首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pyrite and siderite oxidation in swamp sediments   总被引:3,自引:0,他引:3  
Differences in the processes of pyrite and siderite oxidation, in reclaimed swamp sediments of the Skjernå delta (Denmark), are described from sediment chemistry, mineralogy and pore water chemistry. Pyrite oxidation leads to extreme soil acidification, with pH dropping to about 2, the release of large amounts of weathering products to the pore water, and the precipitation ofiron oxides, jarosite and gypsum. Siderite oxidation results only in moderate soil acidification where the pH does not drop below 3.5, while part of the acidification is due to the oxidation of small amounts of sulphur compounds together with siderite. The release of weathering products to the pore water is limited and only iron oxide is precipitated. Calculations indicate that equilibrium with amorphous FeOOH, gypsum and amorphous Al(OH)3 sets an upper limit to the Fe3+, SO4 and Al concentrations in the pore water.  相似文献   

2.
The detailed characterization of mineralogical changes with depth in pyrite-rich tailings from an abandoned mine provides insight into the future geochemical progression of the tailings. Based on the pH and mineralogical characterization, the Guryong mine tailings can be divided into four zones: jarosite zone, iron (Fe)-sulfate zone, Fe-oxyhydroxide and gypsum-bearing pyrite zone, and calcite-bearing pyrite zone. The jarosite zone was approximately 50 cm deep from the surface and had secondary gypsum (CaSO4·2H2O) and jarosite [KFe3(SO4)2(OH)6]. The pH of the jarosite zone ranged from 2.3 to 4.0, and the ratio of total Fe to total sulfur (S) ranged from 0.7 to 4.3. These results show that the solid phase, schwertmannite or jarosite, is associated with the total sulfate (SO4) content. The Fe-sulfate zone had low pH values caused by strong pyrite oxidation and greatest amounts of the secondary minerals and acid-leachable heavy metals. The Fe-oxyhydroxide and gypsum-bearing pyrite zone reflects partial alteration of pyrite resulting in the coexistence of secondary gypsum and primary pyrite. The calcite-bearing pyrite zone had pH values exceeding 7.0 at greater depths and contained primary calcite (CaCO3). However, the GS6 and GS10 profiles, which contained coarse particles near the water table, were the most acidic and their calcite contents were not dectected. The oxidation of pyrite is the most important factor in the mineral cycling of Guryong mine tailings, controlling the changes in pH, the precipitation of secondary mineral phases, and the behavior of heavy metals through the profile.  相似文献   

3.
Mine waste rock can produce acid rock drainage (ARD) when constituent sulphide minerals (for example, pyrite) oxidize upon exposure to the atmosphere. Outdoor experiments were performed to test techniques for preventing and controlling ARD in a pyritic mine waste rock. The experiments involved lysimeter (plastic drum) experiments in which the crushed (25–50 mm particle sizes), amended and unamended waste rock was exposed to natural weather conditions (rain, drying, freezing and thawing) for 125 weeks. The amendments consisted of separately covering the waste rock with compacted soil, wood bark and water and mixing with limestone and phosphate rock at 1 and 3%. Waters draining the various rocks were collected and analyzed for acidity, pH, sulphate and metals. In general, concentrations of SO4 2-, Fe, As, Cu, Al and Mg in the drainage from the control rock increased gradually in the first year, peaked in the second year and increased further in the third year, reflecting increasing acid generation with time. SO4 2- displayed strong positive correlation (0.91 to 0.98) with Al, As, Cu, Fe and Mg.Concentrations of Zn, Mn and Cd reached their maximumin the second year. Geochemical analysis of thecomplete water quality data using the equilibriumspeciation model WATEQ4F suggested waste rockoxidation was most likely controlled by Fe3+. Al, SO4 2- and Fe concentrations in thecontrol rock appeared to be controlled by alunite(KAl3(SO4)2(OH)6), jarosite(KFe3(SO4)2(OH)6) and amorphousferric hydroxide [(am)Fe(OH)3] during the firstyear. Ion activity product data (log IAP) forFe3+ and OH- generally ranged between –37and –34 in the first two years but decreased to –39and –40 in the third year, suggesting that amorphousferric hydroxides were beginning to crystallize intomore stable forms such as ferrihydrite (Fe[OH]3)and goethite (FeOOH) in the third year. The addedlimestone lost its effectiveness after a while,probably because of precipitation of secondaryminerals on the limestone particles. The phosphaterock could not sustain the drainage pH above 6 andlost its effectiveness before the limestone did. Underthe conditions of the experiments, the soil cover didnot work as expected, probably because of sidewallpassage of oxygen and water. The water cover was themost effective control method, reducing the acidproduction rate data from 41 to only 0.08 mgCaCO3 week-1 kg-1 waste rock. The wood bark was theworst performer and accelerated acid production by 170%.  相似文献   

4.
This paper evaluates the effects of organic amendments and ironprecipitation on pore size distribution and mechanical resistancein sulphide mine tailings, as related to plant habitat requirements. Unaltered tailings, oxidised tailings collected from untreated, fertilized and sludge-amended plots in the field,and mixtures of unaltered tailings and organic amendments prepared in the laboratory, were analysed for pore size distribution. The organic amendments (sewage sludge, peat mossand paper mill sludge) were each applied at the rates of 0, 16 and 33% by volume. A difference in pore-size distribution between untreated and treated samples was shown in both field and laboratory samples. Both inorganic and organic amendments caused a decrease in pores holding water at soil water potentials–10 to –60 kPa, but increased the pores holding water at tensions below –60 kPa. This resulted in a decreased or unchanged content of plant available water (Wa) in all laboratory samples and in the fertilized field samples. Penetration studies in the field showed that additions of fertilizer, without any organic matter, had resulted in hardpans in the oxidised tailings that significantly increased themechanical resistance in the surface horizon. Thus, this studyindicates that the physical influence of the oxidation processestaking place in sulphide mine tailings can be magnified by additions of soil amendments. The aggregation of iron oxides and negatively charged particles such as organic substances orphosphate anions may cement the tailings, which can result inimpeded root growth.  相似文献   

5.
A problem in implementing water covers over existing tailingimpoundments is the dissolution of minerals produced throughoxidation and the subsequent flux of metals into the water cover.One possible solution is to place a protective layer of non-reactive soil at the tailings/water interface to inhibit metaltransport. A laboratory evaluation of different water coversystems was performed employing columns packed with tailingssubmerged beneath 1 m of water. A ten-centimeter layer of sand orpeat was placed at the tailings/water interface. The experimentswere kept stagnant for 183 days, and then flushed with water at asteady rate for 468 days. Both protective covers prevented degradation of water cover qualityfor the duration of the experiments, as pH exceeded 5.5; however,the quality of the tailings pore water remained poor and evendeclined slightly from pH > 4 to pH < 3. Leaching of iron andsulphate from the tailings with a sand protective layer ceasedduring the experiments. Conversely, in the columns with a peatlayer, substantial leaching of metals and sulphate from thetailings continued to the end of the experiments. It ispostulated that the peat is a source of chelating agents, such asorganic acids, which are known to accelerate the dissolution ofcertain minerals formed through weathering. The sensitivity ofmetal transfer rates to the thickness and type of protectivecover above the tailings were modelled. A 10-cm peat layer waspredicted to prevent substantial degradation of the water coverfor at least ten years.  相似文献   

6.
This paper deals with field measurements and hydraulic, oxygen transport and geochemical speciation modeling undertaken to evaluate the performance of a sand-bentonite test cover overlying a 20% sloping waste rock platform. A pit run (gravelly sand) layer protected the sand-bentonite layer. The study site was the Whistle Mine near Capreol, Ontario, Canada. The purpose of the study was to evaluate a number of test covers and select a final cover for the decommissioning of 7 million tonnes of acid-generating waste rock at the site. The sand-bentonite test plot and a control plot consisting of waste rock without cover were monitored over 3 years for water content, suction, soil temperature, gaseous oxygen concentrations, and water percolation. Air temperature, rainfall, snow pack and potential evaporation were also monitored. Finite element modeling showed very good agreement between modeled and measured cumulative precipitation, daily potential evaporation and cumulative evaporation, and to a lesser extent, the cumulative water percolation through the test cover. Due to construction difficulties in the field, the back of the waste rock platform was not covered with the test cover. This resulted in oxygen ingress from the back side of the waste rock. Oxygen transport modeling showed that if the entire waste rock pile had been covered, the daily oxygen flux would have been reduced by 90% to only 0.003 g/m2/day. Such low oxygen flux would minimize sulphide oxidation and hence acid generation in the waste rock. Aqueous equilibrium speciation modeling suggested that the concentrations of sulphate $\left( {{\text{SO}}_{\text{4}}^{{\text{2 - }}} } \right)$ , iron (Fe), and aluminum (Al) in percolate water in contact with waste rock were controlled by secondary minerals such as gypsum, alunite, and ferrihydrite.  相似文献   

7.
A 20-month column experiment investigated leaching of Al, Cu, Mn, Ni, Zn, Cd and Pb during sulphide oxidation in mine tailings with and without sewage sludge (SS) amendment. Leachate pH decreased gradually in all columns during the experiment, irrespective of treatment, due to sulphide oxidation. As the degree of sulphide oxidation, and thus the pH trajectory, differed between replicates (n?=?3), running data for each column used are reported separately and the relationships between sulphide oxidation, metal leaching and treatment in each column compared. Mean pH in the columns correlated negatively with total amounts of leached SO4 2-. In the beginning of the experiment the leachate concentrations of Al, Cu, Zn, Ni and Pb were higher in SS-treated columns due to high initial concentrations of dissolved organic carbon. As leaching proceeded, however, the amounts of Al, Cu, Mn and Ni leached from the columns were closely related to the degree of sulphide oxidation in each column, i.e. to its mean pH. There were no statistically significant differences between treatments regarding the total amounts of metals leached and thus addition of sewage sludge to the tailings appeared to play a minor role for metal leaching patterns. Peak concentrations of Al and Cu in the leachate from untreated tailings and of Zn in the leachate from both untreated and SS-treated tailings at pH 4 exceeded national background values for groundwater.  相似文献   

8.
We experimentally determined the adsorption characteristics of natural, freshly precipitated Al(OH)3 for SO4 and PO4. The fresh Al precipitate occurred in stream sediment of Jachymov Stream (Czech Republic). The Al-rich sediment strongly adsorbed added PO4 prior to acidification experiment; this sorbed PO4 was released only after substantial dissolution of the sediment, at pH?<?3.67. Sorption of P by Al(OH)3 appears to be an important control on dissolved PO4 concentration in surface waters, unless there is a large excess of PO4. Acidification of the sediment-solution system caused protonation of the sediment surface, thereby increasing the adsorption capacity for SO4. Maximum SO4 adsorption occurred at pH 4.2, below which dissolution of the sediment offset the increasing anion adsorption capacity, and formation of AISO4 + inhibited the increasing SO4 adsorption capacity. This research demonstrates that there are important pH thresholds for anion adsorption in freshwaters below which dissolution of the Al(OH)3 substrate reduces total capacity for anion adsorption. In freshwaters, with sufficient concentrations of suspended Al(OH)3, or in Al(OH)3-rich sediment, PO4 mobility will be severely restricted. Suspended Al(OH)3 in acidified surface waters cannot strongly influence SO4 concentrations because of the considerably higher total SO4 concentrations compared to the available surface area.  相似文献   

9.
In recent decades, SO4 2- concentrations have increased in groundwater and surface water of freshwater wetlands. For many minerotrophic peatlands, S originating from SO4 2--polluted groundwater and surface water is a more significant source of SO4 2- than the actual atmospheric deposition of S compounds. Lowered groundwater tables in wetlands, as a result of either natural or anthropogenic desiccation, may cause acidification because of concomitant geochemical oxidation processes. The impact of the enhanced availability of reduced S compounds, due to preceding SO4 2- pollution, on these processes was tested in a mesocosm experiment, using soil cores including vegetation from a mesotrophic wet meadow. The soils had been maintained in waterlogged condition for seven months, using two environmentally relevant SO4 2- concentrations (2 and 4 mmol L-1). The groundwater table was reduced in two successive steps: 10 cm below soil surface, and complete desiccation. Control pretreated soils did not show a decrease in soil pH during desiccation, due to adequate buffering by bicarbonate. However, both SO4 2--pretreated groups showed a significant drop in pH (from 6.5 to 4.5) caused by additional sulfide oxidation, leading to high SO4 2- concentrations (10 and 16 mmol L-1, respectively). Cation exchange and acidification-related solubilization processes induced the mobiliztation of base cations and potentially phytotoxic metals like Al. Nutrient concentrations in soil moisture were influenced strongly by SO4 2- pretreatment, showing distinct patterns for P, N and K. Therefore, S polluted groundwater and surface water may severely increase the sensitivity of wetlands to desiccation. The results are discussed in relation to wetland management.  相似文献   

10.
The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L^-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.  相似文献   

11.
A computer simulation was done to illustrate how the equilibrium solubility and speciation of Al in well-aerated soil solutions may be affected by pH (from 2.0 to 10.0), organic acids (citric, oxalic, phthalic, and salicylic acid), metal ions (K, Mg, Ca, Al, Fe), inorganic ligands (F, OH, SO4, PO4, CO3, and SiO3), and type of Al-containing solid [kaolinite, gibbsite, or amorphous Al(OH)3] thought to be present. The simulation indicated that the type of Al-oxide/hydroxide considered has a substantial influence on the inorganic and organic equilibrium composition of the soil solution, and on the occurrence (or non-occurrence) of other Al-minerals such as KA13(SO4)2(OH)6 (alunite) and Al(SO4)(OH)-5H2O (jurbanite).  相似文献   

12.
Andosols in the vicinity of active volcanoes receive large inputs of SO2 and HCl. We studied (i) the mechanisms of acid buffering, (ii) the effect of cation removal on the short‐term acid neutralization capacity and (iii) the consequences of acid buffering for secondary mineral formation in vitric Andosols around the Central American volcanoes Poás and Masaya. Two types of short‐term (24 hour) acidification experiments at pH 3 were conducted to simulate an open system in which leaching prevails (extraction with protonated cation exchange resin) and a closed system with no leaching (pHstat titration with cation accumulation). Long‐term buffering under field conditions (mean soil pH: 4.6) and its effect on secondary mineral formation were studied by analysis of samples from a transect of decreasing acid input by IR spectroscopy, microscopic methods and geochemical equilibrium modelling. In Poás samples the main short‐term buffering mechanisms at pH 3 are plagioclase dissolution and protonation of organic matter. Long‐term acid buffering under field conditions led to weathering of plagioclase crystals but did not result in protonated carboxyl groups. In Masaya samples mineral and/or glass dissolution are the dominant acid buffering mechanisms in laboratory experiments and under field conditions. For both sites, cation accumulation during pH 3 acidification experiments led to a decrease of the effective acid neutralization capacity. Due to different climatic conditions, Al is precipitated as basaluminite at Masaya while it seems to be susceptible to leaching at Poás. Acid buffering resulted in the formation of amorphous silica at both sites.  相似文献   

13.
Environmentally safe disposal of sulfide-rich reactive mine tailings is one of the major challenges facing the mining industry in Canada, Scandinavia, USA, and many other parts of the world. Placing tailings under a water cover is one of the effective methods to reduce the influx of oxygen to the tailings. Wind-induced turbulence and subsequent resuspension of the tailings, however, are major concerns with this approach. In this paper, a study of wind-induced resuspension at the Shebandowan tailings storage facility, northwestern Ontario, Canada, is discussed. The study compares computer modeling of required water cover depths and resuspended tailings concentrations to observed field data. The calculated minimum water cover depths required to eliminate resuspension were found to be higher than the existing implemented water cover depths in each cell. The predicted resuspended tailings concentrations for the west cell were 6?C22?mg/l with an average value of 15?mg/l and, for the east cell, 1?C10?mg/l, with an average of 6.0?mg/l. In comparison, optical backscatter sensors, deployed in situ, recorded average resuspended tailings concentration up to 25?mg/l, indicating that the model results were similar to the field-measured values. Results from sediment trap measurements did not show any correlation between the amount of resuspended tailings and water cover depth. Sediment traps collect not only sediments eroded and suspended at the location of deployment but also those that have been transported from elsewhere and redeposited at the trap location. The amount of resuspension occurring at Shebandowan does not raise a major concern because discharge from the tailings area is collected and managed before it reports to the final effluent.  相似文献   

14.
In the Lower Cell of the Heath Steele mine tailings arealocated 50 km north of the city of Miramichi, New Brunswick,Canada, tailings and lime treatment sludge were co-depositedand the effluent occasionally exceeded regulatory dischargelimits for total suspended solids (TSS), especially on verywindy days. A combined field and laboratory investigationwas undertaken during 1998-1999 to identify the cause of thehigh TSS. The methodology included field measurement of windvelocity and sampling of bed tailings, sludge,suspended sediment, and the water cover. The samples werethen subjected to various laboratory examinations using x-raydiffraction, scanning electron microscopy interfacedwith energy dispersion x-ray spectroscopy, critical shearstress measurements, and water chemistry analysis. Thesuspended sediment was found to be composed primarily ofcalcite and metal hydroxides derived from the bed sludge inthe cell. Only a very small amount of tailings (less than5%) was detected in the suspended sediment. The sludge,which covered the tailings in the shallow western section ofthe Lower Cell at depths less than 1 m, was a loose, low-densitymaterial with a low critical shear stress (approximately 0.058 Pa). In shallow water cover (less than 1 m), calculated bed shearstress mobilized by wind-induced waves and return currents exceeded the critical shear on a number of occasions, resultingin resuspension of the sludge and hence high TSS. Although occasional elevated zinc concentrations appeared to follow a similar pattern to high TSS, there was no evidence that thesuspended sludge sediments would release metals into the watercover, due to the high pH of the Lower Cell water cover. Since the tailings did not resuspend significantly, it was clear thatat water cover depth less than 1 m, sludge was eroded instead oftailings, and thus provided a barrier against tailings resuspension. As part of the final closure scheme for the HeathSteele tailings area, sludge and tailings were dredged and relocated from areas where the water cover was < 1 m to deeperwater cover areas to ensure that the effluent met required totalsuspended solids discharge criteria.  相似文献   

15.
盐渍化土壤水分有效性是制约土地生产能力的关键因素之一。研究不同盐分类型及矿化度的盐溶液对土壤水分有效性的影响, 可为微咸水合理灌溉以及促进土壤生产潜力的发挥提供科学依据。本研究采用离心法在室内研究了脱水过程中灌溉水的溶质类型(NaCl和Na2SO4)与矿化度(0、1 g·L-1、3 g·L-1、5 g·L-1、10 g·L-1)对半干旱盐渍化地区果园土壤水分有效性的影响。结果表明: 不同矿化度的NaCl和Na2SO4处理均可使田间持水量、暂时萎蔫系数、永久萎蔫系数、迟效水和无效水较对照有所降低。不同矿化度的NaCl处理以及1 g·L-1的Na2SO4处理土壤全有效水和速效水都较对照增加, 3 g·L-1、5 g·L-1和10 g·L-1的Na2SO4处理土壤全有效水和速效水都较对照减小。不同矿化度的NaCl和Na2SO4处理均可使土壤通气孔隙和毛管孔隙相对减少, 非活性孔隙增大, 其中矿化度为5 g·L-1的NaCl和Na2SO4处理对其影响最为明显, 通气孔隙分别较对照减小16.8%和14.8%, 毛管孔隙分别较对照减小5.2%和6.5%, 非活性孔隙分别较对照增加15.7%和14.4%。NaCl对于土壤比水容量和毛管断裂的延迟效果比NaSO4明显。且土壤溶液盐分含量增加, 土壤持水能力下降、供水性能增加而土壤抗旱性降低。  相似文献   

16.
Land application of dairy slurry can result in incidental losses of phosphorus (P) to runoff in addition to increased loss of P from soil as a result of a buildup in soil test P (STP). An agitator test was used to identify the most effective amendments to reduce dissolved reactive phosphorus (DRP) loss from the soil surface after land application of chemically amended dairy cattle slurry. This test involved adding slurry mixed with various amendments (mixed in a beaker using a jar test flocculator at 100 rpm), to intact soil samples at approximate field capacity. Slurry/amended slurry was applied with a spatula, submerged with overlying water and then mixed to simulate overland flow. In order of effectiveness, at optimum application rates, ferric chloride (FeCl2) reduced the DRP in overlying water by 88%, aluminium chloride (AlCl2) by 87%, alum (Al2(SO4)3·nH2O) by 83%, lime by 81%, aluminium water treatment residuals (Al‐WTR; sieved to <2 mm) by 77%, flyash by 72%, flue gas desulphurization by‐product by 72% and Al‐WTR sludge by 71%. Ferric chloride (€4.82/m3 treated slurry) was the most cost‐effective chemical amendment. However, Al compounds are preferred owing to stability of Al–P compared with Fe–P bonds. Alum is less expensive than AlCl2 (€6.67/m3), but the risk of effervescence needs further investigation at field‐scale. Phosphorus sorbing materials (PSM) were not as efficient as chemicals in reducing DRP in overlying water. The amendments all reduced P loss from dairy slurry, but the feasibility of these amendments may be limited because of the cost of treatment.  相似文献   

17.
This paper attempts to acquire a good understanding of the formation and evolution of acid sulphate soils (ASS), as well as to assess the consequent environmental impacts. An incubation experiment to simulate the development of ASS under various weathering scenarios was set up. Fresh monosulphidic black ooze (MBO) material was divided into three parts and each was subjected to different drying and rewetting regimes by controlling an artificial water table in an incubation cell. The observations focused on the changes in mineralogy of the material and reflectance spectral changes during the oxidation process, and the ionic composition and chemical status of the solutions generated. Mineralogical investigations with hyperspectral and XRD analysis showed that frequent inundation produced extensive surface oxidation and a change from iron sulphide minerals to stable end members such as goethite. For the material experiencing moderate or occasional inundation, oxidation was less advanced and a different secondary mineral suite, with iron sulphate minerals such as jarosite, was present. Solutions generated from all the incubation cells were generally acidic with pH around 3.5, indicating that sulphide oxidation occurred rapidly in all cells. Sulphate concentrations in solutions from the different cells were calculated from the measurements of SO42? and other anions in solutions and may approximate the rates of sulphide oxidation. Potential environmental impacts were illustrated in terms of soil acidity, salinity and trace metal release, and the effects of the different wetting/drying regimes on the oxidative process also provided insight into potential weathering effects in a changing climate.  相似文献   

18.
Four sand pit lakes, at the Rio de Janeiro Sand Mining District, were monitored from November 2003 to November 2005, in order to characterize their hydrogeochemistry aiming to provide information to their possible use as fishponds at the end of mining activities. The results show diluted waters (low electrical conductivity) with low pH (<4) and relatively high sulfate and aluminum concentrations. The major water components (in particular Fe, Mn, SiO2, Al and SO4) are related to water acidity, since it controls solubility of aluminum silicate minerals and Mn and Fe oxides. Fe, Mn and Al availability in these waters are probably associated to organic colloids formation. On the other hand, the SiO2 content, as well as the decrease of sand mining in rainy season, may partially control Al availability by the formation of hydroxi-aluminum silicates. These geochemical processes together with the interruption of sand mining in the rainy season and the dilution of sand pit lakes water by rainwater can support the use of these pit lakes as fishpond for aquaculture.  相似文献   

19.
Leaching of sulphate and cations from horizon samples of two acid sulphate soils (0.9 to 1.6% S in subsoil) was studied in the laboratory. Samples were incubated and eluted with water at 20 °C and 5 °C until apparent exhaustion of leachable S resources. The leachates were analyzed for pH, SO4-S, Fe, Al, Mn, K, Ca, Mg, and Na. Oxidation of sulphide was retarded at the lower temperature. From all the originally water-logged samples the sulphate formed was initially washed out with base cations (mainly with Mg), but the proportion of acid counter ions (predominantly Al) increased with proceeding oxidation and acid formation. In the most acid leachates, pH was 2.6 to 2.8. In the transition layer between reduced and oxidized horizons, sulphide oxidation had been going on for some time, and acid cations were the main counter ions for sulphate already at the beginning of the experiment. In the totally oxidized surface horizons, sulphate was leached only in moderate quantities, and the sum of cation equivalents (mainly base species) exceeded that of sulphate, suggesting some removal of other anions. Leaching losses in the laboratory experiment, corresponding to drainage-induced loading of waters in field experiments during the course of many decades, point out the environmental danger associated with deep drainage of potentially acid sulphate soils.  相似文献   

20.
Chemistry of aqueous Al in a podzol on a Norway spruce (Picea abies [L.] Karst.) site in the Black Forest (SW Germany) and changes induced by experimental applications of MgSO4 were studied. Soil solution taken from the O, E and BC horizons were analyzed for the fractions ‘labile monomeric Al’, ‘non-labile monomeric Al’, and ‘acid-reactive Al’. The activities of ‘inorganic monomeric Al’ species and the saturation indices (SI) of the soil solution with respect to Al-bearing minerals were calculated using the equilibrium speciation model WATEQF. On the untreated plot, soil leachates are characterized by Altot concentrations of 0.1 mg L?1 (mineral soil). In the O horizon, the fractions ‘acidsoluble Al’ and ‘non-labile monomeric Al’ (mainly organically complexed Al) together comprise 80% of Altot. In the leachates from the mineral soil Al3+ prevails, being 50% of Altot. Al-F-complexes make up 5 to 10% in all horizons. MgSO4 and (NH4)2SO4 treatments resulted in an intense Al mobilization up to 50 mg L?1. In this situation, 60% of Altot is covered by Al3+ and 40% by non-phytotoxic Al-SO4-complexes. After rainfall events, mobilized Al is quickly translocated into the subsoil, with water flow through macropores then appearing to be an important mechanism. In both treatments, soil solution chemistry was favorable for the precipitation of the Al(OH)SO4-type minerals alunite and jurbanite. However, a control of Al solubility by this process is not likely due to kinetic restraints. Application of MgSO4 was followed by an increase of the Mg/Al molar ratio in the soil solution, whereas the Ca/Al ratio decreased. After treatment with (NH4)2SO4 both the Ca/Al and the Mg/Al ratios deteriorated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号