首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reports on the effects of fabric constructional factors such as fabric sett, warp tension, back rest position, and pick insertion rate, on the warp-way and weft-way shrinkages of a three-up-one-down twill woven fabric using a Taguchi design of experiments. It was observed that the fabric shrinkage in the warp direction was mostly affected by the change in the number of picks per inch, followed by warp tension, number of ends per inch, number of picks per minute, and back rest position, respectively. The fabric shrinkage in the weft direction was found to be mostly affected by the change in number of ends per inch, followed by number of picks per inch, back rest position, number of picks per minute, respectively and least affected by warp tension. It was observed that the aforesaid five factors were able to explain 99.02 % and 82.81 % of the total variation of fabric shrinkage in the warp and weft directions, respectively.  相似文献   

2.
The tensile properties of air-entangled textured polyester single and multiple yarn ends before and after weaving were analyzed. The effects of weaving process considering fabric unit cell interlacement and number of yarn ends were evaluated by regression model. For this purpose, plain, ribs and satin woven fabrics were produced. The yarns were raveled from fabrics, and the tensile tests were applied to these yarns. The developed regression model showed that the number of interlacement and crimp ratio on the warp and weft yarns influence their tensile strength. Tensile strength of raveled yarns decreased compared to that of the bobbin yarn due to the effect of weaving process. This property degradation on the ravel yarns considered process degradation. Generally, when the number of warp and weft yarn ends increases, the warp and weft yarn tensile strengths for each fabric type decrease, whereas the warp and weft yarn tensile elongations slightly increase. The results from regression model were compared with the measured values. This study confirmed that the method in the study can be a viable and reliable tool. The research finding could be useful those who work on preform fabrication.  相似文献   

3.
Theoretical weavability limit relationships of fabrics from regular warp yarns and fancy filling yarns with thickness variation in shuttleless weaving are reviewed. The relationships correlate maximum warp and filling cover factors, warp and filling yarn characteristics, the distribution of thick and thin places of filling yarn over the fabric surface, and the warp and filling weave factor. The research considers single filling feeder and multiple feeders cases. Additionally, comparisons between the weavability limit of regular yarns and fancy yarns in shuttle and shuttleless weaving are given.  相似文献   

4.
This study examined the mechanical properties of worsted fabrics woven using various rapier weaving looms. For this purpose, the warp and weft yarn tensions during weaving were measured on the three types of rapier looms, and the fabric mechanical property changes due to the warp and weft tension differences were measured and analyzed according to the fabric position and particular rapier loom using the KES-FB system. The warp tension variation along the loom width direction in P-GTX loom showed the lowest value compared to FAST and THEMA looms. The warp tensions on the central part of the three types of looms were much higher than those on the left and right sides of the looms. The extensibility and bending rigidity of the fabric woven by P-GTX rapier loom showed lower values than those of FAST and THEMA looms, which appears to have originated from the low warp and weft weaving tensions of P-GTX rapier loom. On the other hand, the compressional property and shear modulus showed compromised results due to lateral deformation by compression and constraint deformation of the warp and weft by shear. The friction coefficient of the fabric surface woven by FAST loom showed the lowest value due to the flatter surface by the high warp tension. The mechanical properties of the fabric loaded by a high warp tension on the central part of the loom were also affected by the high weft yarn crimp due to the wider spacing between warp yarns by the higher warp tension during weaving, which makes the surface of the central part of the fabric flatter and smoother than the edge part of the fabric.  相似文献   

5.
This paper focuses on the assessment of the relation among constructional properties, fractional reflectances and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of the relation between fractional reflectance and fabric cover factor was proposed and the usage of the equation was assessed by reflectance measurements. 48 polyester fabrics having different constructional parameters were used and the fabrics differed from each other by their cover factors. The warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in the experimental sub-groups. The reflectance measurements were conducted on the pretreated but undyed fabric samples as well as on the individual yarn systems of the same fabrics. Fabrics with the same cover factors exhibited different fractional reflectances. Reflectances were found to be dependent on the cover factor as well as on yarn fiber fineness, yarn count, yarn density and fabric weave. The changes in crimp of the yarns according to different construction parameters also governed the changes in fractional reflectances of fabric surfaces. The proposed equation was tested according to different fabric construction parameters and it was concluded that fiber fineness and weave pattern were among the most important parameters which govern the total light reflectances from the fabric surfaces, although they are not incorporated in the calculation of the fabric cover factors. The proposed equation was used to explain the effects of these components on the reflectance behavior of the fabric surfaces and on fabric cover.  相似文献   

6.
Despite the advances in woven fabrics, CAD systems, and weaving technologies, the process of weave/color selection for each area of a Jacquard pattern still requires the intervention of the CAD system operator and/or designer, who works from color gamut. Relying on the designer subjective assessment, multiple weaving trials may be needed to produce a fabric that matches the target artwork or sample. In this paper, a general geometric model is provided to predict the color contribution of warp and filling yarns of a given woven fabric in terms of warp and pick densities, warp and filling yarns sizes, weave, size of the color repeat of warp and filling yarns, and the number of yarns of different colors. Such geometrical modeling, combined with sound existing color mixing equations, paves the road for the automation of the process of weaves and color selection and thus dramatically reduces the production cycle.  相似文献   

7.
This paper focuses on the reflectance prediction of colored (unicolored) fabrics considering relationship between fractional reflectance values and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of relation between fractional reflectance and cover factor was proposed and usage of the equation was assessed by reflectance measurements. 48 dyed polyester fabrics having different constructional parameters were used and fabrics differed from each other by their cover factors. Warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in experimental sub-groups. The reflectance measurements were conducted on the dyed fabric samples as well as on the individual yarn systems (warp and weft) of the same fabrics. The proposed equation was tested according to different fabric constructional parameters and reasonable results with the experimental data were obtained. The possibilities of general use of derived mathematical relations between theoretical and measured reflectance values were researched. The relation obtained was used to explain the effects of different constructional parameters on reflectance behavior of fabric surfaces.  相似文献   

8.
Peirce’s fabric model has been widely used to predict the structural behavior of various plain woven fabrics. The structure of plain woven fabric can be defined in terms of the warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. The warp and weft yarn diameters are calculated from the warp and weft yarn numbers, and the effective coefficient of the yarn diameter is defined by using this model. We have investigated structural properties, such as the effective coefficient of the yarn diameter, yarn crimp, and fabric thickness for two different fabrics in which the constituent yarns are assumed to be either incompressible or compressible. This model is also applied to various plain fabrics woven from cotton, rayon, wool, linen, nylon, acetate, polyester, and silk yarns.  相似文献   

9.
The present paper reports the impact of thermal treatment on the characteristics of core-sheath type hybrid technical yarns. The core-sheath type hybrid yarns are prepared using DREF-III technology. Polyester and glass multifilaments are used as core components whereas the cotton and polyester staple fibers are the sheath components wrapped around the core filament with different proportions to form a hybrid structure. The thermal treatment is carried out both in dry and in wet state under relaxed condition and the thermal shrinkage, sheath-slipping resistance and tensile and bending properties of hybrid yarns have been studied. Thermal treatment markedly increases the thermal shrinkage and sheath-slipping resistance of hybrid yarns with polyester multifilament in core, but insignificant effect for yarns with glass multifilament in core. Breaking elongation of hybrid yarns with polyester multifilament in core increases with treatment temperature. The hybrid yarns with glass multifilament in core are least affected by thermal treatment.  相似文献   

10.
The effects of fabric balance and fabric cover on surface roughness values of textured polyester woven fabrics with different constructional parameters were investigated. The warp yarn properties (type, count and warp density) were kept constant while the effect of variation in weft yarn density and weave pattern were studied. Measurements were conducted on pre-treated white fabric samples and the results assessed in relation to their constructional properties. A general overview of the results showed that surface roughness values of polyester fabrics affected by fabric balance and fabric cover and the effects were related to fabric thickness, yarn densities, yarn crimp, positioning of yarns in fabric structure. A change in weave pattern from sateen to plain increased the fabric balance and fabric cover, but decreased the surface roughness. Similarly, an increase in weft density increased the fabric balance and fabric cover, but decreased surface roughness. In order to produce fabrics with smooth surface properties yarn density should be increased, yarn float lengths decreased, cover of fabrics increased and fabric balance improved.  相似文献   

11.
This work aims to design woven fabrics with desired quality at optimum manufacturing cost by choice of suitable weaving parameters such as count, crimp and thread spacing of warp and weft yarns. To fulfill this goal, we endeavor to devise search based non-traditional optimization methods such as genetic algorithm, particle swarm optimization and simulated annealing for efficiently finding the appropriate combination of weave parameters. The quick response capability of the non-traditional optimization methods would benefit the fabric manufacturers for efficient determination of the required weaving parameters to produce the engineered fabrics. The experimental validation confirms that the particle swarm optimization is most suitable technique for engineering design of woven fabrics.  相似文献   

12.
The structural properties of a plain fabric were considered using the lenticular model. The structure of a plain woven fabric can be defined in terms of warp yarn number, weft yarn number, warp fabric density, weft fabric density, warp crimp, and weft crimp. Many structural variables of the plain fabric could be calculated by the lenticular model using these terms. Also, this model can be used to explain the geometry of the flattened yarns that occur during the weaving process. Flattening factors of threads for various types of fibers were calculated, compared, and explained with the number of yarn twist. Flattening factors were found to affect the structural variables of the fabric such as fabric thickness, air permeability, and yarn crimp. Yarn crimp was also studied with variation of the structural variables of the fabric.  相似文献   

13.
The co-woven-knitted (CWK) fabric and multi-layered biaxial weft-knitted (MBWK) fabric were produced using glass filaments as warp and weft inserted yarns and high tenacity polyester as stitched yarns. Vacuum Assisted Resin Transfer Molding process was used to produce the two composites. Tensile tests were carried out in the course, wale and slanting directions of the composites, respectively. Specific stress-strain curves and failure modes of the two composites were investigated and compared. Results reveal that tensile strengths and elastic moduli of the two composites in the course and wale directions are better than those in the bias direction. All the composite samples fracture in the brittle damage mode. Furthermore, the buckling due to different inserted ways of the warp and weft yarns has a few influences on the tensile properties of the two composites. This research may lay a foundation for the establishment of the process windows for the co-woven-knitted reinforced composites.  相似文献   

14.
The fabric defects complained by garment manufacturers are stop marks, streaky phenomena on the warp direction, thickness variation and color differences between edges on the right and left sides of the fabrics, which are partly due to the tension variation of warp and weft directions. It is well known that these defects are related to the difference of fabric mechanical property according to the loom characteristics and fabric position such as center and both edges parts of the fabric, which affect garment formability and wearing performance of garment. This research is focusing about which factor is dominant for the difference of fabric mechanical properties which affects garment formability and wearing performance between loom characteristic factor and fabric position factor such as center and both edges of the fabric, which is affected by warp and weft tensions. For this purpose, two kinds of looms were selected, and warp and weft tensions during weaving were measured and the mechanical properties of the fabrics woven by two kinds of looms such as tensile, bending, shear, compression and surface properties were also measured according to the positions such as center and both edge parts of the fabric. These fabric mechanical properties were examined with warp and weft tensions according to the looms and were also analyzed according to the positions of the fabric woven by two kinds of looms. The warp tension on the vicinity of center parts of the looms was much higher than those on the vicinity of both edges of looms. It revealed that the warp tension difference makes differences of fabric mechanical properties such as tensile, bending, shear and surface properties except compressional property. And the differences of these mechanical properties according to the fabric positions and looms seem to make homogeneity of the fabric hand and tailorability of garment deteriorating.  相似文献   

15.
The woven fabric graphics designed with available computer aided design (CAD) systems using different colored warp and weft yarns look quite different from the appearance of their actual fabrics. To enhance the visual effects of designed woven fabric graphics, this paper reports a modified CAD woven fabric system, which allows users to design a fabric using parameters including fabric weaves, yarn number, yarn material, fabric count, crimp shape of interwoven yarns, and illumination. This enhanced system can design both yarns and fabrics, and consider the transitional color effect around interweaving points of warp and weft yarns. Its simulation image quality of woven fabrics has been greatly improved, and several textile mills and universities are currently using this woven fabric design system.  相似文献   

16.
This paper assesses the color difference and color strength values (K/S) obtained for eight disperse-dyed polyester fabric samples with different fabric construction parameters (weft yarn type, weft yarn count, weft density and fabric weave) after four sets of abrasion cycles. Warp yarn type and count, warp density, and warp yarn twist are the same for all fabrics. Fabric samples are dyed in a commercial red disperse dye (C.I. Disperse Red 74:1) and four different abrasion cycles (2500, 5000, 7500, 10000) are used. TheK/S values of the abraided fabrics and color difference values between the control fabric (dyed but not abraided) and abraded fabrics are calculated. The main differences in theK/S and color difference values are observed between 0–2500 abrasion cycles. The high tenacity of the polyester fibers and continuous polyester yarns causes some fuzz but no pilling formation on the fabric surface that lead to increasedK/S values and color differences. Fiber dullness, yarn thickness, yarn density and fabric weave are concluded to have different effects on the appearance after abrasion.  相似文献   

17.
Inside a woven fabric structure, warp and weft yarns acquire crimp as a result of yarns interlacing according to the weave pattern. Since warp and weft yarns are oriented in two perpendicular directions, applying tensile load in one direction causes extension in the load side and fabric contraction in the opposite direction. This process was investigated in this study by using an image processing procedure and it was found that fabric’s extension is in coincidence with yarn’s de-crimping process in the same direction. After the de-crimping stage, yarns in the load direction will be extended and at the same time crimp in the other direction will be increased, until jamming phenomenon happens in the fabric structure. The crimp interchange between warp and weft yarns follows a three-order polynomial function with a turning point in which the yarns in the load direction have no crimp.  相似文献   

18.
The aim of this study was to model the air permeability of polyester cotton blended woven fabrics. Fabrics of varying construction parameters i.e. yarn linear densities and thread densities were selected and tested for air permeability, fabric areal density and fabric thickness. A total of 135 different fabric constructions were tested among which 117 were allocated for development of prediction model while the remaining were utilized for its validation. Four variables were selected as input parameters on basis of statistical analysis i.e. warp yarn linear density, weft yarn linear density, ends per 25 mm and picks per 25 mm. Response surface regression was applied on the collected data set in order to develop the prediction model of the selected variables. The model showed satisfactory predictability when applied on unseen data and yielded an absolute average error of 5.1 %. The developed model can be effectively used for prediction of air permeability of the woven fabrics.  相似文献   

19.
Moisture management behavior is a vital factor in evaluating thermal and physiological comfort of functional textiles. This research work studies functional 3 dimensional (3D) warp knitted spacer fabrics containing high-wicking materials characterized by their profiled cross section. These spacer fabrics can be used for protective vest to absorb a user’s sweat, to reduce the humidity and improve user’s thermal comfort. For this reason, different 3D warp knitted spacer fabrics were produced with functional fiber yarns in the back layer of the fabric (close to the body) and polyester in the front and middle layers (outer surface). Comfort properties such as air and water vapor permeability and wicking and other moisture management properties (MMP) of different fabric samples were measured. It is demonstrated that by using profiled fibers such as Coolmax fiber, moisture management properties of spacer fabrics can be improved, enabling them to be use as a snug-fitting shirt worn under protective vests with improved comfort.  相似文献   

20.
In the present study the influence of the deformation mode, of the specimen elongation deformation, of the fabrics?? weave type, of fabrics?? direction and of the position of seam allowances in respect to the stitching line on the seam slippage in the raw plain, twill and combined-twill weave fabrics was investigated. Fabrics were woven with the warp yarn of 20×2 tex 70 % cotton and 30 % PES blended 2-ply spun yarn and the weft yarn of 18 tex 100 % PES folded multifilament yarn using jacquard weaving machine ??Lindaucer DORNER GmbH??. Seam slippage of the investigated woven fabrics was determined using the new simple and compact technical device suitable to test fabrics for seam slippage property within five different deformation modes: an uniaxial tension of seams with opened seam allowances on the surface of metal table; an uniaxial tension of seams with bent to one side allowances in respect to stitching line on the surface of the metal table; an unrestricted uniaxial tension of seams; a bagging of seams with bent to one side allowances in respect to the stitching line using the plastic hollow cylinder; a bagging of seams with opened seam allowances using the plastic hollow cylinder. The results of the research had proved that seam slippage of the investigated woven fabrics was dependent on the deformation mode, on the elongation of sewn specimens, on the location of allowances in respect to the stitching line, on the fabric weave type as well as on the woven fabric direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号