首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of different indicators of plant water status as a tool for irrigation management was evaluated in mature field grown ‘Golden Delicious’ apple trees during the late summer of 1998. Control (C) and stress (S) treatments were studied. In the C treatment trees were irrigated daily at 100% ETc whereas in the S treatment water was withheld during 31 days (DOY’s 236–266). Predawn water potential (Ψpd) and midday stem water potential (Ψstem) were measured several times a week during the experimental period. Three daily measurements of stomatal conductance (gs) and stem water potential were made during five consecutive days in mid-September. Trunk diameter changes (TDC) were recorded by LVDT sensors, and from these measurements, maximum daily shrinkage (MDS), daily growth (DG), and cumulative growth (CG) were calculated. Midday Ψstem showed the best ratio between the response to moderate water stress and tree variability (“signal/noise” ratio) among the indicators studied here, followed closely by Ψpd. On the other hand, the poorest water status indicator was gs. Due to the low trunk growth rate of the trees, and its high variability, DG and CG were not adequate indicators. MDS showed a lower sensitivity to water stress and a higher variability (CV = 0.19) than midday Ψstem (CV = 0.08) and Ψpd (CV = 0.10). However, MDS correlated well with ET0 and with midday Ψstem (R 2 = 0.79) thus, making this parameter an interesting and promising tool for irrigation management in apple orchards. More research needs to be done in order to define reference values for MDS and plant water potential indicators, in relation to evaporative conditions and in different phenological periods, and to quantify the relationship between water status indicators values and apple tree yield and fruit quality.  相似文献   

2.
Midday leaf water potential (Ψmd) was monitored for 3 years at a commercial vineyard (cv. Pinot Noir) under four irrigation strategies. Three treatments were established based on irrigating vines with 4–6 mm/day, when daily measured Ψmd was more negative than the pre-defined threshold. After the first experimental year, thresholds were adjusted for each treatment as: (1) Control (C), irrigated when Ψmd was less than −0.6 MPa at the beginning of the season and gradually fell to −0.8 MPa at about mid-June, after which the threshold was maintained at −0.8 MPa until harvest. (2) Control–Deficit (CD), irrigated as C from bud-break to mid-June (around the middle of Stage II of fruit growth), and from then until harvest when Ψmd decreased below −1.2 MPa. (3) Deficit–Deficit (DD), irrigated when Ψmd was less than −1.0 from bud break to mid-May (about the middle of fruit growth Stage I), and after that time the Ψmd threshold became −1.2 MPa until harvest. A fourth treatment was applied following a soil water budget approach (WB). All treatments were replicated five times but irrigation in the Ψmd-based treatments were independently applied to each of the replicate plots, whereas irrigation for WB was applied equally to all replications. The more site-specific information obtained from Ψmd thresholds in C provided substantial advantages for yield homogeneity and repeatability of results with respect to WB, thus demonstrating the method’s greater ability to account for spatial variability. Average applied water for the 3 years in C, CD, and DD was 374, 250, and 178 mm, respectively, while the yields were 11.8, 9.2, and 6.1 kg/vine, respectively. The CD treatment produced better juice quality than C, and was superior in other quality parameters to both C and DD. However, over the study period, an important carryover effect was observed in the yields and the grape size of CD, which tended to diminish from year to year relative to C.  相似文献   

3.
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water use.  相似文献   

4.
The usefulness of continuous measurement of soil and plant water status for automated irrigation scheduling was studied in a drip-irrigation experiment on plum (Prunus salicina Black Gold). Two levels of water restriction were imposed at different phenological periods (from pit-hardening to harvest, post-harvest) and compared with a well irrigated control treatment. Soil matrix water potential (soil) was measured with granular matrix sensors (Watermark); and short-period trunk diameter variation (TDV) was measured with linear variable displacement transformers. The Watermark sensor readings were in reasonable agreement with the irrigation regime and showed a good indication of plant water status across the season (r2=0.62), although they were a better predictor of stem water potential (stem) in the dry range of soil. Nonetheless, the most important drawback in their use was the high variability of readings (typical CV of 35–50%). From TDV measurements, maximum daily shrinkage (MDS) and trunk growth rate (TGR) were calculated. Their performance was also compared with stem, which had the lowest variability (CV of 7%). During most of the fruit growth period, when TGR was minimum, MDS was higher in the less-irrigated treatment than in the control and correlated well (r2=0.89) with stem. However, after harvest, when TGR was higher, this correlation decreased as the season progressed (r2=0.73–0.52), as did the slope between MDS and stem, suggesting tissue elasticity changes. Later in the season, TGR was better related to plant water status. These observations indicate some of the difficulties in obtaining reference values useful for irrigation scheduling based exclusively on plant water status measurements.  相似文献   

5.
Measurements of midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) were taken over a 4-year period in early maturing peach trees (Prunus persica (L.) Batsch cv. Flordastar) grafted on GF-677 rootstock. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that seasonal reference equations can be obtained for MDS and Ψstem using crop reference evapotranspiration (ETo), daily mean vapour pressure deficit (VPDm) and mean daily air temperature (Tm) in the case of MDS, and ETo and VPDm in the case of Ψstem. In this way, VPDm was seen to be the best predictor of MDS and Ψstem, without both were influenced significantly by yield or crop load variations between years. When the postharvest regression between MDS or Ψstem and the meteorological parameters mentioned were broken down into early and late postharvest periods, the correlation coefficients improved and were closely related to the presence or absence of sugar-demanding sinks, such as active root growth. A negative linear relationship between MDS and Ψstem was found, pointing to unchanging radial hydraulic conductivity in the bark tissues and suggesting that MDS depends to a great extent of the water potential.  相似文献   

6.
The effects of high crop load (unthinned trees, 22-23 fruits cm−2 of trunk cross-sectional area (TCSA)), commercial crop load (3-4 fruits cm−2 of TCSA), and no crop load (all fruitlets removed) on maximum daily trunk shrinkage (MDS), trunk growth rate (TGR) and stem water potential (Ψstem) were studied during the fruit growth period and 20 days following harvest in fully irrigated early maturing peach trees, Prunus persica (L.) Batsch, cv. Flordastar. Even though crop load did not affect plant water status, the MDS and TGR values increased and decreased, respectively, as a result of the crop load effect. In this sense, for the same Ψstem value, there was a linear increase in MDS with crop load, with a slope of 6.6 μm MPa−1 per unit of crop load increment. The effects of environmental conditions on daily MDS values were also dependent on crop load, suggesting that MDS reference values should be obtained by representing the relations between MDS and the climatic variables (daily mean air temperature, daily mean vapour pressure deficit and daily crop reference evapotranspiration) for a given crop load. The constancy of the relation between MDS and Ψstem across crop load underlined the constancy of the elastic properties of the bark tissues.  相似文献   

7.
Use of stem diameter variations to detect plant water stress in tomato   总被引:3,自引:0,他引:3  
The sensitivity of stem diameter variations (SDV) measured with linear variable transducer (LVDT) sensors as indicators of plant water status in tomato was evaluated. Two tomato crops were grown sequentially in a sandy loam soil in an unheated plastic greenhouse. These were an autumn–winter tomato crop (autumn crop) and a spring–summer tomato crop (spring crop). One drying cycle of 61 days was imposed to the autumn crop in winter at 92 days after transplanting (DAT). Two drying cycles, each of 29 days, were applied to the spring crop, to young (58 DAT) and mature plants (121 DAT). For each drying cycle, four replicate plots did not receive irrigation, and four were well watered. During each drying cycle, LVDT sensors continuously measured SDV, and daily measurements were made of leaf (Ψ leaf) and stem water potential (Ψ stem). SDV data was interpreted using the SDV-derived indices, maximum daily shrinkage (MDS) and stem growth rate (SGR). The response of SDV-derived indices to water deficit differed with (1) climatic conditions during stress imposition and (2) crop age. In the winter drying cycle of the autumn crop, the responses of the SDV-derived indices to soil drying were relatively small and slower than Ψ leaf and Ψ stem. Under warmer conditions, the SDV-derived indices were much more responsive to soil drying. In rapidly growing young plants, where SDV was characterized by high SGR and small MDS, SGR was the most sensitive SDV-derived index. In more mature plants with little stem growth, MDS was the most sensitive SDV-derived index. In mature plants grown in warm to hot conditions, MDS (1) responded at a similar time or earlier than Ψ leaf and Ψ stem and (2) had larger “signal” values (ratio of values from unwatered to control plants) than Ψ leaf and Ψ stem. However, there was appreciably more “noise” (coefficient of variation, CV) associated with the SDV-derived indices, giving lower “sensitivity” values, determined from “signal” to “noise” ratios, than for Ψ leaf and Ψ stem. Regression analysis between MDS of well-watered plants and climatic variables gave best results for a linear relationship between MDS and daily maximum vapor pressure deficit. There were strong linear relationships between MDS and Ψ leaf for each drying cycle. The slopes of these relationships differed with crop age indicating that there was no constant relationship between MDS and Ψ leaf for a whole season. Overall these results demonstrated that MDS and SGR can be sensitive indicators of the water status of tomato crops under conditions of moderate to high evaporative demand. However, the variability associated with the SDV-derived indices and the changing MDS–Ψ leaf relationship with crop age represent major issues regarding the development of irrigation scheduling protocols for tomato.  相似文献   

8.
Plant age and size, seasonal growth patters and crop load, among other factors, have been reported to decrease the usefulness of trunk diameter variation (TDV) derived indices as water stress indicators in olive trees. Our hypothesis, however, is that indices derived from TDV records in old, big olive trees are sensitive enough to detect levels of water stress in trees of orchards under deficit irrigation that, although severe, are below the threshold for fruit shrivelling. This is of importance for the production of good quality oils, since fruit shrivelling may affect oil quality. The aim of this work was to assess different TDV-derived indices as water stress indicators in 40-year-old ‘Manzanilla’ olive trees with heavy crop load. We derived the maximum daily shrinkage (MDS), daily growth (DG) and daily recovery (DR) from TDV records taken during the 2008 dry season both in well-irrigated FAO trees and in deficit-irrigated RI trees. Measurements of volumetric soil water content (θv), leaf water potential (Ψl), stomatal conductance (gs), net CO2 assimilation rate (A), water and oil accumulation in the fruits and yield parameters were made for both treatments. The trunks did not grow during the experimental season, either in the FAO or RI trees, likely because of the heavy crop load. Therefore, DG was useless as water stress indicator. For MDS and DR, which were responsive to the increase of the trees’ water stress, we calculated the variability, quantified by the coefficient of variation (CV), the signal intensity (SI) and the sensitivity (SI/CV) values. In addition, we derived reference equations for irrigation scheduling from the relationships between MDS values in the FAO trees and main meteorological variables. Values both of SI-MDS and SI-DR were steady until September 9, despite of increasing differences in θv between treatments from early in the dry season. The Ψl vs θv values showed an outstanding capacity of the RI trees to take up water from the drying soil, and the Ψl vs gs values showed a near-isohydric behaviour of those deficit-irrigated trees. These results explain, at least in part, the lack of response of MDS and DR on that period. Both SI-MDS and SI-DR peaked for the first time on September 9, 16 days before the appearance of fruit shrivelling. Our results suggest that using TDV-derived indices as water stress indicators for irrigation scheduling in old olive orchards with medium to low plant densities, i.e. with large root zones, may be useless in case the irrigation strategy is aimed at keeping the soil close to field capacity. Nevertheless, the MDS and DR indices may be useful indicators for the avoidance of fruit shrivelling in deficit irrigated olive orchards for the production of good quality oil. Reliable reference equations for scheduling irrigation with the signal intensity approach were obtained from the regression of MDS values vs the daily maximum values of both the air temperature and the vapour pressure deficit of the air.  相似文献   

9.
The influence of a deficit-irrigation (DI) strategy on soil–plant water relations and gas exchange activity was analysed during a 3-year period in mature ‘Lane late’ (Citrus sinensis (L.) Osb.) citrus trees grafted on two different rootstocks, ‘Cleopatra’ mandarin (Citrus reshni Hort. ex Tanaka ) and ‘Carrizo’ citrange (C. sinensis L., Osbeck × Poncirus trifoliata L.). Two treatments were applied for each rootstock: a control treatment, irrigated at 100% ETc (crop evapotranspiration) during the entire season, and a DI treatment, irrigated at 100% ETc, except during Phase I (cell division) and Phase III (ripening and harvest) of fruit growth, when complete irrigation cut-off was applied. Under soil water deficit, the seasonal variations of soil water content suggested that ‘Cleopatra’ mandarin had a better root efficiency for soil water extraction than ‘Carrizo’ citrange. Moreover, in all years, trees on ‘Cleopatra’ reached a lower water-stress level (midday xylem water potential values (Ψmd) > −2 MPa), maintaining a better plant water status during the water-stress periods than trees on ‘Carrizo’ (Ψmd < −2 MPa). Similarly, net CO2 assimilation rate (A) was higher in trees on ‘Cleopatra’ during the water-stress periods. In addition, the better plant water status in trees on ‘Cleopatra’ under DI conditions stimulated a greater vegetative growth compared to trees on ‘Carrizo’. From a physiological point of view, ‘Cleopatra’ mandarin was more tolerant of severe water stress (applied in Phases I and III of fruit growth) than ‘Carrizo’ citrange.  相似文献   

10.
Vegetative growth and water relations of Thompson Seedless grapevines in response to applied water amounts at various fractions of measured grapevine ETc were quantified. Treatments ranged from no applied water up to 1.4 times the water used by vines growing in a weighing lysimeter. All treatments were irrigated at the same frequency as the vines in the lysimeter (whenever they used 2 mm of water), albeit at their respective fraction. Soil water content and midday leaf water potential (Ψl) were measured routinely in four of the irrigation treatments across years. The amount of water depleted in the soil profile ranged from 190 mm for the 0.2 treatment in 1993 to no water depletion for the 1.4 treatment in 1992. The irrigation treatments significantly affected midday Ψl, total shoot length, leaf area per vine, pruning weights and trunk diameter; as applied water decreased so did vegetative growth. Pruning weights were a linear function of the seasonal, mean midday Ψl across growing seasons. The application of water amounts in excess of evapotranspiration negatively affected vegetative growth some of the years. A companion paper will demonstrate that over-irrigation can negatively affect reproductive growth of this grape cultivar due to excess vegetative growth.  相似文献   

11.
Pomegranate trees (Punica granatum L.) is a deciduous fruit tree included in the so-called group of minor fruit tree species, not widely grown but of some importance in the south east of Spain. Pomegranate trees are considered as a culture tolerant to soil water deficit. However, very little is known about pomegranate orchard water management. The objective of this research was to asses the feasibility of using trunk diameter variation (TDV) indexes, obtained by means of LVDT sensors, as a plant water stress indicators for pomegranate trees. The experiment was carried out with mature trees grown in the field under three irrigation regimes: control well watered trees; trees continuously deficit irrigated at 50% of the control regime (SDI); and trees that had a summer water stress cycle being irrigated at 25% of the control rates only in July and August (RDI). The seasonal variations of maximum diurnal trunk shrinkage (MDS) and trunk growth rates (TGR) were compared with midday stem water potential (Ψstem) measurements. During the course of the entire season, control trees maintained lower MDS values than the SDI ones. In the RDI treatment, as water restrictions began, there was a slow increase in MDS, in correspondence with a decrease in Ψstem. When water was returned at full dosage, the RDI quickly recovered to MDS and Ψstem values similar to the control. However, lower MDS for a given Ψstem values were observed as the season advanced. The magnitude of differences between well watered and deficit irrigated trees was much larger in the case of MDS than for Ψstem. However, the tree-to-tree variability of the MDS readings was more than four times higher than for Ψstem; average coefficient of variation of 7.5 and 36% for Ψstem and MDS, respectively. On the other hand, TGR did not clearly reflect differences in tree water status. Overall, results reported indicated that MDS is a good indicator of pomegranate tree water status and it can be further used for managing irrigation. However, the seasonal changes in the MDS-Ψstem relationship should be taken into account when attempting to use threshold MDS values for scheduling irrigation.  相似文献   

12.
Boundary lines of stem water potential (Ψstem) responses to vapour pressure deficit (VPD) have been reported for several species and are generally referred to as VPD reference lines (RL). In order to study the response of Ψstem to VPD, RLs were determined in plants that received full (Control) and deficit (SSDI) irrigation during three consecutive years. The Control plants received irrigation equivalent to full crop water evapotranspiration minus effective rainfall and the SSDI plants were irrigated at 50% of the Control level. Ψstem values for the Control treatment during crop development tended to decrease, and those corresponding to SSDI plants were always lower than those for Control plants. Considering the 3-year data set, no relationship was found between Ψstem and VPD. However, there was a differential seasonal response between Ψstem and VPD, which depended on the stage of fruit development. A separate phenological analysis enabled the detection of RL for stage II (from fruit-set to veraison) and for stage III (post-veraison), whereas during stage I (from bud-break to fruit set) RL was not apparent. RL slopes increased as the season progressed and were significantly correlated to average values of Ψstem. The seasonal decrease in midday Ψstem for Control plants was interpreted as being a result of a progressive increase in canopy size and water consumption, which led to increased water depletion before each afternoon’s daily irrigation event. The apparent lack of RL during stage I was related to lower levels of water demand and high Ψstem.  相似文献   

13.
The use of partial root-drying (PRD) irrigation implies doubling pipelines instead of using a conventional single pipeline. However, pipelines can be spaced a short distance apart (e.g. 1 m) along the vine row (“D” layout) or joined with cable ties and laid as a single pipeline (“S” layout). Pipelines in “S” configuration are laid under the vine row, and in “D” at both sides of the vine row. These two different layouts can change the wetted soil zone and affect grapevine response to irrigation. The focus of this study was therefore on establishing the role of pipeline layout in vine-grape (cv. ‘Tempranillo’) response under semi-arid conditions in which PRD is managed as a deficit irrigation technique. Six irrigation treatments were applied, which resulted from the combination of Control (C, full irrigation), PRD and seasonal sustained deficit irrigation (SSDI), and “S” and “D” pipeline layouts. SSDI and PRD were irrigated to 50% C throughout the irrigation season, and C irrigation was scheduled according to a crop water balance technique. Midday stem water potential (Ψstem) and leaf conductance (gl) indicated that, on the whole, PRD treatments had a slightly higher water status than SSDI treatments, but a substantially lower status than C treatments. Use of the “D” pipeline layout significantly reduced Ψstem in both PRD and SSDI treatments and in some instances for Control conditions, too. Berry yield, vine intercepted radiation, leaf abscisic acid (ABA) and gl were highly correlated with Ψstem. Differences in water status between PRD-S and SSDI-S, according to a sub-surface irrigation test, seemed to be more related to changes in soil evaporation losses and irrigation efficiency than to any intrinsic PRD effect. PRD-S accounted for water savings equivalent to 10% according to the ratio between applied water and grape production for the SSDI-S treatment, whereas PRD-D berry yield was not significantly different from that associated with the SSDI-S treatment. In conclusion, under the growing conditions of this experiment, PRD-S offered the possibility of slightly improving water conservation when irrigation was applied to the soil surface.  相似文献   

14.
Seasonal partitioning of evapotranspiration (ET) between transpiration by grapevines (Vitis vinifera) (T gp) and by cover crops of a ryegrass/clover mixture (T cc), and soil evaporation (E s) was performed for a furrow-irrigated vineyard during the 1994/1995 and 1995/1996 growing seasons in south-eastern Australia. ET, determined with a water balance approach, averaged 622 mm. The ET rate averaged over the two seasons increased from 2 mm day–1 in spring (September to November), when it was dominated by T cc, to peak rates of around 5 mm d–1 in summer (December to February) when it was dominated by E s. T gp, determined with either heat-pulse sensors or the Penman-Monteith equation, attained peak rates of 0.75 and 0.98 mm d–1, or 6.2 and 8.1 l vine–1 day–1 in the first and second seasons, respectively. Total seasonal T gp of 109.1 mm (900 l vine–1) in 1994/1995 and 118.8 mm (980 l vine–1) in 1995/1996 constituted just 18 – 19% of total ET. T cc totalled 214 mm (34% of ET) in the first season, when pasture cover was sparse and present for 5 months of the growing season (September to February), and 196 mm (30% of ET) in the second season when pasture cover was heavy but present for only 3 months (September to November). E s averaged 49% of total ET over both seasons. At least 30% of water used for ET was contributed by antecedent soil water in both seasons. The crop factor (K c) was largely constant throughout the season with an average value of 0.48. The depletion pattern of soil water indicated that the vine explored the soil profile well beyond 1.0 mm depth and almost evenly up to a distance of 1.5 m from the trunk. Water use efficiencies for fresh fruit yield (WUE), i. e., the ratio of fruit weight to total water use at harvest,were 13.3 and 40.5 kg ha–1 mm–1 when based on ET in 1994/1995 and 1995/1996, respectively, and 84.0 and 211.1 kg ha–1 mm–1, respectively, when based on T gp. The T gp data were used to verify three models of vine transpiration developed in an earlier study. Models based on the green area index or on fraction of incident radiation intercepted by the vine canopy produced good agreement with T gp. The model based on canopy resistance performed poorly, indicating the difficulty of extrapolating the stomatal response to environmental variables from one set of experimental conditions to another. Received: 23 September 1996  相似文献   

15.
Using a correlation between trunk diameter fluctuation (TDF) and stem water potential (SWP) it appears possible to determine water deficit threshold values (WDTV) for young cherry trees. This correlation must be based on a significant effect between SWP and at least one variable associated with the vegetative or reproductive growth of the trees. The objectives of this study are: (1) to determine the effect of several irrigation treatments on vegetative and reproductive growth and the SWP of young cherry trees; (2) to determine the correlation between TDF and SWP, and; (3) to propose a first approximation of SWP and TDF water deficit threshold values for young cherry tree plants. The experiment was carried out between September and April of the 2005-2006 and 2006-2007 seasons, in Quillota, in the Valparaiso region, central Chile. The irrigation treatments consisted of applications of 50% (T50), 100% (T100) and 150% (T150) of potential evapotranspiration (ET0) over the two growing seasons, using a randomized complete block design (RCB). The effect of irrigation scheduling was observed on: apical shoot growth rate (GRAS), branch cross-sectional area (BCSA), canopy volume (CV), annual length of accumulated growth (ALAG) and productivity. This effect showed that the T50 treatment caused lower SWP (measured pre-dawn), vegetative growth and productivity. The fruit quality variables (cracking and size) were not affected by the different treatments. Combining the vegetative growth, productivity and SWP results shows that the water deficit threshold value, as a first approximation, is between 50% and 100% of ET0, and therefore the critical SWP for defining irrigation frequency should be close to −0.5 MPa. Upon applying a post-harvest drought period (14 days without irrigation), a linear correlation was determined both between SWP and maximum daily trunk shrinkage, MDS (R2 = 0.69) and between SWP and trunk growth rate, TGR (R2 = 0.57). Using these correlations and the SWP reference value, reference values were obtained for MDS (165 μm) and TGR (83 μm day−1), which would permit automated control of water status in young cherry trees.  相似文献   

16.
Olive is one of the fruit tree species for which measurements of the trunk diameter variation (TDV) has shown a lower potential both for monitoring water stress and for scheduling irrigation. This is particularly true in the case of old, big olive trees with heavy fruit load. Fernández et al. (2011, J. Environ. Exp. Bot. 72, 330-338) observed that the daily difference for maximum trunk diameter between deficit irrigated ‘Manzanilla’ olive trees and control trees growing under non-limiting soil water conditions, termed DMXTD, is more sensitive and reliable for detecting the water stress of the trees than other widely used TDV-derived indices. However, they considered their results as preliminary because of the lack of replications. The aim of this work was to evaluate the usefulness of the DMXTD index for detecting plant water stress in an orchard with 12-year-old ‘Arbequina’ olive trees with heavy fruit load. The performance of DMXTD for detecting water stress of the trees was compared to that of the signal intensity for the maximum daily shrinkage (SI-MDS) derived from the same TDV records. Results showed that SI-MDS was not useful for indicating the water stress of the trees. On the other hand, the dynamics of DMXTD mimicked those of the soil and plant water status. Four instrumented trees per treatment (replicates) were enough to reduce the uncertainty of the TDV measurements to a reasonable level. Our results show that DMXTD is a useful index to detect the onset, and severity, of water stress in mature ‘Arbequina’ olive trees with heavy fruit load. They also suggest a potential of DMXTD for scheduling low frequency deficit irrigation strategies.  相似文献   

17.
Measurements of midday stem water potential (ψstem) and maximum daily trunk shrinkage (MDS) were done over a 3-year period in adult Fino lemon trees (Citrus limon (L.) Burm. fil.) grafted on sour orange (C. aurantium L.) rootstocks. Plants were irrigated daily above their water requirements in order to obtain non-limiting soil water conditions. The results indicated that reference equations can be obtained for MDS and ψstem by pooling data across several seasons using crop reference evapotranspiration (ETo), daily mean vapor pressure deficit (VPDm) and mean daily air temperature (T m) in the case of MDS, and ETo in the case of ψstem. The best predictor of MDS under non-limiting soil water conditions was T m, suggesting that MDS reference values can be obtained by means of easy and cheap measurements. MDS and ψstem values were not influenced significantly by yield or crop load variations between years. A negative linear relationship between MDS and ψstem was found, pointing to an unchanging radial hydraulic conductivity in the bark tissues and suggesting that the MDS is controlled by water potential.  相似文献   

18.
Seasonal evapotranspiration (ET) was determined for Sultana grapevines grown on their own roots (Own-rooted) or grafted onto Ramsey rootstock (Grafted), and irrigated with water of three salinity levels – low (0.4 dS m–1), medium (1.8 dS m–1) and high (3.6 dS m–1) – during the 1994/1995 growing season in south-eastern Australia. Transpiration (T) was determined from sap flux, soil evaporation (E s) with a model, and soil water (S) with a neutron probe. Total ET for the season was similar for both Own-rooted and Grafted, averaging 382 mm. However, Grafted partitioned a mean of 193.5 mm (50.8%) of the ET through T compared to 146.7 mm (38.4%) by Own-rooted. Daily rates of T were generally low and attained peaks of 1.2 mm (9.9 l per vine) for Grafted and 0.9 mm (7.5 l) for Own-rooted in late November, and changed very little until after harvest in February. In contrast to T, the E s rate was consistently higher for Own-rooted than for Grafted from November onwards, and at the end of the season totalled 237 mm for Own-rooted compared to 187 mm for Grafted. Differences between Own-rooted and Grafted in their partitioning of ET into T and E s were associated with their canopy development. Grafted had a higher rate of canopy development than Own-rooted, and in mid-season, the former intercepted about 50% more incident radiation than Own-rooted. The crop factors, i. e. ratio of water use to evaporative demand, based on ET were similar for both vine types with an average seasonal value of 0.25, but when based on T were 0.12 for Grafted and 0.10 for Own-rooted. The ratio of fresh fruit weight to total water used at harvest, i. e. crop water use efficiency (CWUE), based on ET, had a mean of 86 kg mm–1 ha–1 for Grafted and 43 kg mm–1 ha–1 for Own-rooted, and when based on T, was 165 and 115 kg mm–1 ha–1, respectively; however, supplementary data obtained during the 1993/1994 season, indicated a CWUE based on T of 294 and 266 kg mm–1 ha–1 for Grafted and Own-rooted, respectively. Salinity did not have significant effects on canopy development and water use for most of the 1994/1995 growing season. The study shows ET and crop factors for the drip-irrigated grapevines to be much lower than previously reported for this district. Received: 6 May 1996  相似文献   

19.
The use of plant water status indicators such as midday stem water potential (Ψstem) and maximum daily trunk shrinkage (MDS) in irrigation scheduling requires the definition of a reference or threshold value, beyond which irrigation is necessary. These reference values are generally obtained by comparing the seasonal variation of plant water status with the environmental conditions under non-limiting soil water availability. In the present study an alternative approach is presented based on the plant’s response to water deficit. A drought experiment was carried out on two apple cultivars (Malus domestica Borkh. ‘Mutsu’ and ‘Cox Orange’) in which both indicators (Ψstem and MDS) were related to several plant physiological responses. Sap flow rates, maximum net photosynthesis rates and daily radial stem growth (DRSG) (derived from continuous stem diameter variation measurements) were considered in the assessment of the approach. Depending on the chosen plant response in relationship with Ψstem or MDS, the obtained reference values varied between −1.04 and −1.46 MPa for Ψstem and between 0.17 and 0.28 mm for MDS. In both cultivars, the approach based on maximum photosynthesis rates resulted in less negative Ψstem values and smaller MDS values, compared to the approaches with sap flow and daily radial stem growth. In the well-irrigated apple trees, day-to-day variations in midday Ψstem and MDS were related to the evaporative demand. These variations were more substantial for MDS than for midday Ψstem.  相似文献   

20.
The reproductive growth and water productivity (WPb) of Thompson Seedless grapevines were measured as a function of applied water amounts at various fractions of measured grapevine ETc for a total of eight irrigation treatments. Shoots were harvested numerous times during the growing season to calculate water productivity. Berry weight was maximized at the 0.6–0.8 applied water treatments across years. As applied water amounts increased soluble solids decreased. Berry weight measured at veraison and harvest was a linear function of the mean midday leaf water potential measured between anthesis and veraison and anthesis and harvest, respectively. As applied water amounts increased up to the 0.6–0.8 irrigation treatments there was a significant linear increase in yield. Yields at greater applied water amounts either leveled off or decreased. The reduction in yield on either side of the yearly maximum was due to fewer numbers of clusters per vine. Maximum yield occurred at an ETc ranging from 550 to 700 mm. Yield per unit applied water and WPb increased as applied water decreased. The results from this study demonstrated that Thompson Seedless grapevines can be deficit irrigated, increasing water use efficiency while maximizing yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号