共查询到20条相似文献,搜索用时 15 毫秒
1.
Kennan RM Dhungyel OP Whittington RJ Egerton JR Rood JI 《Veterinary microbiology》2003,92(1-2):169-178
Dichelobacter nodosus is the essential causative agent of footrot in sheep. The type IV fimbriae of D. nodosus are required for virulence, are highly immunogenic and immunoprotective, and can be divided into 10 major serogroups. Fimbrial variation has been postulated to have arisen because of genetic recombination within the fimbrial gene region perhaps as a means of evading the immune response invoked by infection. To show that antigenic variation in these fimbriae could occur after natural transformation and subsequent homologous recombination, a suicide plasmid containing the fimbrial subunit gene, fimA, of a serogroup G strain was used to convert a serogroup I strain to serogroup G. The resultant mutants were shown by Western blotting and slide agglutination to produce serogroup G fimbriae, but by two independent methods to still have the genotype of the parent type I strain. These data have significant implications for the use of fimbrial vaccines for the control of ovine footrot and suggest that benign strains of D. nodosus could play an important role as a reservoir of alternative fimbrial antigens. 相似文献
2.
Dichelobacter nodosus is the causative agent of ovine footrot and the type-IV fimbriae on this bacterium are essential for maintaining its virulence. In this study, we reveal that these fimbriae are glycosylated. This was demonstrated in several ways: by the detection of carbohydrate on fimbrial protein using periodic acid Schiff reagent (PAS) staining of SDS-PAGE gels and by demonstrating enzymatic deglycosylation and by analysis of the amino acid sequences derived from the fimA gene, whereby the gene from isolates of D. nodosus that appeared to be glycosylated had potential glycosylation sites both inside and outside of the variable region of fimA. The results would also explain the observation that the calculated molecular weight of fimA from some D. nodosus serotypes does not correlate with the apparent size determined from electrophoretic mobility. 相似文献
3.
Raadsma HW McEwan JC Stear MJ Crawford AM 《Veterinary immunology and immunopathology》1999,72(1-2):219-229
Protective vaccine responses to nine distinct serogroups of Dichelobacter nodosus (serogroups A-I) can be readily measured by serogroup-specific K-agglutinating antibody titres. On the basis of a large quantitative genetic experiment (1200 progeny from 129 sire groups), it was shown that variation in antibody responses following vaccination with a multi-valent pilus antigen D. nodosus vaccine (serogroups A-I) is, in part, under genetic control and thus heritable. Based on the genetic relationships between antibody responses to all nine antigens, results suggested that both genes for a broad-based and genes for serogroup-specific response contributed to genetic variation in vaccine response. Furthermore, preliminary data in 389 progeny showed that polymorphism within the ovine major histocompatibility (MHC) based on serological classification accounted for a significant proportion of the variation in vaccine responses. In subsequent experimentation, we examined the importance of genetic polymorphism within the ovine MHC, and the possibility of genes outside the MHC for their involvement in antigen-specific and broad-based vaccine response. Within two large half sib families(131, and 143 progeny), four MHC haplotypes were investigated and found to be associated with differential antibody responses to six out of eight distinct vaccine-antigens presented to the host in a multi-valent vaccine. The model used here shows how well characterised immunogens, quantitative genetic experimentation, and molecular gene mapping tools can be used to unravel genetic differences in host responses to commercial vaccines. 相似文献
4.
5.
Sara Frosth Jannice S Sletteme?s Hannah J J?rgensen ?ystein Angen Anna Aspán 《Acta veterinaria Scandinavica》2012,54(1):6
Background
Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium Dichelobacter nodosus. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but D. nodosus should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of D. nodosus and to compare its performance with culturing and conventional PCR.Methods
A D. nodosus-specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly.Results
The developed assay had a detection limit of 3.9 fg of D. nodosus genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the D. nodosus genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR.Conclusions
The developed real-time PCR assay has good specificity and sensitivity for detection of D. nodosus, and the results are easy to interpret. The method is less time-consuming than either culturing or conventional PCR. 相似文献6.
The aim of this study was to compare four identification procedures to detect Dichelobacter nodosus and develop a rapid, simple and effective method to identify D. nodosus strains isolated from cases of ovine footrot. The four methods used were: (a) the classic guidelines set down by Holdeman et al. (1977) and Summanen et al. (1993) which are based on gas liquid chromatography (GLC) and different biochemical tests, this method was considered as landmark; (b) Baron and Citron's flowchart for the rapid identification of Gram-negative rod-shaped anaerobes (1997); (c) the API rapid 32 A system (bio Mérieux), and (d) Mast ID Anaerobe ID Ring (MID8) (Mast Diagnostics). None of the four methods used allowed us to correctly identify the D. nodosus strains (neither the strains isolated from cases of ovine footrot nor those originating from type collection). Because of the difficulties encountered in obtaining a correct identification of D. nodosus, we propose a simple, rapid and effective way to achieve this task. Our flowchart will provide the means to identify this microorganism in any laboratory of general microbiology without having to use any specialised equipment. 相似文献
7.
SUMMARY As part of a program to eradicate virulent footrot from Western Australia, 2745 isolates of Dichelobacter nodosus were isolated from 5263 specimens from 1883 submissions. The virulence of each isolate was assessed using protease thermostability and isoenzyme zymogram. We describe changes to the materials and methods required to handle these specimens and to reduce the interval between submission and report to 8 days. 相似文献
8.
Sara Ellinor Cederl?f Tomas Hansen Ilka Christine Klaas ?ystein Angen 《Acta veterinaria Scandinavica》2013,55(1):4
Background
Dichelobacter nodosus is the causative agent of footrot in sheep. The survival of the bacterium in soil is of importance for the epidemiology of the disease. The investigation evaluates the survival of D. nodosus in soil with and without added hoof powder stored under different temperatures.Results
An experimental setup was used with bacteriological culture and real-time polymerase chain reaction (PCR), and the results indicate that the bacteria can survive in soil for longer time than previously expected. The survival time was found to be dependent on temperature and the addition of hoof powder to the soil, with the longest survival time estimated to be 24 days in soil samples with hoof powder stored at 5°C.Conclusion
Our findings indicate that the survival time of D. nodosus and its ability to infect susceptible sheep on pasture under different climatic conditions should be studied further. 相似文献9.
《Veterinary microbiology》1998,62(3):243-250
Pulsed field gel electrophoresis analysis of genomic DNA was used to investigate genetic diversity among Dichelobacter nodosus from footrot in sheep in Malaysia. Twelve Dichelobacter nodosus strains isolated from lesion materials from infected sheep were confirmed as Dichelobacter nodosus by polymerase chain reaction technique using the species-specific Dichelobacter nodosus 16S RNA sequence Ac and C as primers. Pulsed field gel electrophoresis banding profiles using restriction enzymes ApaI (5′GGGCCC3′), SfiI (5′GGCCNNNNNGGCC3′)and SmaI (′5CCCGGG3′) enabled the 12 Dichelobacter nodosus strains to be differentiated into eight different PFGE patterns and thus genome-types, with F (coefficient of similarity) values ranging from 0.17 to 1.0 (ApaI), 0.14 to 1.0 (SfiI) and 0.22 to 1.0 (SmaI). Strains with origin in different farms were shown to have different PFGE patterns (two strains, M7 and M8 were the only exception). On the basis of their PFGE, all field strains used in the study differed from the reference strains. Our data revealed that there are several clonal types of Dichelobacter nodosus isolates and indicated that there is probably more than one source of this pathogen on the farms studied. The study showed that strains of D. nodosus exhibited considerable genetic diversity using this method and that genomic analysis by pulsed field gel electrophoresis was useful in discriminating the D. nodosus strains. 相似文献
10.
《Research in veterinary science》2010,88(3):355-357
The gram-negative bacterium Pasteurella multocida constitutes a heterogeneous species associated with wide range of disease in many animals. Isolates are classified into five groups based on capsular antigen (capA, B, D, E and F). Recently, a new valuable PCR-based method was introduced to determine the epidemiological correlation between P. multocida infection and existence of virulence genes including tbpA, pfhA, toxA and hgbB. However, this method is tedious and laborious. Thus, in the current study, we designed a reliable multiplex PCR method for rapid detection of virulence genes in P. multocida. Eighty seven strains of P. multocida isolated from various clinically healthy and infected hosts were examined by uniplex PCR method for each virulence associated genes. Based on our improved and simplified multiplex PCR method, rapid detection of four virulence genes was accomplished. It is proposed that its implementation may benefit the epidemiological investigations. 相似文献
11.
Footrot is a contagious bacterial disease of ruminants spread by the Gram-negative, anaerobic organism, Dichelobacter nodosus. It is endemic in New Zealand and throughout sheep and goat farming regions of the world. Using the polymerase chain reaction (PCR) to amplify fragments of the fimbrial gene (fimA), D. nodosus was detected in 14 hoof scrapings, sampled from six farming regions within New Zealand. DNA sequencing revealed 15 strains covering eight serogroups on the New Zealand farms. The predominant serogroup was B which contained six strains, followed by serogroups F, H and G. No strains from serogroups D and I were detected in this investigation. Eleven out of the 15 D. nodosus strains had fimbriae sequences different to those previously reported and the presence of multiple strains on a single hoof was common (86% samples). Individual sheep from the same farm, or the same paddock, were often infected by a different range of strains, which suggests a host role in mediating footrot infection. 相似文献
12.
Footrot is a highly contagious and economically important disease of sheep and goats, caused by Dichelobacter nodosus, a slow growing anaerobic Gram-negative rod. The current Australian antigenic classification system, based on variation in the fimbriae, classifies D. nodosus into at least 10 serogroups (A-I and M) and 18 serotypes. This investigation was intended to determine the serological diversity of D. nodosus in this region of Kashmir, India. Exudates of footrot lesions were collected from 24 naturally infected sheep and 42 goats located in the Kashmir valley. Of these 66 samples, 24 yielded evidence of D. nodosus by PCR using 16SrDNA specific primers. Multiplex PCR using serogroup specific primers revealed the presence of serogroup B in all the samples except two, which showed the presence of serogroup E D. nodosus. This study also documents the isolation of D. nodosus and detection of serogroup E for the first time in India. 相似文献
13.
14.
The aim of this study was to determine which of the two species, Fusobacterium necrophorum or Dichelobacter nodosus, are associated with hoof thrush in horses. Fourteen hoof samples, collected from eight horses with thrush and 14 samples collected from eight horses with healthy hooves, were examined for the presence of F. necrophorum, Fusobacterium equinum and D. nodosus. Only isolates with phenotypic characteristics representing Fusobacterium could be cultured. Total DNA extracted from the 28 hoof samples was amplified by using DNA primers designed from gene lktA, present in F. necrophorum subsp. necrophorum, F. necrophorum subsp. funduliforme and F. equinum, and gene fimA, present in D. nodosus. The lktA gene was amplified from five of the 14 infected hoof samples and from one hoof sample without thrush. The DNA sequence of the amplified ltkA gene was identical to the lktA gene of the type strain of F. necrophorum (GenBank accession number AF312861). The isolates were phenotypically differentiated from F. equinum. No DNA was amplified using the fimA primer set, suggesting that F. necrophorum, and not D. nodosus, is associated with equine hoof thrush. Hoof thrush in horses is thus caused by F. necrophorum in the absence D. nodosus. This is different from footrot in sheep, goats, cattle and pigs, which is caused by the synergistic action of F. necrophorum and D. nodosus. 相似文献
15.
Marianne Gilhuus Bj?rg Kvitle Trine M L’Abée-Lund Synn?ve Vatn Hannah J J?rgensen 《Acta veterinaria Scandinavica》2014,56(1):29
Background
In 2008, an outbreak of ovine footrot occurred in Norway. Dichelobacter nodosus isolates collected between 2008 and 2011 have been characterised. Isolates defined as virulent by the gelatin gel test (GG-test) were only found in sheep in Rogaland County, where the severe cases of footrot were registered. The majority (96%) of the virulent isolates belonged to serogroup A. It is suspected that they represent a newly introduced strain, and the aim of the present study was to investigate whether they are genetically similar. Sixty-one virulent isolates from sheep and 116 benign isolates from sheep, cattle and goats were included. Four GG-test virulent isolates from Danish sheep were also included. All isolates were genotyped by pulsed-field gel electrophoresis (PFGE) and by PCR for pgr variant determination.Results
The Norwegian virulent isolates were assigned to 8 pulsotypes (PTs), while the benign isolates were assigned to 66 PTs. Thirty-seven (68.5%) of the 54, virulent, serogroup A isolates belonged to the same PT, and included isolates from 2008 through 2011. Isolates belonging to this PT were defined as the outbreak strain. The remaining virulent serogroup A isolates belonged to 4 PTs differing by ≤3 bands from the outbreak strain. Two virulent, Danish, serogroup A isolates differed by 2 bands from the Norwegian outbreak strain. All but 3 (95%) of the virulent isolates had the pgrA variant while 85% of the benign isolates had the pgrB variant.Conclusion
This study provides evidence that the footrot outbreak in Norway in 2008 most likely was caused by new introduction and local spread of one virulent D. nodosus strain. 相似文献16.
Footrot, caused by the strictly anaerobic bacterium Dichelobacter nodosus, is the most common cause of lameness in sheep in Great Britain but problems exist in association with its diagnosis and control. The fastidious nature of D. nodosus means that complex media and several weeks are required for characterisation. An alternative method to simplify and enhance the detection of D. nodosus in clinical samples is therefore highly desirable. In terms of control, anecdotal evidence from the farming community suggests that the commercially available vaccine, based on Australian isolates of D. nodosus, is not widely employed in this country due to its perceived inefficacy. Seven hundred and six isolates, collected from outbreaks in England and Wales, were therefore used to investigate these issues. A 16S rRNA PCR was adapted to detect D. nodosus in clinical material within 1 day of sampling; a 15% increase in detection compared with culture and less than 1% false negatives were achieved. This represents a major advance in the rapid diagnosis of footrot and will be of great value to practitioners and diagnostic laboratories. Bacterial virulence was tested using protease thermostability and zymogram assays, whilst serogrouping was performed by slide agglutination. All isolates demonstrated virulence patterns previously recorded in Australia and all nine serogroups of D. nodosus (A-I) were represented. Serogroup H was predominant. There was, therefore, no evidence for the presence of novel strains of D. nodosus compared with Australia suggesting the need for further investigation into farmers' views on the use of the commercial vaccine in Great Britain. 相似文献
17.
Serological classification and virulence determination of Dichelobacter nodosus isolated from Alberta and British Columbia sheep. 下载免费PDF全文
Ovine footrot is a contagious disease of sheep that occurs in temperature climates. It is caused by the strict anaerobe, Dichelobacter nodosus. Benign and virulent organisms are differentiated according to serotype and protease production. This study was conducted to identify the presence of virulent serotypes of D. nodosus in sheep flocks in Alberta and British Columbia. Dichelobacter nodosus was detected in lame sheep from 11 of 15 (73%) flocks in Alberta and in 4 of 5 (80%) British Columbia flocks. It was recovered from 57 of 107 (53%) lame sheep. In Alberta, 4 distinct serotypes were isolated from the 11 positive flocks while in British Columbia a total of 6 different serotypes were isolated. One British Columbia isolate could not be classified into existing serotypes. Of the 19 field strains tested, all but 3 were defined as virulent based upon the rapid rise in protease activity in vitro which was maintained between 3 and 5 d. The knowledge of the serotype and virulence of the D. nodosus isolated from affected animals can assist in the control and prevention of ovine footrot. 相似文献
18.
19.
Experimental evaluation of a commercial footrot vaccine against native Canadian strains of Dichelobacter nodosus. 下载免费PDF全文
Two serotypes of the anaerobic bacterium Dichelobacter nodosus were used to experimentally infect young sheep resulting in infectious pododermatitis or footrot characteristic of the natural disease in sheep. The specific serotypes of D. nodosus were reisolated from the feet and identified using immunofluorescent microscopy of hoof scrapings. Prior immunization of sheep with a commercially available bacterin containing whole cell preparations of ten strains of D. nodosus resulted in serum IgG reactive to a serotype of D. nodosus common to the vaccine. Immunization also produced serum IgG reactive to a serotype of D. nodosus not incorporated in the vaccine. A less severe infection occurred in the immunized sheep than in the controls regardless of the serotype of bacteria used to infect them. Clinical lameness and lesion severity were milder in sheep infected with the serotype of D. nodosus common to the vaccine. Western blot analysis of sera from convalescent sheep showed cross-reactive antibodies to nonfimbrial cell surface proteins, as well as bacterial lipopolysaccharide. Such cross-reactivity may explain the partial protection seen in animals infected with a serotype distinctive from the ones in the vaccine. Despite the historical emphasis of fimbrial immunogens in ovine footrot this study using a new model of experimental ovine footrot suggests other surface antigens may also be important in protective immunity. 相似文献
20.
Objective To compare the effects of two oil emulsion adjuvants (incomplete Freunds adjuvant and a proprietary oil adjuvant), DEAE-dextran, L-tyrosine particles and Quil A on the humoral immune responses of sheep immunised with recombinant pili of Dichelobacter nodosus (strain A).
Procedure Antibody titres were studied for up to 32 weeks and were measured by bacterial agglutination and ELISA. The relative avidity of antibodies for pili was determined and the incidence and severity of adverse reactions at the site of injection of vaccines were recorded.
Results The oil emulsion adjuvants and Quil A were more effective than either DEAE-dextran or L-tyrosine at stimulating antibodies in sheep. The incidence and severity of adverse reactions was lower in sheep which received vaccines containing either Quil A or DEAE-dextran than in sheep which received vaccines containing oil emulsion adjuvants. L-tyrosine had no adverse effects.
Conclusion Quil A was as effective as oil adjuvants at stimulating high levels of antibodies against recombinant pili in sheep and had the significant advantage of being less irritant after subcutaneous injection. 相似文献
Procedure Antibody titres were studied for up to 32 weeks and were measured by bacterial agglutination and ELISA. The relative avidity of antibodies for pili was determined and the incidence and severity of adverse reactions at the site of injection of vaccines were recorded.
Results The oil emulsion adjuvants and Quil A were more effective than either DEAE-dextran or L-tyrosine at stimulating antibodies in sheep. The incidence and severity of adverse reactions was lower in sheep which received vaccines containing either Quil A or DEAE-dextran than in sheep which received vaccines containing oil emulsion adjuvants. L-tyrosine had no adverse effects.
Conclusion Quil A was as effective as oil adjuvants at stimulating high levels of antibodies against recombinant pili in sheep and had the significant advantage of being less irritant after subcutaneous injection. 相似文献