastest in soil exposed to pH 3.5 rain for 234 day at 4.6 times the natural rate of precipitation and for 81 day at 15 times the natural rate. Nitrate formation in soil amended with ammonium was inhibited by rain of pH 3.5 regardless of the intensity of rain or the duration of exposure. For a constant rate of rain application, the inhibition of nitrate formation in ammonium-amended soil generally increased with longer periods exposure. The data show that the use of different rates of additions of artificial rain or different periods of exposure to the simulated precipitation will lead to different conclusions on the influence of acid rain on N mineralization in soil.  相似文献   

12.
Summary Long-term experiments (ca. 2 years) were carried out in laboratory systems that simulated the complexity of a coniferous forest floor. The test materials were partially sterilized by freezing and thawing, and reinoculated with (1) microbes alone or (2) microbes with fauna. Removable microcosms containing birch litter, spruce litter, or humus were inserted into a humus substrate. Two experiments used organic matter only, and another included a layer of mineral soil below the humus. Both were incubated in climate chambers that simulated both summer and winter conditions. The evolution of CO2 was measured at regular intervals. In order to determine the C content of the leachates, the macrocosms and the microcosms were watered periodically.Soil fauna significantly increased respiration in the litter, but not in the microcosms containing humus. In the later phases of decomposition the presence of fauna had a negative effect. In the total systems the fauna consistently increased the respiration rate. The loss of mass was greater in the presence of fauna, especially during the middle phases (5–11 months), but it was higher in the controls later.Throughout the whole incubation period the decomposition rate was strongly influenced by the composition of the animal community. The interpretation of the results is affected by the fact that the controls, to which no fauna had been added, contained dense populations of microbial feeders (nematodes, rotifers, and protozoans).  相似文献   

13.
Mycorrhizal infection but not growth of white pine seedlings was reduced by application of simulated rain at pH 3.5 at 3 times ambient rates to plants grown in steamed Mardin soil inoculated with Pisolithus tinctorius. In unsteamed Mardin soil, the simulated acid rain at 3 times ambient rates had no effect on mycorrhizal infection or growth of pine seedlings if the rain was applied to the plants and soil or to only the soil before planting, except that nitrate-containing acid rain increased growth, infection and N content. In limed Mardin soil, the simulated acid rain reduced mycorrhizal infection if applied to the plants and soil as the seedlings were growing but not if applied to the soil before planting. Application of pH 3.5 rain at ambient rates had no detectable influence on mycorrhizal infection in 6 of 9 soils tested, but it stimulated infestion in 3 soils if the simulated rain contained only sulfate and in 1 soil if it had both sulfate and nitrate.  相似文献   

14.
In the Solling experimental forest in central Germany a ‘clean rain’ roof experiment is conducted in a 60 year old Norway Spruce (Picea abies KARST.) stand. In this experiment with application of artificially prepared pre-industrial throughfall there is now a time series of soil water chemistry data from about 2 yr of pre-experiment and 3.5 yr of manipulation treatment. The response of soil solution chemistry to reduced inputs of N and S was strong and fairly rapid. There is a clear reflection of reduced input in soil solution concentrations, particularly for the N ions. The fine-roots of the Norway spruce trees reacted strongly to these changes in soil water chemistry. Fine-root biomass increased in the clean rain plot by about 40 % compared to pre-experimental conditions. This increase was strongest in the B-horizon, indicating that acid stress has ameliorated in the mineral soil. However, low concentrations of ammonium and nitrate in the root zone may also have contributed to this effect, since more fineroots are needed to maintain the N demand of the trees. No effect was yet found for other variables (photosynthesis, respiration, transpiration). Nutrient cation concentrations in the needles remained on the same low level as in the control groups. However, these aboveground variables may react after some time lag. The results demonstrate that in spruce forests on acid soil atmospheric element input largely controls soil solution chemistry and that air pollution control measures would have a significant effect with respect to ameliorating soil water chemistry, acidity and forest health.  相似文献   

15.
On the uplands of the Darling Downs, runoff and erosion during summer fallows are a major problem. Interflow has been reported in tilled catchments in this area and might be controlled to reduce surface runoff and soil erosion. In view of the lack of data on interflow in tilled soils, this paper reports rates of interflow in a tilled soil for a range of stubble mulch rates, and describes the mechanisms of flow observed.Plots 22.5 × 4 m carrying surface mulches of 3,2,1 and 0.1 t ha−1 wheat stubble were prepared on a shallow black, cracking clay on 6% slope. The plots were pre-wet, and then simulated rain at 95 mm h−1 was applied (using a rainulator) for a 50-min test period. Perched water tables developed in the tilled layer and interflow was clearly visible flowing out beneath the collection gutter at the downslope end of the plot. Interflow rates were calculated from
  • 1.(a) measurements of surface runoff on the rainulator plots at the end of the 50-min test periods;
  • 2.(b) measurements of steady, deep infiltration rate for the site made using a rotating disc rainfall simulator.
The interflow rates calculated for the rainulator plots were significantly related to stubble rates. Stubble appeared to increase interflow by reducing sediment loads in runoff water, thereby reducing the clogging of large voids in the tilled layer by sediment. Large, interconnected voids in the tilled layer must have been the major pathway for interflow.  相似文献   

16.
Experimental plots within the Hubbard Brook Experimental Forest, NH, were treated with sodium trifluoroacetate (TFA) and lithium bromide (Br), to study the impact of TFA alone and in the presence of increased anion concentrations (e.g. acid deposition) on the soil solution chemistry of a northern hardwood forest soil. Trifluoroacetate is a major atmospheric degradation product of replacement compounds of chlorofluorocarbons (CFC) and Br is widely used as a hydrologic tracer. Calculated drainage losses via soil water flow were less than 60% of inputs, added during the summer, and TFA and Br were temporarily retained in the soil until fall. The initial indication of an acid input of the treatments (HTFA, HBr) in the Bs2 horizon, which reflects stream water chemistry as well, was an increase of base cations in the soil solution, decreasing the soil's acid neutralizing capacity. Thereafter, trifluoroacetate and Br concentrations peaked after the peak in base cations, synchronous with peaks in H+ and Al concentrations. Organic anions, nitrate and chloride played the major role in accompaning base cations out of the solum. Sulfate retention at soil adsorption sites was increased by the presence of TFA and Br, reducing its role as a mobile anion of base cations in this experiment. Relative retention of anions for the whole profile of this northern hardwood forest soil was estimated by correlation analyses and input-output balances in decreasing order on an equivalant basis: SO4 > TFA = Br ≥ Cl > NO3 > organic anions. Recovery from acid additions were recorded within several weeks after the treatments were stopped. Evaluating the impact of added chemical compounds to soils must be considered within the context of linkages among element cycles and pools.  相似文献   

17.
Three-year old cuttings of Japanese cedar (Cryptomeria japonica), Japanese cypress (Chamaecyparis obtusa) and Sawara cypress (Chamaecyparis pisifera) were grown in pots with andosol and were exposed to simulated acid rain (SAR) at pH 2.0, 3.0, and 4.0 for 23 months. Total precipitation was 2460, 3960, or 5450 mm and SAR contained sulfuric, nitric and chloric acid at equivalent ratio of 5∶2∶3. Deionized water of pH 5.6 was a control. Exposure to SAR at pH 2.0 induced visible foliar injuries, but not any visible symptoms at pH 3.0 or higher. Total dry weights of 3 conifer cuttings grown with fertilizer were about two fold of those in plants grown without fertilizer and they reduced significantly by the exposure to SAR at pH 2.0. However, Cryptomeria japonica without fertilizer increased dry weights even though plants developed reddish-brown necrosis in large parts of tops. These 3 coniferous cuttings did not show any significant growth reduction at pH 3.0 and 4.0. Soil pH after receiving 5450 mm of SAR at pH 2.0 was 4.0 and molar ratio of (K+Ca+Mg)/Al in water and 1M ammonium acetate soluble fraction of the soil was about 0.3 and 0.4. respectively. However, dry weight of root in plants grown without fertilizer did not decrease. This suggested that growth reduction in plants fertilized and exposed to pH 2.0 was due to a reduction in photosynthetic organs associated with visible injuries, but not direct linkage with root growth inhibition due to soil acidification stress.  相似文献   

18.
The predicted activity of Al in the soil solutions of acid forest soils often differs from that observed in the field. We have investigated the influence of soil structure and flow rate of the soil solution on the aluminum release to explain this divergence. Disturbed and undisturbed samples of soil were collected from the A and B horizons of a dystric cambisol at Waldstein (Fichtelgebirge, Germany). The samples were irrigated with solutions mixed according to field data on throughfall or soil solution composition with pH 3.5 with flow rates of 4 mm d?1, 12 mm d?1 and 36 mm d?1. The percolates were analysed for major ions. Resulting relations between pH and pAl were compared with batch experiments. In neither the A horizon nor in the B horizon did soil structure influence the relation between pH and pAl. The apparent equilibrium between pH and pAl was described as the pKapp value with pKapp= pAl—a pH (where a is an empirical constant). It was found that the pKapp values for the column percolates were in the range of variation of those found in batch experiments. Flow rate had no influence on pKapp at 4 and 12 mm d?1. At 36 mm d?1 a significant increase of pKapp was observed. This relative undersaturation of Al was more pronounced in the A horizon than in the B horizon. When flow is fast Al release into the percolating soil solution might be limited by diffusion.  相似文献   

19.
Abstract

Field experiments with the “Taikichi” taro cultivar were conducted in volcanic ash soil of Kagoshima Prefecture, Japan, in order to determine the effects of potassium applied with fertilizers and manures on the growth and yield of taro. The experimental design was accord ing to the L27 (313) orthogonal factorial experiment, the three factors selected being the manures, nitrogen fertilizers and amount of potassium application.

“Metsubure” corm formation was infrequent in hog manured plots without potassium application, but was significantly increased by the application of potassium fertilizer. Furthermore, the occurrence of “Metsubure” corms was significantly lower in fields prepared with hog manure than in those prepared with plant residue and cattle manure.

Chemical analysis of the taro plants and manures revealed that the plants absorbed much more calcium when planted in hog manure than in other manures. The CaO/K2O ratio was also higher. The main reason for this was assumed to be the lower content of potassium in the hog manure (0.37% K2O on a dry basis).

The analytic results suggest that potassium disturbs the calcium uptake ability of the taro plant causing “Metsubure” corm formation.

The authors also attempted to determine the effects of several kinds of nitrogen fertilizers on “Metsubure” corm formation, but no clear results were obtained in this experiment.  相似文献   

20.
Chen  Shutao  Sun  Lu  Zhang  Xu  Shen  Xiaoshuai  Liu  Yifan  Ren  Jingquan 《Journal of Soils and Sediments》2020,20(1):412-424
Journal of Soils and Sediments - The purpose of this study was to investigate the long-term effects of acid rain simulation (ARS) on soil respiration (Rs) components and enzymatic activities. An...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号