首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2001 the range of the total Fusarium contamination percentage of infected seeds was between 0% and 44%, while in 2002 the contamination level was 2–25% in naturally infected Finnish samples and 5–14.5% in six samples from northwestern Russia. The most common Fusarium species in barley were F. avenaceum, F. arthrosporioides, F. sporotrichioides and F. culmorum, while in spring wheat the most common Fusarium species were F. avenaceum, F. arthrosporioides, F. culmorum, F. sporotrichioides and F. graminearum. In most cases, molecular identification with species-specific primers corresponded to the morphological analyses and allowed the identification of degenerated and otherwise morphologically difficult cultures. It was even possible to separate most of the F. arthrosporioides isolates from Finland from the closely-related F. avenaceum isolates. In the phylogenetic analysis of combined β-tubulin, IGS and ITS sequences most European F. arthrosporioides formed a separate clade from most isolates of F. avenaceum and from all isolates of F. tricinctum. Most of the species-specific primers also amplified DNA extracted from grain samples. It was, for instance, possible to detect F. avenaceum in all barley samples with contamination levels higher than 1% and in all spring wheat samples with contamination levels higher than 3%. The detection level for F. graminearum was at a contamination level of 3–5% and that for F. culmorum at a contamination level of 1–5%. In addition, the first Finnish F. langsethiae isolate was found by means of species-specific primers.  相似文献   

2.
Fusarium head blight (FHB) is one of the most destructive diseases of wheat. Twelve small commercial wheat fields (size 1–3 hectares) were sampled in Germany for Fusarium populations at three spots per field with 10 heads each. PCR assays using generic primers confirmed 338 isolates as F.graminearum sensu stricto (s.s.) (64.9%) out of 521 Fusarium spp. that were further analyzed. Populations of F. graminearum s.s. in Germany contain three types of trichothecenes with a dominancy of 15-acetyldeoxynivalenol chemotype (92%) followed by 3-acetyldeoxynivalenol chemotype (6.8%) and a few isolates of nivalenol chemotype (1.2%). All these isolates were genotyped using 19 microsatellite loci. The 12 populations showed a high genetic diversity within the small scale sampling areas resulting in 300 different haplotypes. Genetic diversity within populations (71.2%) was considerably higher than among populations (28.8%) as shown by analysis of molecular variance. Gene flow (Nm) between populations ranged from 0.76–3.16. Composition of haplotypes of one population followed over 2 years changed considerably. No correlation between genetic and geographical distance was found. In conclusion, populations of F. graminearum s.s. in Germany display a tremendous genetic variation on a local scale with a restricted diversity among populations.  相似文献   

3.
The Fusarium graminearum species complex (FGSC) is an important group of pathogens distributed in maize‐producing areas worldwide. This study investigated the genetic diversity and pathogenicity of 40 FGSC isolates obtained from stalk rot and ear rot samples collected from 42 locations in northeastern China during 2013 and 2014. A phylogenetic tree of translation elongation factor (EF‐la) sequences designated the 40 isolates as F. graminearum sensu stricto (67.5%) and F. boothii (32.5%). By using inter‐simple sequence repeat analysis (ISSR), it was shown that the isolates were divided into two clades, which corresponded to the species identity of the isolates. However, the isolates from the two different diseases could not be distinguished in pathogenicity. The disease severity index of seedlings inoculated with stalk isolates was slightly higher than that of seedlings inoculated with isolates from infected ears, whereas the pathogenicity of the stalk and ear isolates were identical.  相似文献   

4.
Fusarium verticillioides(Gibberella moniliformis, G. fujikuroi mating population A) is an important pathogen of maize and produces several mycotoxins, including fumonisins, which cause diseases in humans and animals. The partial sequences of the IGS region (Intergenic Spacer of rDNA units) and the translation elongation factor EF-1α gene of a representative sample (48 strains) of F. verticillioides isolated from diverse hosts, geographical origins and with different levels of fumonisin production were analyzed. A phylogenetic approach by PAUP was used to evaluate the genetic variability in this species and to detect the occurrence of lineages which could be associated with different hosts or produced different toxin profiles within this species. Genetic variability detected by both sequences was high, especially with the IGS sequence which showed a high number of parsimony-informative sites and nucleotide diversity. The results of the phylogenetic analysis indicated that F. verticillioides occurs as (i) a major fumonisin-producing population with a wide geographical distribution, wide host preferences (cereals), showing variability and considerable incidence of sexual reproduction and (ii) a minor fumonisin non-producing population, with restricted host preference (banana), low variability and clonal reproductive strategy.  相似文献   

5.
邹庆道  陈捷  朱华 《植物保护》2004,30(2):64-66
运用血清学方法研究了沈阳、河北、北京、吉林4个地区玉米穗、茎腐病镰孢菌在病原学上的相互关系。结果发现:各地区玉米穗、茎腐病串珠镰孢菌(Fusarium moniliforme)具有高度的同源性,亲缘关系近。各地区玉米穗、茎腐病禾谷镰孢菌(F.graminearum)的亲缘关系因地域不同而有差异。沈阳穗、茎腐病禾谷镰孢菌之间差异明显,存在生理分化现象;吉林玉米穗、茎腐病病原物存在较高的相似性,但也有一定的差异;而河北玉米穗、茎腐病禾谷镰孢菌具有高度的同源性。  相似文献   

6.
Fusarium graminearum andF. culmorum are capable of infecting winter cereals at all growth stages. From natural field epidemics of wheat head blight and rye foot rot, three fungal populations were collected with 21, 38 and 54 isolates, respectively; their aggressiveness was analyzed in comparison to collections ofF. graminearum (25 isolates) andF. culmorum (70 isolates) that represent a wide range of geographical locations and host species. All isolates were tested for aggressiveness on young plants of winter rye in the greenhouse and scored for disease severity on a 1–9 scale. Disease ratings of individual isolates ranged from 1.5 to 5.7 indicating quantitative variation of aggressiveness. Genotypic variance was highest in the twoFusarium collections. No substantial difference was found in the amount of genotypic variation betweenF. graminearum andF. culmorum. Individual field populations revealed 57–66% of the total genotypic variation of the collections. This implies a high degree of diversity of aggressiveness within single field populations ofF. graminearum andF. culmorum causing natural epidemics.  相似文献   

7.
Competitive effects between Fusarium graminearum, causing Fusarium head blight, and the endophyte Epicoccum nigrum, were performed in in vitro competition assays between the two species. Two E. nigrum isolates were isolated from wheat grains and tested as competitors against two F. graminearum isolates. A dual petri dish assay showed that E. nigrum reduced the mycelial growth of F. graminearum and vice versa. A glass slide assay revealed that E. nigrum crude cultural filtrate also had reducing effect on the growth of F. graminearum comparable to that of E. nigrum spore suspensions. Microscopy showed hyphae of F. graminearum and E. nigrum with many side branches when in close proximity, in contrast to pronounced apical hyphal growth when growing alone. Combinations of F. graminearum and E. nigrum on sterilised wheat grains were studied over time by qPCR. F. graminearum biomass was significantly reduced in inoculations applying E. nigrum three days prior to F. graminearum. In conclusion, these results showed competition and mycelial behaviour effects between F. graminearum and E. nigrum and support that E. nigrum may have potential to reduce F. graminearum infections in wheat. Competition experiments should be carried out in planta to study the interaction further.  相似文献   

8.
Botrytis spp. associated with neck rot disease were isolated from New Zealand onions. The fungi were identified using molecular sequences of the ribosomal internal transcribed spacer (ITS) and intergenic spacer (IGS) regions, and the glyceraldehyde-3-phosphate dehydrogenase (G3PDH) gene. Analyses of the sequences showed that the majority of the isolates gathered in 2005–07 were B. aclada. A new high resolution melting analysis (HRMA) assay was developed that allowed fast and simple discrimination between B. aclada and other Botrytis spp. causing onion neck rot in New Zealand. To further verify these results, Botrytis isolates from New Zealand onions, stored in the International Collection of Microorganisms from Plants (ICMP), were also examined. Only a single isolate from the ICMP collection was B. aclada while two isolates were B. byssoidea, one B. squamosa and another closely related to Botryotinia porri. Identification of the remaining Botrytis isolates was more difficult; while IGS and ITS sequences indicated a close relationship to B. allii or B. byssoidea, a previously unreported intron insertion was observed at the 3′ end of the ribosomal small subunit gene in these isolates. No evidence of heterogeneity was observed in the G3PDH gene sequences, as might have been expected of the allodiploid B. allii, but the G3PDH sequence ruled out B. byssoidea as the identity of these isolates.  相似文献   

9.
Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Fusarium ear rot (FER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern due to their toxicity to humans and farm animals. In this study, species identity and trichothecene toxin potential of 294 members of the Fusarium graminearum species complex (FGSC) collected from wheat, barley and maize in France in 2011 was determined using a microsphere-based multilocus genotyping assay. F. graminearum was predominant on all three hosts, but three isolates of F. cortaderiae and two isolates representing F. graminearum × F. boothii hybrids were also identified from maize. The 15-ADON trichothecene chemotype predominated on all three hosts, representing 94.7 %, 87.8 % and 85.4 % of the strains on barley (N?=?19), wheat (N?=?90), and maize (N?=?185), respectively. However, the NIV chemotype was found in 12.2 % of the wheat isolates and in 14.6 % of the maize isolates. Only a single FGSC isolate from this study, originating from barley, was found to have the 3-ADON chemotype. Regional differences could be observed in the distribution of the 15-ADON and NIV chemotypes, with the NIV producing-isolates being present at higher frequency (21.2 %) in the South of France compared to the rest of the country (4.4 %). Such information is critical because of the increased concern associated with NIV contamination of cereals. In addition, these results are needed to develop management strategies for FHB and FER in France and to improve understanding of the distribution and significance of FGSC diversity in Europe and worldwide.  相似文献   

10.
Soybean (Glycine max L.) is one of the main crops in Argentina. Most of the studies of pathogenicity in the Fusarium graminearum complex have focused on strains isolated from wheat and maize, and there is little information on strains isolated from soybean. Our objective in the present study was to compare the pathogenicity among soybean isolates of different phylogenetic species within the Fusarium graminearum complex on soybean seedlings under controlled conditions. Six strains representing three different phylogenetic species (F. graminearum, F. meridionale and F. cortaderiae) were identified by partial sequencing of the Translation Elongation Factor -1α gene (TEF-1) and evaluated for pathogenicity. All six strains reduced emergence, mainly by causing pre-emergence damping-off, seedling height and root dry weight and produced abnormal seedlings. The mean disease severity averaged across all isolates was approximately 3.0 in a 0–4 rating scale where 0?=?healthy seedling and 4?=?dead seedling. Significant differences in pathogenicity were observed among F. graminearum, F. meridionale and F. cortaderiae. These results are consistent with the hypothesis that different phylogenetic species within the Fusarium graminearum complex isolated from soybean are pathogenic under controlled conditions to soybean seedlings in Argentina. The present study demonstrates for the first time the pathogenic effect of F. meridionale on soybean in Argentina.  相似文献   

11.
Fusarium Head Blight is a major disease of wheat and an important contributor to the reduced cultivation of wheat in South Africa, where the crop often is grown under irrigation. We collected Fusarium isolates from 860 Fusarium Head Blight-infected wheat heads in seven irrigated wheat-growing areas of South Africa. Six Fusarium species, i.e., F. chlamydosporum, F. crookwellense, F. culmorum, F. equiseti, F. graminearum and F. semitectum were recovered, three of which, i.e., F. chlamydosporum, F. equiseti and F. semitectum, were not previously associated with Fusarium Head Blight in South Africa. Fusarium graminearum occurred at high frequencies at all seven locations. Based on polymerase chain reaction (PCR) assays of diagnostic sequences, more isolates were predicted to produce deoxynivalenol than nivalenol. Fusarium graminearum (sensu lato) appears to be the primary causal agent of Fusarium Head Blight in irrigated wheat in South Africa, which may not be the case for wheat cultivated under rain-fed conditions. Rotations of irrigated wheat with other graminaceous crops and maize could increase fungal inoculum and disease pressure. The establishment of Fusarium Head Blight in the irrigated wheat region of the country means that resistant lines and alternative agronomic practices are needed to limit disease severity, yield losses and mycotoxin contamination.  相似文献   

12.
Fusarium wilt of melon caused by Fusarium oxysporum f. sp. melonis is a destructive fungal disease in melon growing regions. Isolates of F. oxysporum obtained from six major melon producing provinces in Iran, from melons and other hosts, were characterized based on pathogenicity to melon, vegetative compatibility groups (VCGs) and nuclear ribosomal DNA intergenic spacer (IGS) sequencing. Thirty-four of 41 isolates from Iran in this study were identified as race 1,2 which belonged to either VCG 0134 or an unassigned VCG, which based on IGS sequencing grouped with the VCG 0135 tester isolate. The seven remaining isolates were identified as nonpathogenic to melon belonging to two undescribed VCGs. Based on sequence analyses of the IGS region of Iranian and foreign isolates, nine lineages were identified, each including one VCG. The separation of VCGs into distinct lineages based on IGS sequences is mostly consistent with Repetitive extragenic palindromic PCR (Rep-PCR) results. Exceptions are VCGs 0130 and 0131, which could be differentiated with IGS sequences, but not with Rep-PCR. Different races from the USA, France and Iran associated with VCG 0134 grouped into one IGS lineage but could be differentiated with Rep-PCR, suggesting that this VCG is more diverse than previously thought. Given the long history of melon cultivation in Iran and the Rep-PCR diversity of isolates belonging to this VCG, it could be speculated that VCG 0134 perhaps evolved in Iran.  相似文献   

13.
In order to characterize the pathogen(s) responsible for the outbreak of fusarium diseases in Algeria, 48 Fusarium spp. isolates were collected from diseased tomato in Algeria and compared with 58 isolates of Fusarium oxysporum originating from seven other Mediterranean countries and 24 reference strains. Partial sequences of the translation elongation factor EF‐1α gene enabled identification of 27 isolates as F. oxysporum, 18 as F. commune and three as F. redolens among the Algerian isolates. Pathogenicity tests confirmed that all isolates were pathogenic on tomato, with disease incidence greater at 28°C than at 24°C. All isolates were characterized using intergenic spacer (IGS) DNA typing, vegetative compatibility group (VCG) and PCR detection of the SIX1 (secreted in xylem 1) gene specific to F. oxysporum f. sp. lycopersici (FOL). No DNA polymorphisms were detected in the isolates of F. redolens or F. commune. In contrast, the 27 Algerian isolates of F. oxysporum were shown to comprise nine IGS types and 13 VCGs, including several potentially new VCGs. As none of the isolates was scored as SIX1+, the 27 isolates could be assigned to F. oxysporum f. sp. radicis‐lycopersici (FORL). Isolates from Tunisia were also highly diverse but genetically distinct from the Algerian isolates. Several Tunisian isolates were identified as FOL by a PCR that detected the presence of SIX1. The results show that isolates from European countries were less diverse than those from Tunisia. Given the difference between Algerian populations and populations in other Mediterranean countries, newly emergent pathogenic forms could have evolved from local non‐pathogenic populations in Algeria.  相似文献   

14.
Fusarium head blight (FHB) is one of the most important fungal diseases affecting wheat worldwide and it is caused mainly by species within the Fusarium graminearum species complex (FGSC). This study evaluated the presence of FGSC in durum wheat from the main growing area in Argentina and analyzed the trichothecene genotype and chemotype of the strains isolated. Also, the genetic variability of the strains was assayed using ISSR markers. Molecular analysis revealed that among the strains isolated and identified morphologically as F. graminearum, there were 14 strains identified as F. cerealis. Also, it revealed that durum wheat grains were mostly contaminated by F. graminearum, being this the only species reported so far, within the FGSC, affecting durum wheat in Argentina. Analysis of molecular variance (AMOVA) indicated a high genetic variability within rather than between F. graminearum populations. All F. graminearum strains presented 15ADON genotype and were able to produce DON while all F. cerealis strains presented the NIV genotype and most of them were able to produce this toxin. The finding of F. cerealis in durum wheat grains indicates the need for investigating if this fungus is the responsible for the NIV contamination found in wheat in Argentina.  相似文献   

15.
Eighty-six Heterobasidion annosum isolates, mainly belonging to the F intersterility group and obtained from 32 different geographical localities in Italy, were subjected to genetic analysis by the Random Amplified Polymorphic DNA (RAPD) markers. The similarity between F and S groups was higher than that between F and P. In UPGMA Cluster Analysis, the F isolates originating from the same locality usually grouped in the same cluster. The isolates also showed a tendency to group at the level of larger geographical areas. Within the F group, isolates from the south of the Italian peninsula showed the highest genetic variation and northern isolates from the Alpine regions showed the lowest. This indicates a gradual cline along the peninsula. The genetic variability in the Italian F group is discussed in relation to the past and present distribution of the host species in Italy and Europe.  相似文献   

16.
The main causative agents of Fusarium head blight in central Europe are Fusarium graminearum and F. culmorum. We examined the mycotoxin producing ability, aggressiveness and molecular variability of F. graminearum isolates. Altogether twenty-six Hungarian, three Austrian isolates and representatives of eight species identified in the F. graminearum species complex were involved in this study. Mycotoxin producing abilities of the isolates were tested by GC-MS and HPLC. The central European isolates were found to belong to chemotype I (producing deoxynivalenol). Most isolates produced more 15-acetyl-deoxynivalenol than 3-acetyl-deoxynivalenol suggesting that they belong to chemotype Ib. All F. graminearum isolates were found to be highly pathogenic in in vitro aggressiveness tests. Phylogenetic analysis of random amplified polymorphic DNA profiles, and restriction profiles of the intergenic spacer region of the ribosomal RNA gene cluster of the isolates allowed clustering of the central European isolates into 17 and 16 haplotypes, respectively. When RAPD and IGS-RFLP data were combined, almost every single central European F. graminearum isolate could be differentiated (27/29 haplotypes). Sequence analysis of a putative reductase gene of some isolates was also performed. Based on molecular data, the majority of the central European isolates belonged to F. graminearum sensu stricto characteristic to the northern hemisphere, with the exception of one Hungarian isolate, which was not related to any known species of the F. graminearum species complex based on sequence data. The taxonomic assignment of two other Hungarian isolates, previously suggested as belonging to F. boothii based on mitochondrial DNA restriction profiles, was supported by sequence analysis.  相似文献   

17.
A comparative genomic approach was used to study the mating type locus and the gene cluster involved in toxin production (fumonisin) in Fusarium proliferatum, a pathogen with a wide host range and a complex toxin profile. A BAC library, generated from F. proliferatum isolate ITEM 2287, was used to identify chromosomal regions flanking the mating type locus and the gene cluster involved in the biosynthesis of fumonisin. These regions were sequenced and compared with corresponding sequences in other ascomycetes. The results demonstrated that the level of synteny between ascomycetes can vary greatly for different genomic regions and that the level of similarity of genes within a region can also fluctuate strongly. Synteny was found in the regions flanking the mating type idiomorph among ascomycetes that supposedly diverged 280 million years ago. The fumonisin gene clusters of F. proliferatum and F. verticillioides were completely syntenic but absent in F. graminearum. The regions flanking the fumonisin gene clusters were highly dissimilar between F. proliferatum and F. verticillioides, whereas they formed a continuous region in F. graminearum. This indicates that the fumonisin gene cluster has been inserted at different genome locations in both species. Surprisingly low similarity was found between the corresponding genes within the fumonisin cluster of F. proliferatum and F. verticillioides, compared to other genomic sequences indicative for two independent acquisition events from distinct genetic sources. The results demonstrate the power of comparative genomics for gene annotation and for studies on the evolution of genes, gene-clusters and species.  相似文献   

18.
An extensive survey was carried out to collect Fusarium species colonizing the lower stems (crowns) of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) from different wheat growing regions of Turkey in summer 2013. Samples were collected from 200 fields representing the major wheat cultivation areas in Turkey, and fungi were isolated from symptomatic crowns. The isolates were identified to species level by sequencing the translation elongation factor 1-alpha (TEF1-α) gene region using primers ef1 and ef2. A total of 339 isolates representing 17 Fusarium species were isolated. The isolates were identified as F. culmorum, F. pseudograminearum, F. graminearum, F. equiseti, F. acuminatum, F. brachygibbosum, F. hostae, F. redolens, F. avenaceum, F. oxysporum, F. torulosum, F. proliferatum, F. flocciferum, F. solani, F. incarnatum, F. tricinctum and F. reticulatum. Fusarium equiseti was the most commonly isolated species, accounting for 36% of the total Fusarium species isolated. Among the damaging species, F. culmorum was the predominant species being isolated from 13.6% of sites surveyed while F. pseudograminearum and F. graminearum were isolated only from 1% and 0.5% of surveyed sites, respectively. Six out of the 17 Fusarium species tested for pathogenicity caused crown rot with different levels of severity. Fusarium culmorum, F. pseudograminearum and F. graminearum caused severe crown rot disease on durum wheat. Fusarium avenaceum and F. hostae were weakly to moderately virulent. Fusarium redolens was weakly virulent. However, F. oxysporum, F. equiseti, F. solani, F. incarnatum, F. reticulatum, F. flocciferum, F. tricinctum, F. brachygibbosum, F. torulosum, F. acuminatum and F. proliferatum were non-pathogenic. The result of this study reveal the existence of a wide range of Fusarium species associated with crown rot of wheat in Turkey.  相似文献   

19.
Sugarcane orange rust, a disease caused by Puccinia kuehnii, was first reported in Brazil in 2009. There are no studies comparing the Brazilian P. kuehnii collections and the reaction of important sugarcane varieties under controlled conditions. This work compared the reaction of seven sugarcane varieties inoculated with six different P. kuehnii isolates from Brazilian sugarcane areas and verified the pathogenic and genetic variability of these isolates. The incubation (I) and latency (L) disease periods, disease severity (SEV), total number of lesions (TNL), total number of sporulating lesions (TNSL), and percentage of sporulating lesions (%SL) were evaluated. Furthermore, ITS1 and IGS ribosomal sequences of all P. kuehnii isolates used in this study were compared with pathogen sequences from 13 different countries. The disease incubation ranged from 7 to 10 days and the latency ranged from 10 to 21 days. SEV and TNL showed large variations and few significant differences between the reaction of the varieties to P. kuehnii, in contrast with the variables TNSL and %SL. The P. kuehnii isolates did not compose different virulent races, but the isolate from one site (Araras) was a more aggressive race. The ITS1 and IGS ribosomal sequences of six P. kuehnii isolates were identical with each other and to most P. kuehnii American sequences deposited at GenBank. The studied sequences of P. kuehnii isolates differed from the sequences from Asia, Tahiti and Oceania.  相似文献   

20.
Species of Fusarium that have been segregated from F. graminearum have restricted geographic ranges and it has been suggested that this is due to climate, especially for F. asiaticum. Climate envelope modelling with BIOCLIM was used to quantify the differences in climatic range for F. graminearum, F. asiaticum and F. boothii on wheat. A second analysis used eight climate parameters calculated for the month in which anthesis is likely to occur. Published records were used as data, subject to criteria for precise identification and georeferencing. There were significant differences between species in the ranges of most climate parameters used in the modelling. F. graminearum was recorded from all continents except Antarctica and its predicted distribution included most major rainfed wheat-growing regions of the world, except for the hottest areas of south Asia. There appeared to be few climatic limits on the distribution of F. graminearum on wheat. The restricted distribution of F. asiaticum, principally in east Asia, was confirmed. BIOCLIM analysis indicated that F. asiaticum occurred in areas, where the warmest quarter had mean temperatures >22 °C and rainfall >320 mm, rather than areas with high mean annual temperatures as previously had been suggested. F. boothii was recorded from relatively few, widely scattered locations, mostly in Africa and Mexico, which tended to be warm, with lower seasonality of temperature, higher seasonality of precipitation and drier conditions at anthesis than the other two species. Areas of the world predicted to have suitable climate at anthesis for F. asiaticum and F. boothii were more extensive than their recorded distributions or those predicted by BIOCLIM, suggesting that climatic constraints on these species were acting principally at stages of the life cycle other than infection of wheat heads. There is a need for more comparative studies of these species over the whole disease cycle to establish at which stages climate is limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号