首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dry bean (Phaseolus vulgaris L.) is an important grain legume for small-scale farmers in eastern Africa who nonetheless, grow beans with limited phosphorus (P) fertilizer supply or none at all. Phosphorus rank second, after nitrogen (N), as the most limiting soil nutrient in bean production in East African soils. This study was conducted to determine combining ability for five polygenic traits in the red mottled, large seeded bean market class, under low and high soil P conditions and two locations. Three parents tolerant to low soil P were hybridized with five well adapted, but non-low P tolerant lines in a diallel mating scheme. The resulting 28 F1 hybrids were evaluated in a randomized complete block design with three replications, under low and high soil P conditions at two sites. There were highly significant (P ≤ 0.001) differences among the genotypes for all the traits under all the study conditions. The GCA mean squares were highly significant (P ≤ 0.001) for these traits, indicating importance of additive effects for both study conditions and sites. The GCA × Environment and SCA × Environment were significant for all the parameters and test conditions. CAL143 had positive GCA effects that were significant; except for 100-seed weight under P stress; for all the traits and under all the study conditions. The negative GCA effects for the none P tolerant parents indicate that they impacted positively in imparting earliness.  相似文献   

2.
Low soil phosphorus (P) has been singled out as a major constraint leading to perpetually low bean (Phaseolus vulgaris L.) grain yield far below the expected yield potential. In developing countries beans are mainly produced by small-scale farmers who have little capacity to use inorganic fertilizers to replenish their soils. Yet bean production contributes significantly to their income and provides a cheap source of protein to rural and urban populations. The genetics of inheritance of the traits conferring low soil P tolerance is not well understood. The identification and understanding of the mode of inheritance of the traits for P-efficiency in bean will go along way in boosting bean yields through development of varieties adapted to low soil P. The objective of this study was to determine the inheritance of the traits conferring adaptation to low soil P, for the important large seeded red mottled bean market class. Three parents with known tolerance to low soil P were crossed with five adapted but non-tolerant genotypes in an 8 × 8 half diallel mating scheme. The resulting F1 seeds were evaluated under medium and low soil P conditions at two locations. Both general combining ability (GCA) and specific combining ability (SCA) variances were highly significant (P ≤ 0.01) for all five characters studied except SCA variance for root dry weight at one location. The magnitude of GCA variance was up to twelve times higher than the SCA variance. The GCA:SCA ratio varied from 0.62 to 0.96 for the characters studied. The additive genetic variance was more important than the dominance variance for tolerance to low soil P.  相似文献   

3.
Summary Wheat root characters which influence vital plant processes have scarcely been explored for their genetic control. This study was conducted to i) examine the diversity of root traits and associated shoot traits in spring wheat (Triticum aestivum L.) cultivars; ii) study the nature of genetic control of selected traits; and iii) examine associations among root and shoot traits. Three experiments were conducted in the greenhouse with plants grown in the vermiculite medium in clear plastic tubes. In the first experiment, 42 spring wheat cultivars were grown for three weeks and measurements were taken on root length, leaf length, root number, leaf number, root dry weight, and top dry weight. In the second study, 15F1's originating from a partial diallel mating of six cultivars along with the parents were evaluated for 4 weeks. The data on root length, leaf length, and root number were subjected to diallel analysis according to Griffing's method 4, fixed model. A third experiment consisted of studying 2 F2 populations with 141 plants per population. In the first study the 42 cultivars exhibited a wide range of variation for all six traits. Diallel analysis revealed significant effects of both general combining ability (GCA) and specific combining ability (SCA) for root length, leaf length, and root number. Parents with high GCA estimates were identified. Significant positive correlation coefficients were found among root and shoot traits. Analysis of F2's for root length indicated quantitative nature of inheritance of root length.  相似文献   

4.
Common bean (Phaseolus vulgaris L.), an important food crop in Europe, America, Africa and Asia, is thought to fix only small amounts of atmospheric nitrogen. It contributes significantly to the sustainability of traditional cropping systems because of the predominance of small-scale farmers who cultivate beans in those areas. The objectives of this work were to evaluate bush bean varieties under common agronomic cropping systems and to evaluate breeding lines under low N-fertility sole cropping and intercropping systems. The purpose of the study was to characterize the genotype and cropping system's variability in symbiotic and plant characters and to identify the most suitable genotypes to establish an effective symbiosis with indigenous strains of Rhizobium. No significant differences among the bush bean varieties evaluated under typical fertilization practices were observed for N2-fixation and plant traits except for seed nitrogen. Significant differences among the bean lines studied under low N-fertilization conditions were detected for plant growth,plant component and N2-fixation traits. A significant interaction of bean genotype x cropping system was found for number of nodules per plant and nodule moisture on the bush bean varieties studied, and for days to emergence, days to flowering, end of flowering, shoot length, root dry weight and shoot nitrogen on the bean lines evaluated. Nodulation parameters were correlated positively with the yield components, shoot and root parts and duration of flowering, and correlated negatively with seed crude protein, pod and seed dimensions and seed dry weight. These observations indicate that it may be possible to increase both the symbiotic N2-fixation and seed yield through plant breeding. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Aluminium (Al) toxicity limits common bean productivity in acid soil regions of the tropics. To improve Al resistance of common bean, Al-sensitive Phaseolus vulgaris (SER16) was crossed to Al-resistant P. coccineus (G35346-3Q) to create 94 F5:6 recombinant inbred lines (RILs) of the pedigree SER16 × (SER16 × G35346-3Q). RILs were characterized for resistance to Al in a hydroponic system with 0 and 20 μM Al in solution, and for shoot and root growth response to Al-toxic infertile acid soil in 75 cm long soil cylinder system using an oxisol of low Al- (12.5%; pH 4.6; fertilized) and high Al-saturation (77%; pH 4.1; unfertilized). G35346-3Q increased its taproot elongation rate by 3.5% between 24 and 48 h under 20 μM Al in solution, while the best RIL, Andean genotype ICA Quimbaya, and sensitive genotype VAX1 expressed reductions of 2.6, 12.5, and 69.5%, respectively. In the acid soil treatment the correlation between leaf area and total root length was highly significant under high Al saturation (r = 0.70***). Genotypes that were Al resistant in the hydroponic system were not necessarily tolerant to Al-toxic acid soil conditions based on shoot and root growth responses. Phenotypic evaluation using both systems allows the identification of genotypes with Al resistance combined with acid soil adaptation. Two genotypes (ALB88 and ALB91) emerged as lines with multiple traits. Results suggest that inheritance of Al resistance and acid soil tolerance in G35346-3Q is complex. Results from this work will be useful for identification of molecular markers for Al resistance in Phaseolus species and to improve acid soil adaptation in common bean.  相似文献   

6.
Genotypes with better root development have good nutrient acquisition capacity and may yield better under limited nitrogen (N) conditions and consequently can help reduce the N fertilization rate and hence mitigate some economic and ecological problems. This study focused on the genotypic variation among diverse maize inbred lines for seedling and adult plant traits under contrasting N levels. Seventy-four lines were screened under high and low N levels in a climate chamber and in the field. High phenotypic diversity was observed for seedling and adult plant traits together with moderate to high broad-sense heritability estimates. Seedling total root length and root dry weight were significantly correlated with other root traits in maize. Of the adult plant traits evaluated in the field, the anthesis-silking interval and the leaf chlorophyll contents were significantly correlated with grain yield under both low and high N levels. In one location, the seminal root length was correlated with grain yield both under low and high N levels and the root dry weight was correlated with grain yield under high N. Selection indices based on secondary root traits along with grain yield could lead to an increase in selection efficiency for grain yield under N stress condition. By identifying lines with better root development, particularly lines with longer SRL, it may be possible to select inbred lines with higher grain yield particularly under low N condition.  相似文献   

7.
Summary Avoidance of drought stress is commonly associated with root system characteristics and root development. The inheritance of root pulling resistance in rice (Oryza sativa L.) was investigated and its relationship with visual field scores for drought tolerance was studied. Transgressive segregation for high root pulling resistance was observed in 3 crosses (high x high, low x high, and intermediate x intermediate). Both dominant and additive genes control the variation. F1 superiority for high root pulling resistance was observed and could be exploited in an F1 hybrid breeding program. F2 distribution curves indicated that plants highly resistant to root pulling can be obtained not only from low x high and high x high crosses, but also from intermediate x intermediate crosses. Root pulling resistance in rice has a low heritability (39 to 47%). Thus, breeding for a high root pulling resistance may best be accomplished by selection based on line means rather than individual plant selection. Field screening showed significant differences in leaf water potential among random F3 lines. F3 lines with higher leaf water potential had better visual scores for drought tolerance. Visual drought tolerance scores were correlated with root pulling resistance. Plants with high root pulling resistance had the ability to maintain higher leaf water potentials under severe drought stress. The usefulness of the root pulling technique in selecting drought tolerant genotypes was confirmed.  相似文献   

8.
苗期耐低氮基因型苦荞的筛选及其评价指标   总被引:3,自引:0,他引:3  
张楚  张永清  路之娟  刘丽琴 《作物学报》2017,43(8):1205-1215
土壤缺氮是造成我国黄土高原冷凉地区农业低产的主要原因。为了筛选耐低氮苦荞基因型及适宜鉴定指标,采用苗期水培方式,测定9个不同基因型苦荞在不同氮水平下的农艺性状、生理特性及植株氮素利用等指标,采用隶属函数法计算各指标耐低氮指数,通过主成分分析与聚类分析评价各基因型苦荞综合耐低氮能力。结果表明,低氮胁迫下,苦荞地上部生长受抑制程度大于根系,株高、茎粗、叶面积、地上部干重、根系体积、根系表面积及根系平均直径均呈下降趋势,主根长和根冠比呈上升趋势;根系活力、根系硝酸还原酶(NR)活性及可溶性蛋白含量有所下降,而根系超氧化物歧化酶(SOD)、过氧化物酶(POD)活性、丙二醛(MDA)、可溶性糖及游离脯氨酸含量有所升高;叶片叶绿素含量、Fm和Fv/Fm降低,而Fo升高;植株全氮含量及氮积累量降低,而由于植株氮积累量降幅明显大于生物量降幅,导致氮利用效率显著升高。将25个单项指标转化为4个相互独立的综合指标(累计贡献率达87.44%),并将9个苦荞基因型划分为耐低氮型、中间型和不耐低氮型。为了预测苦荞基因型的耐低氮能力,将D值作因变量,各指标耐低氮指数作自变量进行逐步回归分析,建立最优回归方程,筛选出株高、茎粗、叶面积、根冠比、叶绿素含量、Fm、根系超氧化物歧化酶(SOD)活性及氮利用效率8项对苦荞耐低氮能力有显著影响的指标,并且9个苦荞基因型的苗期耐低氮能力预测值Y与D值显著相关(R2=0.998,P0.01),表明这8个指标可用于耐低氮苦荞基因型的快速鉴定。  相似文献   

9.
Common beans (Phaseolus vulgaris) are separated into two distinct groups: Andean and Middle American. We identified CAL 143 as the first Andean bean with resistance to angular leaf spot disease caused by Phaeoisariopsis griseola. Angular leaf spot is the most widespread and economically important bean disease in southern and eastern Africa, and it is especially severe on the extensively grown Andean beans. Cal 143 was resistant in Malawi, South Africa, Tanzania, and Zambia, but it was susceptible in Uganda. This was attributed to the presence of races of P. griseola in Uganda not present in the other countries. We identified two additional Andean bean lines, AND 277 and AND 279, with resistance to angular leaf spot in Malawi. We also characterized the virulence diversity of 15 isolates of P. griseola from southern and eastern Africa into nine different races. Five of six isolates from Malawi and two of seven from Uganda, obtained from large-seeded Andean beans, were characterized into four different races considered Andean. These were compatible only or mostly with large-seeded Andean cultivars. The other eight isolates from Uganda, Malawi, and the Democratic Republic of Congo, obtained from a small- or medium-seeded Middle American beans, were characterized into five different Middle American races. These were compatible with Middle American and Andean cultivars. CAL 143 was resistant or intermediate under greenhouse conditions to all but one of the same 15 isolates from southern and eastern Africa, but it was susceptible to an isolate from Uganda obtained from a medium-seeded Middle American bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary The genetic control of tolerance of wheat to high concentrations of soil boron was studied for five genotypes. Each genotype represented one of five categories of response to high levels of boron, ranging from very sensitive to tolerant. Tolerance to boron was expressed as a partially dominant character, although the response of an F1 hybrid, relative to the parents, varied with the level of boron applied. The F1 hybrids responded similarly to the more tolerant parent at low B treatments and intermediate to the parents at higher treatments. Ratios consistent with monogenic segregation were observed for the F2 and F3 generations for the combinations (WI*MMC) × Kenya Farmer, Warigal × (WI*MMC) and Halberd × Warigal. The three genes, Bo1, Bo2 and Bo3, while transgressive segregation between two tolerant genotypes, G61450 and Halberd, suggested a fourth locus controlling tolerance to boron.  相似文献   

11.
为探究水氮耦合对直播早籼稻苗期低温冷害的调控作用,以耐冷品种湘早籼6号和冷敏感品种中嘉早17为供试材料,设置适温不施氮(CK)、低温不施氮(LT-0N)、低温低氮(LT-LN)、低温高氮(LT-HN)、低温淹水不施氮(LTF-0N)、低温淹水低氮(LTF-LN)和低温淹水高氮(LTF-HN)7个处理,处理5d,分析秧苗农艺性状、抗氧化酶活性、渗透调节物质、氮代谢相关酶与光合酶活性、内源激素含量等生理生态特性。结果表明,水氮耦合可缓解低温冷害对直播早籼稻造成的伤害。与LT-LN处理相比,LT-HN处理5d后冷敏感品种中嘉早17的苗高、根数、最大根长、鲜重、干重、顶部第1和第3片叶长显著增加;与LTF-0N处理相比,LTF-LN和LTF-HN处理5d后,不同耐性品种的根数、根长、鲜重和顶部第3片叶长显著增加,LTF-LN处理的根数和鲜重高于LTF-HN处理。与LT-0N处理相比,LT-HN和LTF-LN处理显著增加冷敏感品种中嘉早17叶片氮代谢相关酶和光合酶活性、硝态氮、叶绿素和内源生长促进类激素含量,但降低了叶片抗氧化酶活性、可溶性蛋白、渗透调节物质和内源生长抑制类激素含量,高氮和淹水低...  相似文献   

12.
Root system architecture is important for common bean (Phaseolus vulgaris) adaptability to diverse environments. Beans employ complex adaptive root mechanisms for coping with multiple stresses in production environments. Understanding genetic control of root traits is central to improvement of common bean for adaptation to marginal environments. The objectives of this study were to (i) determine combining ability of root and agronomic traits and (ii) estimate the heritability and genetic correlation of root and agronomic traits in common bean. Four bean lines with superior root traits were crossed with four locally adapted varieties in a North Carolina II mating scheme to generate 16 crosses. The 16 F1s were selfed and advanced to F2 generation. Eight parents and their F2 progenies were evaluated in an alpha-Lattice design with two replications. General and specific combing ability mean squares were significant (p ≤ .05) for all traits measured. General predictability ratios ranged from .47 to .68 across locations suggesting that both additive and non-additive gene action modulate root traits and seed yield. Positive and significant (p ≤ .05) phenotypic and genetic correlations revealed significant association between root traits and yield. Moderate to high heritability estimates of between .43 and .67 were realized. Such estimates point to possible deployment of a successful selection programme. Genotype AFR398 displayed significant positive GCA effects among its crosses for both root and agronomic traits hence a potential candidate genotype for inclusion in a bean genetic improvement programme for marginal environments.  相似文献   

13.
普通菜豆品种苗期抗旱性鉴定   总被引:3,自引:1,他引:3  
以不同来源的普通菜豆品种为材料,采用盆栽法,设正常供水和反复干旱2种处理,测定11项生理指标,采用灰色关联度理论进行苗期抗旱性指标筛选,通过加权抗旱指数(weighted drought-resistance index,WDI值)和抗旱度量值D(drought resistance comprehensive evaluation values,D值)对供试材料进行抗旱性综合评价并通过聚类分析划分抗旱等级。结果表明,不同指标与综合抗旱指数的关联度大小依次为叶片相对含水量(0.7726)、PSII最大量子产量(0.7607)、叶绿素含量(0.7435)、反复干旱存活率(0.7341)、生物量(0.7329)、茎叶干重(0.7314)、根干重(0.7192)、气孔导度(0.7159)、根冠比(0.7092)、株高(0.7086)、叶面积(0.6910)。基于加权抗旱指数和抗旱度量值D的评价结果存在一定差异,但不同材料的抗旱性排序大体一致。根据抗旱度量值D将供试材料分为高抗、中抗、敏感和高敏感4个级别,各占总数的10%、6%、58%和26%。综上所述,叶片相对含水量、PSII最大量子产量和叶绿素含量等10项指标可用于普通菜豆苗期抗旱性综合评价;加权抗旱指数与抗旱度量值D两种综合指标相结合能够提高鉴定结果的可靠性;50个参试普通菜豆品种中,白金德利豆、跃进豆、兔子腿、圆白菜豆和260205抗旱性强。  相似文献   

14.
邹小云  官梅  官春云 《作物杂志》2022,38(5):97-1180
为阐明甘蓝型油菜氮素高效吸收的形态和生理机制,利用6个氮素效率差异显著的甘蓝型油菜为供试材料,分析低氮条件下甘蓝型油菜抽薹期地上部和根系形态、叶片和根系生理特性的基因型差异及这些指标与高效氮素吸收的关系。结果表明,3个氮高效基因型在表型性状(株高、叶片数、最大叶长×宽、地上部干重、茎基粗、根长、根表面积、根体积、根平均直径和根干重)、生理(叶片可溶性糖含量、游离氨基酸总量、根系吸收总面积、活跃吸收面积、游离氨基酸总量和根系活力)和光合方面(净光合速率、气孔导度、胞间CO2浓度、蒸腾速率和氮素光合效率)均高于3个氮低效基因型。甘蓝型油菜抽薹期根平均直径、最大叶长×宽、蒸腾速率和根系硝酸还原酶共同决定了氮素吸收效率的92.10%。  相似文献   

15.
Faba bean (Vicia faba L.) is one of the most important and drought sensitive grain legumes. Drought stress is thus one of major constraints in global faba bean production. In this study, twenty local and exotic faba bean genotypes were characterized on physiological and molecular basis. Seeds of faba bean genotypes (six per pot) were sown in poly venyl chloride pots. After seedling emergence, soil moisture was maintained at 100%, 50% and 25% of field capacity designated as well watered, moderate drought and severe drought, respectively. Drought stress significantly influenced the leaf area, leaf temperature, stomatal conductance, relative leaf water contents, grain yield and water‐use efficiency. Faba bean genotypes also differed for the leaf area, leaf temperature, relative leaf water contents, grain yield and water‐use efficiency. Faba bean genotypes Kamline and L.4 were better equipped to curtail water loss, maintain tissue water status, produce stable grain yield and had better water‐use efficiency under mild and severe drought stress, and may be used in breeding programmes. Amplified fragment length polymorphism markers showed high potential in detecting polymorphism and estimating genetic diversity among faba bean genotypes. Unweighted pair group method with arithmetic mean cluster analysis of the genotypes illustrated considerable association between molecular diversity, genetic background and geographic origin. In crux, high polymorphic rate and polymorphism information content values, together with the low genetic similarity observed among tested genotypes suggests a high level of heterogeneity, which may be used in breeding programmes to assemble different drought tolerance mechanisms in one genotype.  相似文献   

16.
为探究不同施氮水平下小麦蚕豆间作对蚕豆根瘤形成及氮素吸收累积的影响,明确氮肥施用与豆科作物结瘤固氮、氮素吸收累积和产量的关系,通过2年田间试验,分析了N0、N1、N2和N3 4个施氮水平(蚕豆:0、45、90、135kg/hm2;小麦:0、90、180、270kg/hm2)下,单作、间作蚕豆各关键生育期根瘤鲜重、氮素吸收关键参数、地上部氮素累积量和产量的特征。结果表明,N0、N1和N2水平下,间作蚕豆根瘤鲜重比单作分别提高40.9%、27.2%和34.1%;高氮(N3)水平下,单作、间作蚕豆根瘤鲜重无显著差异。与单作相比,4个施氮水平下间作蚕豆的最大氮素累积量(A)和最大氮素吸收速率(Rmax)降幅分别为8.01%~13.93%和10.27%~12.98%,表明氮素吸收累积特点与根瘤鲜重相反。在蚕豆营养生长阶段(出苗后90d内),单作、间作蚕豆氮素累积量无差异;进入结荚期后(出苗90d后),间作显著降低了蚕豆的氮素累积量。同时,蚕豆产量也受施氮量和种植模式的调控,与单作相比,4个施氮水平下,间作降低蚕豆产量平均达20.66%。整体而言,在N1水平下,蚕豆根瘤鲜重和产量达最大值,随着施氮量增加,蚕豆根瘤鲜重、氮素累积量和产量均随之降低,间作促进根瘤形成的优势减弱甚至消失。因此,间作体系中蚕豆氮肥的运筹与间作优势的形成密切相关。  相似文献   

17.
Ten F1's obtained from crosses among five common bean genotypes of Andean (WAF 15, Mineiro Precoce and Batatinha) and Middle American (BAT 304 and Ouro) gene pools were assessed for their combining abilities for root nodulation with Rhizobium tropici strain CIAT 899. The plants were grown under controlled conditions and evaluated for number of nodules per plant (NN), nodule dry weight (NDW), mean nodule weight (MNW) and plant fresh weight (PFW). The subdivision of the treatment effects on the general (GCA) and specific combining effects (SCA) were performed according to Griffing's diallel analysis method 2, model 1. The analyses of variance and estimates of quadratic components showed that non-additive gene effects were more important in the expression of NN and PFW, whereas additive gene effect was predominant for NDW and MNW. A close association was observed between high number of nodules and GCA. Generally, crosses involving parents of different gene pools yielded hybrids with high positive estimates of SCA for all assessed traits. The genotypes of Andean origin WAF 15 and Mineiro Precoce are the most promising parents for breeding programs to increase NN and NDW in common beans. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Flooding of vegetable crop fields along the Yangtze River basin in China has been an annual occurrence; therefore the cultivation of tolerant varieties has become one of the most promising control strategies. Our objective was to investigate the inheritance of waterlogging tolerance of cucumber at the early stage of growth with two cucumber parents consisting of PW0832 (tolerant) and PW0801 (susceptible). In 2006, 4-weeks-old potted plants of P1, P2, F1, F2, B1 and B2 generations were subjected to one week waterlogged stress, control plants were not flooded. The simple additive model explained the variations of tolerance score (TOL) adventitious root formation (ARF) and waterlogged root dry weight (RDW) while the additive-dominance model explained the control treatment of RDW. Non-allelic interactions were detected for waterlogged vine length (VLH) and root length (RLH). Complementary epistasis occurred in waterlogged VLH while additive × additive, additive × dominance and dominance × dominance epistastic effects were significant for waterlogged RLH. Transgressive segregation was also observed in most of the traits in the F2 generation indicating some alleles are dispersed in the parents used in this study. The estimates of narrow-sense heritabilities for TOL and ARF were moderately high. Backcross of F1 to both parents in ARF, waterlogged SDW and waterlogged RDW showed good convergence of genes in the B2. These results suggest that it should be possible to develop varieties with high levels of tolerance by selecting transgressive segregants in this cross.  相似文献   

19.
为探究缓/控释肥在不同水分条件下提高氮素利用率及增产机制。本研究以杂交中稻F优498为试验材料,在180 kg hm-2施氮量基础上,采用两因素裂区设计: 主区设控灌、干湿交替灌溉、传统灌水灌溉3种水分管理方式,副区设尿素一道清、尿素常规运筹、硫包膜缓释肥、树脂包膜控释肥4种氮肥种类,研究缓/控释肥和水分管理方式对水稻干物质量和氮素吸收、运转、分配和产量的影响及其互作效应。结果表明, 缓/控释肥和水分管理方式对水稻主要生育期干物质量和氮吸收、转运、分配及产量具显著影响及互作效应,产量构成因素与氮素在结实期转运总量及其分配呈显著正相关。干湿交替灌溉和缓/控释肥均能提高干物质量、氮素吸收及产量并表现出显著互作效应,施用缓/控释肥氮素表观利用率达42%~53%,相较于尿素一道清和传统的尿素常规运筹,氮肥偏生产力提高6%~23%,氮素农学利用率提高26%~71%,增产8%~19%。控灌条件下,缓/控释肥处理氮素有效性高,保证足穗、促进重穗;干湿交替灌溉条件下缓/控释肥处理能保持氮素的高效释放,有利于高产群体的形成,从而提高稻株氮素积累、协调氮素分配;淹水灌溉条件下,缓/控释肥处理无效分蘖减少,氮素入渗、淋溶降低,成穗率提高。综合产量与氮素吸收、运转的表现,干湿交替灌溉条件下施用缓控释肥为本试验最佳处理,能有效提高氮素利用率,促进高产形成。  相似文献   

20.
Inheritance of salt tolerance in rice   总被引:7,自引:0,他引:7  
Summary The genetic behavior of salt tolerance was studied in artificially salinized conditions at the International Rice Research Institute.Divergent selection, carried out at a salinity level where the ECe was 15.2 mmhos/cm at 25 C in F3 lines from two crosses confirmed the effects of salt tolerance on F4 progeny with realized heritability values of 0.39 and 0.62, respectively.In a cross between two tolerant cultivars there was clear over-dominance for tolerance, despite the high environmental fluctuation which resulted in a low genetic response as indicated by a low but significant repeatability of 0.20–0.25, and many progeny lines more tolerant than the parents were recovered. The superior tolerance of these progenies compared to the parents was confirmed subsequently at 3 different salt levels. In the same experiment a cross between tolerant and susceptible cultivars produced some progeny of comparable tolerance with tolerant sources.In a 6×6 diallel cross experiment with two tolerant, moderate, and susceptible varieties each, both general and specific combining ability were significant.The findings indicate the possibility of breeding rices more tolerant than existing tolerant cultivars through cumulative crosses of tolerant cultivars. Further improvement can be attained by crossing highly tolerant lines with donors of good agronomic traits and pest and disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号