首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ability of sugar beet pectin to stabilize 20% w/w limonene oil-in-water emulsions has been investigated. The size of the oil droplets as determined by laser diffraction measurements decreased from about 15 mum to about 6 mum when the pectin concentration increased from 0.05% to 2% w/w but leveled off thereafter, suggesting complete coverage of the oil droplets by the polymer at this optimum concentration. Isotherms for the adsorption of pectin, protein, and ferulic acid were constructed. The adsorption capacities at the oil-water interface of approximately 1.4 and approximately 0.2 mg/m (2) for protein and ferulic acid, respectively, compared to approximately 9.5 mg/m (2) for pectin revealed that the adsorbed fractions of the pectin sample were rich in protein (14.7%) and ferulic acid (2.1%) given that there were only 2.7% protein and 1.06% ferulic acid present in the whole pectin sample. Direct measurements on the adsorbed fraction recovered from the oil droplets via desorption with SDS confirmed that it contained 11.1% protein and 2.16% ferulic acid. The results suggest that one or both of these two functional groups adsorb onto the surface of the oil droplets and stabilize the emulsions. High molecular mass fractions adsorbed preferentially onto oil droplets during emulsification. As compared to those made with gum arabic, the emulsion samples made with sugar beet pectin samples exhibited similar (or even slightly higher) stability.  相似文献   

2.
Global structure of microwave-assisted flash-extracted sugar beet pectin   总被引:3,自引:0,他引:3  
The global structure of microwave-assisted flash-extracted pectins isolated from fresh sugar beet pulp has been studied. The objective was to minimize the disassembly and possibly the degradation of pectin molecules during extraction. These pectins have been characterized by high-performance size exclusion chromatography with light scattering, viscometric detection, and atomic force microscopy (AFM). Analysis of molecular parameters was performed on 15 and 8 microm size column packings. Samples analyzed with 15 microm packing gave weight-average molar masses that ranged from 532,000 to 1.2 million Da, radii of gyration from about 35 to 51 nm, polydispersities from 1.78 to 2.58, intrinsic viscosities from about 3.00 to 4.30 dL/g, and recoveries from 8.40 to 14.81% of dry weight. Chromatography revealed that a bimodal distribution of high molar mass spherical particles and lower molar mass coils was obtained. AFM images of pectin corroborated this conclusion and further revealed that these strands and spherical particles were integrated into networks. It is demonstrated that microwave-assisted extraction of sugar beet pulp under moderate pressure and at relatively low temperature could extract under acid conditions high molar mass, moderate-viscosity pectin in minutes rather than hours as required by conventional heating.  相似文献   

3.
The release of soluble dietary fiber is a prerequisite for viscous effects and hence beneficial health properties. A simple in vitro method was adapted to follow the release during gastrointestinal digestion, and the percentage of solubilized fiber was measured over time. β‐Glucan from oat bran was mainly released during gastric digestion while the release of pectin from sugar beet fiber continued in the small intestine. Unmilled fractions of sugar beet fiber released more soluble fiber than oat bran flakes, probably due to the porous structure of sugar beet fiber as a result of manufacturing processes, but also due to differences in source. Milling to smaller fiber particles significantly improved releasability (from 20 to 55% released β‐glucan and from 50 to 70% released pectin, respectively, after digestion). When milled fibers were included in individual food matrices, the release was reduced by protein and starch matrices (5% β‐glucan and 35% pectin released, respectively) and slowed by fat (45% β‐glucan and 60% pectin released). This may result in a too low or too late release in the upper small intestine to be able to interfere with macronutrient uptake. The method may be suitable for predicting the gastrointestinal release of soluble dietary fibers from food matrices in the development of healthy food products.  相似文献   

4.
A protocol has been developed to fractionate sugar beet pectin using hydrophobic affinity chromatography. Three samples eluted from the column using 4 M NaCl as solvent (fractions 1A, 1B, and 1C), two fractions eluted using 2 M NaCl (fractions 2A and 2B), and one fraction eluted using water (fraction 3). The fractions were shown to be very polydisperse, and differences between the GPC refractive index and UV absorbance (214 nm) elution profiles demonstrated chemical heterogeneity. They were found to contain significantly different proportions of protein (1A, 2.79%; 1B, 0.97%; 1C, 0.77%; 2A, 1.41%; 2B, 5.09%; and 3, 5.89%) and ferulic acid (approximately 1A, 0.5%; 1B, 0.5%; 1C, 0.9%; 2B, 1.5%; and 3, 2%). The weight-average molecular mass, M(w), of the fractions also varied (1A, 153 kDa; 1B, 155 kDa; 1C, 306 kDa; 2A, 562 kDa; 2B, 470 kDa; 3, 282 kDa). Three fractions, that is, 1A, 1B, and 3, produced orange oil emulsions with a relatively small droplet size that were stable over a period of weeks. The other three fractions (1C, 2A, and 2B with higher M(w) values) produced emulsions with an initially larger droplet size, and the droplet size increased considerably over time. The increased droplet size may be influenced by the viscosity of the aqueous continuous phase. There was no simple relationship between protein or ferulic acid content and emulsification ability. For example, fraction 1B, which contained the lowest proportion of both protein and ferulic acid, produced stable emulsions of similar droplet size to fraction 3, which contained the largest proportion of protein and ferulic acid. The role of protein in the emulsification process was investigated by measuring the amount of protein in the aqueous phase before and after emulsification. It was clearly demonstrated that proteinaceous material adsorbed at the oil-water interface. It is evident that the emulsification properties of sugar beet pectin are influenced by the accessibility of the protein and ferulic acid groups to the surface of the oil droplets, the proportion of ester groups, and the molecular mass distribution of the fractions.  相似文献   

5.
The oxidation of fatty acids can be inhibited by engineering the surface of oil-in-water emulsion droplets to decrease interactions between aqueous phase prooxidants and lipids. The objective of this research was to evaluate whether emulsions stabilized by a multilayer emulsifier systems consisting of beta-lactoglobulin and citrus or sugar beet pectin could produce fish oil-in-water emulsions that had good physical and oxidative stability. Sugar beet pectin was compared to citrus pectin because the sugar beet pectin contains the known antioxidant, ferulic acid. A primary Menhaden oil-in-water emulsion was prepared with beta-lactoglobulin upon which the pectins were electrostatically deposited at pH 3.5. Emulsions prepared with 1% oil, 0.05% beta-lactoglobulin, and 0.06% pectins were physically stable for up to 16 days. As determined by monitoring lipid hydroperoxide and headspace propanal formation, emulsions prepared with the multilayer system of beta-lactoglobulin and citrus pectin were more stable than emulsions stabilized with beta-lactoglobulin alone. Emulsions prepared with the multilayer system of beta-lactoglobulin and sugar beet pectin were less stable than emulsions stabilized with beta-lactoglobulin alone despite the presence of ferulic acid in the sugar beet pectin. The lower oxidative stability of the emulsions with the sugar beet pectin could be due to its higher iron and copper concentrations which would produce oxidative stress that would overcome the antioxidant capacity of ferulic acid. These data suggest that the oxidative stability of oil-in-water emulsions containing omega-3 fatty acids could be improved by the use of multilayer emulsion systems containing pectins with low metal concentrations.  相似文献   

6.
Arabinofuranosidases act synergistically with other enzymes to depolymerize arabinoxylans by cleaving arabinofuranose substituents from the β‐(1→4)‐linked d ‐xylopyranose backbone. Because arabinose feruloylation is a barrier to some, but not all, arabinofuranosidases, we investigated the actions of three α‐l ‐arabinofuranosidases from the glycoside hydrolase (GH) family 51 on feruloylated arabinoxylan‐oligosaccharide standard compounds with and without feruloyl esterase. GH51 α‐l ‐arabinofuranosidases from Clostridium thermocellum and Cellvibrio japonicus both partially released feruloylated arabinose (up to 59% for C. thermocellum). Simultaneous incubation with arabinofuranosidases and feruloyl esterase quantitatively released arabinose from feruloylated standard compounds. Therefore, although feruloylation does not completely obstruct GH51 arabinofuranosidases, synergistic approaches utilizing multiple enzymes remain the most effective tactic for enzymatic breakdown of feruloylated compounds.  相似文献   

7.
Biodegradable composites from sugar beet pulp and poly(lactic acid)   总被引:1,自引:0,他引:1  
Sugar beet pulp and poly(lactic acid) (PLA) composites were prepared by compression-heating. The resultant thermoplastics had a lower density, but they had tensile strength similar to that of pure PLA specimens as well as the same geometric properties. Tensile properties depended on the initial water content of sugar beet pulp and the process by which composites were manufactured. In comparison with sugar beet pulp, the composite showed improved water resistance. This can be attributed to the hydrophobic character of PLA and pulp-matrix interactions. The composite thermoplastics showed suitable properties for potential use as lightweight construction materials.  相似文献   

8.
Ferulic acid (FA) groups esterified to the arabinan side chains of pectic polysaccharides can be oxidatively cross-linked in vitro by horseradish peroxidase (HRP) catalysis in the presence of hydrogen peroxide (H(2)O(2)) to form ferulic acid dehydrodimers (diFAs). The present work investigated whether the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased as a result of the enzymatic oxidation treatment with HRP and H(2)O(2). At equimolar levels of FA (0.0025-0.05 mM) in the arabinan samples, the initial rates of the HRP-catalyzed cross-linking of the longer chain arabinans were slower than those of the shorter chain arabinans. The lower initial rates may be the result of the slower movement of larger molecules coupled with steric phenomena, making the required initial reaction of two FAs on longer chain arabinans slower than on shorter arabinans.  相似文献   

9.
Arabinoxylan structures vary based on the degree and pattern of substitution of the β‐(1→4)‐linked d ‐xylopyranose backbone with α‐l ‐arabinofuranose units, acetyl groups, uronic acids, and feruloylated side chains. Substitution differences affect arabinoxylans’ physicochemical and physiological characteristics. Wheat bran arabinoxylans were hydrolyzed with GH10 and GH11 endo‐1,4‐β‐xylanases, and feruloylated oligosaccharides were isolated and purified (Amberlite XAD‐2 isolation, Sephadex LH‐20 gel permeation chromatography, and preparative reversed‐phase HPLC). The pure, isolated compounds were structurally characterized via liquid chromatography–electrospray ionization–mass spectrometry and one‐dimensional and two‐dimensional NMR analyses. In addition to the well‐known products of endo‐xylanase hydrolysis (xylotriose and xylobiose O–3‐substituted with a 5‐Otrans‐feruloyl‐α‐arabinofuranosyl unit on the middle and nonreducing xylose residue, respectively), novel structural features, including O–2‐monosubstitution of xylose adjacent to a xylose carrying feruloylated arabinose, were observed. Additionally, a simultaneously acetylated and feruloylated oligosaccharide has been isolated and tentatively characterized. Oligosaccharides esterified with caffeic acid were also isolated, but these were proven to result, at least in part, as artifacts of the enzymatic hydrolysis.  相似文献   

10.
The cell wall materials (CWMs) from sweetpotato (Ipomoea batatas cv. Kokei 14), cassava (Manihot esculenta), and potato (Solanum tuberosum cv. Danshaku) and commercial sweetpotato fiber as well as their polysaccharide fractions were analyzed for sugar composition by the high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) method. The separation of arabinose and rhamnose, and xylose and mannose, by this method has been improved using a CarboPac PA 10 column. Pretreatment of the CWMs and cellulose fractions with 12 M H(2)SO(4) was required for complete hydrolysis to occur. Commercial sweetpotato fiber was found to be mainly composed of glucose (88.4%), but small amounts of other sugars were also detected. Among the root crops, sweetpotato CWM had the highest amount of pectin and galacturonic acid. Fucose was detected only in cassava CWM and its hemicellulose fraction, while galactose was present in the highest amount in potato CWM. Among the polysaccharide fractions, it was only in the hemicellulose fraction where significant differences in the sugar composition, especially in the galactose content, were observed among the root crops.  相似文献   

11.
Purpose

Soil organic matter (SOM) ageing may be measured by means of molecular signatures, ratios between organic compounds which inform us about the origin and/or the degree of biochemical evolution of (or microbial contribution to) specific groups of compounds: lipids, proteins, carbohydrates, etc. Owing to the biochemical heterogeneity of decomposing substrates, it is unlikely that the degree of biochemical evolution can be approached with a single ratio. Nevertheless, obtaining a wide collection of molecular signatures can be costly.

Materials and methods

Instead of applying specific methods to obtain a collection of ratios, we apply thermally assisted hydrolysis and methylation (THM), followed by GC-MS, to obtain a panoramic view of SOM composition. From the compounds identified after THM, several ratios were obtained. Three ratios are based on aliphatic compounds: (1) ratio between short-chain (≤?20 C) and long-chain (>?20 C) alkanoic acids, (2) ratio between branched and long-chain alkanoic acids, (3) ratio between short-chain (C18) and long-chain (C22–C24) alkanols. Four ratios are based on lignin-derived monomers: (4) vanillic acid to vanillin, (5) syringic acid to syringaldehyde, (6) a combination of the two previous, and (7) the syringyl- to total lignin monomers. Finally, three ratios are based on sugar composition: (8) fucose to glucose, (9) xylose to glucose, and (10) fucose to xylose.

Results and discussion

These ratios were applied to the study of several densimetric fractions from three organic OH horizons from Mediterranean forest soils. The fractionation gave a free-light fraction (LF), of density?<?1.6, three occluded fractions (OC1, OC2, and OC3, of densities <?1.6, 1.6–1.8, and 1.8–2.0 respectively), and a dense fraction (DF) of density?>?2.0. The three lightest fractions (LF, OC1, and OC2) seem the least microbially reworked, whereas the denser fractions, OC3 and DF, seem the most evolved ones. Nevertheless, this is valid only as an average result, for no single fraction is made of fresh compounds only, or of highly evolved compounds only, either. The behaviour of the several ratios was inconsistent because some behave in ways opposite to the expected ones.

Conclusions

All fractions show signs of both advanced biochemical evolution and preservation of fresh, plant-derived labile compounds. This, added to the inconsistent behaviour of many signatures, suggests that our views about the biochemical evolution of plant debris during their decomposition and humification are probably too simple.

  相似文献   

12.
In situ changes in pectin fractions for thermally processed carrots were related to textural changes. The texture of pretreated and subsequently thermally processed carrot disks was determined. Alcohol insoluble residue (AIR) was extracted from the pretreated and thermally processed tissues. The AIR was characterized in terms of the degree of methylation (DM) and changes in pectin fractions. Distinct differences in texture and DM were observed during thermal processing. Pretreatment conditions that induced a significant decrease in DM showed better textures. Demethoxylation caused interconversion of pectin fractions, water soluble pectin (WSP) changing into water insoluble pectin [chelator (CSP) and alkali (NSP) soluble pectin]. This process was reversed during cooking accompanied by remarkable alterations in molecular weight (MW) distribution patterns. The WSP depicted polydisperse MW distribution patterns, strongly dependent on the pretreatment condition. Confirmatory results of interconversions of pectin fractions (WSP, NSP) were demonstrated by the MW distribution patterns and neutral sugar profiles. All thermal related transformations of pectin structural parameters were decelerated by lowering the DM.  相似文献   

13.
The fraction of sugar beet pectin (SBP) adsorbed onto limonene oil droplets during emulsification has been isolated, and its chemical and physicochemical characteristics have been determined. While the SBP sample itself was found to contain 2.67 and 1.06% protein and ferulic acid, respectively, the adsorbed fraction contained 11.10% protein and 2.16% ferulic acid. The adsorbed fraction was also found to have a higher degree of acetylation, notably at the C2 position on the galacturonic acid residues, and was also found to contain a higher proportion of neutral sugars, which are present in the ramified side chains of the pectin molecules. The thickness of the layer of SBP adsorbed onto polystyrene latex particles was studied by dynamic light scattering and was found to increase with increasing surface coverage. It was found to have a value of approximately 140 nm at plateau coverage, which closely corresponded to the hydrodynamic diameter of the pectin chains. The adsorbed layer thickness was found to be sensitive to pH and the presence of electrolyte. The thickness at a surface coverage of approximately 20 mg/m(2) in the absence of electrolyte at pH approximately 4 was 107 nm and at pH 8.8 was 70 nm, while at pH approximately 4 in the presence of 10 mM NaCl the thickness was found to be 70 nm. It was concluded that the SBP molecules form multilayers at the surface due to electrostatic interaction between the positively charged protein moieties and the galacturonic acid residues. The removal of calcium from the SBP had no effect on the adsorbed layer thickness; hence, multilayer formation due to calcium ion cross-linking was considered unlikely.  相似文献   

14.
Extracts rich in proanthocyanidins, which are implicated in multiple human health benefits, were comparatively separated using alternative separation methods [vacuum or open column liquid chromatography], separation matrices [Toyopearl, Sephadex, or silica gel], and degrees of subfractionation [8 or 12 subfraction series], to evaluate the influence of separation technique on the resolution of the chemical composition and the biological activity of separated proanthocyanidin mixtures in individual subfractions. Bioactivity was assessed using a DNA human topoisomerase II bioassay and structural composition by acid thiolysis (average degree of polymerization, DP) and HPLC-ESI/MS. The amount of parent fraction needed to inhibit 50% of topoisomerase II was 3.38 ng/mL with an average DP of 25.5. A 2(3) factorial analysis revealed that the vacuum and open column strategies for separation, when individually considered, did not yield significantly different results in terms of mass recovery, DP, or bioactivity; however, interactions with other factors such as matrix or subfraction series resulted in distinctive shifts in fraction profiles and biological activity. In general, Sephadex as a matrix permitted elution and separation of discrete, polymerized subfractions with potent inhibition against human topoisomerase II. Sephadex vacuum chromatography, Toyopearl open column chromatography, and Toyopearl vacuum chromatography separation techniques eluted highly polymerized proanthocyanidin mixtures, but the inhibitory bioactivity was attenuated as compared to the parent fraction, whereas Sephadex open column chromatography eluted highly polymerized subfraction mixtures that retained bioactive potential.  相似文献   

15.
Nonforage byproduct feeds, including distillers dried grains (DDG), corn gluten feed (CGF), wheat bran (WB), beet pulp (BP), soybean hulls (SH), and dried citrus pulp (DCP), were examined for monosaccharide composition and in vitro digestibility by ruminal liquor. The dicotyledonous feeds (BP, SH, and DCP) contained more galactose, pectin, and NDF glucans and less NDF-xylan and NDF-arabinose than the monocotyledonous ones (DDG, CGF, and WB). The lowest values of lignin were found in CGF, SH, and DCP. Digestibility of total carbohydrate was around 90% in CGF, DCP, BP, and SH and around 80% in DDG and WB. Digestibility of total NDF polysaccharides was 86% in CGF and SH, 78--84% in DDG, DCP, and BP, and 56% in WB. In all byproducts, digestibility of NDF glucose and arabinose was higher than that of NDF xylose and uronic acids.  相似文献   

16.
Amylase and calcium chelators, such as disodium ethylene diaminotetraacetate (EDTA), are used in analysis of neutral detergent fiber (NDF) to dissolve starch and pectin, respectively. However, these reagents may interfere with each other's activity. Six combinations of alpha-amylase and EDTA were examined for determining NDF values of beet pulp (Beta vulgaris), ground corn (Zea mays L.), timothy hay (Phleum pratense), and soybean meal (Glycine max L). For treatment A, 2.5 mL of alpha-amylase was added 5 min after boiling. Other treatments differed as follows: (B) 4.5 mL of alpha-amylase, (C) 4.5 mL of alpha-amylase added 30 min after boiling, (D) delayed addition of EDTA to 30 min after boiling, (E) no EDTA, and (F) no alpha-amylase. Inclusion of EDTA interfered with amylase activity in corn grain samples, and addition of amylase to beet pulp and soybean meal samples reduced the effectiveness of EDTA and increased ash in the NDF residue. Amylase should not be used for samples that do not contain starch. Calculating NDF on an ash-free basis minimized the negative effects of amylase on EDTA activity.  相似文献   

17.
The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.  相似文献   

18.
Phytosterols and phytostanols are known to lower low-density lipoprotein-cholesterol (LDL-C) levels in humans by up to 15%, and at least two products, Benecol and Take Control, are now on the market as naturally derived fatty acid esters of phytostanols (stanol esters) and phytosterols (sterol esters), respectively. A synthetic process was developed to synthesize gram quantities of trans-feruloyl-beta-sitostanol from ferulic acid and beta-sitostanol, with high purity and yields of approximately 60%. The process involves (a) condensation of trans-4-O-acetylferulic acid with the appropriate phytostanol or phytostanol mixture in the presence of N,N-dicyclohexylcarbodiimide and 4-(dimethylamino)pyridine, (b) separation of the trans-4-O-acetylferuloyl products by preparative liquid chromatography, (c) selective deacetylation of the feruloyl acetate, and (d) chromatographic purification of the feruloylated phytostanols. The process was successfully applied to synthesize stanol trans-feruloyl esters from "Vegetable Stanols", a mixture of approximately 70:30 beta-sitostanol and beta-campestanol, in comparable purity and yield.  相似文献   

19.
The present work investigates the impact of phosphorus (P) starvation on plant growth, symbiotic nitrogen fixation, and internal P status (determined as extracted P fractions) of leaves, roots, and nodules of 27-days–old pea (Pisum sativum L) plants inoculated with Rhizobium leguminosarum bv viciae strain D293. The procedure of separation of organic and inorganic P compounds in 10% perchloric acid (HCLO4) and the absorption of nucleotides in active charcoal gave several fractions, containing different phosphorus compounds, which were extracted and determined as inorganic phosphate after combustion. These are acid soluble and insoluble P, sugar P, nucleotide P, and inorganic P. The P starvation of plants inhibited significantly plant dry mass accumulation, nodulation rate and specific nitrogenase activity of nodules. These results were accompanied with lower quantities of total P per plant, acid soluble and acid non-soluble P fractions in all plant organs. The inhibited accumulation of P in the acid soluble P fraction was associated with decrease of sugar, nucleotide and inorganic P in all plant organs. The most negatively affected were all P fractions extracted from nodules and leaves. The low content of inorganic P in the stressed plant tissues was regarded as primary reason for induced alterations in the content of analyzed P fractions.  相似文献   

20.
The mechanism underlying the previously reported parabolic relationship between amylopectin fine structure, represented by the weight ratio of linear short chains [degree of polymerization (DP < 13) to long chains (DP >/= 13], and slowly digestible starch (SDS) content was investigated from the viewpoint of starch retrogradation and substrate susceptibility to enzyme hydrolysis. A maize mutant sample, termed "highest long-chain starch" (HLCS) representing group I samples with a higher proportion of long chains, showed a bell-shaped SDS pattern with retrogradation time, whereas insignificant changes in SDS were found for the sample termed "highest short-chain starch" (HSCS) representing group II samples with a higher proportion of short chains. This corresponded to results from X-ray powder diffraction and differential scanning calorimetry that showed a rapid increase of crystallinity and enthalpy for HLCS during retrogradation, but negligible changes for sample HSCS. Therefore, retrogradation was associated with SDS content for group I samples, but not for group II samples. Analysis of amylopectin fine structure, SDS content, retrogradation enthalpy, SDS material debranching profile, and hydrolysis pattern demonstrated, for group I samples, that linear branched chains of DP 9-30 of amylopectin may act as anchor points to slow the digestion of branced-chain fractions of DP > 30, which constitute the major slowly digestible portion, whereas for group II samples, it is the inherent molecular structure of amylopectin with a higher amount of branches and shorter chains that is not favorable for rapid enzyme digestion. The concept of a slowly digestible starch state (SDS state) that could be a chemical or physical entity is proposed to better describe the mechanistic underpinning of the slow digestion property of starches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号