首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
基于树种分类的高分辨率遥感数据纹理特征分析   总被引:5,自引:0,他引:5       下载免费PDF全文
遥感图像尤其是高分辨率(1~4 m)遥感图像在树种分类方面有着广阔的应用前景。利用主成分分析法对遥感数据去相关分析,然后通过对纹理提取过程的分析,探讨不同移动窗口大小对纹理特征的影响,以期为中山陵园风景区的森林调查提供依据,分类方法为经典的最大似然分类器。根据不同移动窗口大小的纹理因子相关性和对保持纹理信息丰富度的影响,来选择合适的窗口大小及纹理因子组合,以对树种分类精度的提高程度为评价标准。研究结果表明,利用窗口大小为19 19下的纹理信息可有效提高分类精度,总精度达到66%,Kappa系数达到0.59,比单纯的光谱信息最大似然法图像分类精度高,其中均值与均匀性、对比度、偏斜度纹理因子组合为最佳纹理组合,能有效减少数据冗余。高分辨率遥感数据纹理信息的运用为树种分类识别时的特征选择提供了有利技术参考。图4表3参19  相似文献   

2.
基于随机森林算法的凉水自然保护区蓄积量反演研究   总被引:1,自引:0,他引:1  
以黑龙江凉水自然保护区为研究对象,采用GF-1卫星遥感影像为数据源,提取遥感影像在不同窗口大小下的纹理特征信息,与遥感影像自身的光谱信息相结合;利用随机森林算法,结合地面蓄积量采样点数据,建立凉水自然保护区蓄积量反演模型。结果表明:只基于卫星光谱的反演模型的相关系数为0.59,基于卫星光谱与纹理特征的蓄积量反演模型的相关系数为0.65;当窗口大小为3×3时,森林蓄积量反演效果最好。研究表明,基于卫星光谱信息和纹理特征信息,利用随机森林算法进行森林蓄积量反演在森林资源调查方面具有良好的应用前景。  相似文献   

3.
不变矩纹理图像分割过程中,在计算矩图和特征图像时,每个像素点的窗口选择显得非常重要.本文用变形雅可比矩等几种不变矩,就纹理图像的每一个像素点如何选择一定大小的窗口进行了系统探讨.然后在这个窗口内计算以该像素点为中心的矩,通过非线性转换器将得到的矩图转换为纹理特征图像.  相似文献   

4.
陈静 《河北农业科学》2010,14(5):119-121
为了提高遥感影像分类精度,将影像中的纹理信息作为提取的重要特征,用基于灰度共生矩阵的纹理量的分类法和基于J5判据的最小距离分类法,计算并提取TM5波段最能反映类别差异的纹理特征及组合。以沈阳某一地区为试验区,对图像进行综合分析,试验结果显示:最优组合是直方图的均值m1、对比度CON和灰度共生矩阵的熵H、逆差矩HOM。将利用此组合的分类结果与监督分类结果进行对比,结果表明:将纹理特征应用于图像分类中可区分光谱混淆的地类,分类精度高于单纯光谱的分类精度。  相似文献   

5.
马尾松毛虫危害下的马尾松纹理特征分析   总被引:1,自引:0,他引:1  
以福建省沙县为研究区,以地面调查数据为辅助,应用Landsat 8 OLI多光谱遥感数据提取健康、轻度、中度与重度4个虫害等级危害下的马尾松纹理特征,借助空间距离法、相关系数法、光谱角制图法分别建立虫害等级区分标准,定量描述4种虫害等级下的马尾松纹理特征,对比不同分析结果,挖掘松毛虫危害下的林分纹理特征响应机制。结果表明:(1)利用单因素方差分析法选定Mea1、Mea4、Mea7等3个纹理特征量作为具显著性差异纹理量进行纹理特征分析;(2)对比3种方法的区分精度大小:相关系数法(80.0%)光谱角制图法(75.0%)空间距离法(60.0%),对比准确率大小:相关系数法(91.2%)=光谱角制图法(91.2%)空间距离法(85.0%);(3)通过构建具显著性差异纹理量可以较有效地提取马尾松毛虫害信息;虫害等级跨度越大,基于纹理特征提取马尾松信息效果越好。  相似文献   

6.
遥感影像的光谱特征和空间纹理特征是提取沙地信息的关键因素,数据融合可以弥补二者的不足。利用主成分变换、乘积变换和比值变换3种不同的融合方法,对Landsat ETM+遥感影像进行自身空间分辨率融合,并对融合结果进行主观目视判读评价和客观数理统计评价。评价结果表明比值法效果最好,光谱失真较小,空间纹理特征明显增强,主成分变换次之,乘积法最差。  相似文献   

7.
以杭州市西湖区为例,根据研究区域地物在World View-2遥感影像的特征差异进行区域划分。在每个分区内采用不同的多尺度和方式进行分割,构建多层次结构,综合利用光谱、形状、纹理等特征变量;采用CART决策树分类算法,选择最优特征及节点阈值分区域对杭州市西湖区的植被绿地信息进行提取;采用Jeffries-Matusita(J-M)距离法,确定纹理窗口尺度并筛选纹理特征。结果表明:本研究利用可分离指数J-M距离法得到影像地物草地、农用地、灌木、乔木最佳纹理窗口尺寸分别为5×5、11×11、13×13、13×13,对纹理尺度的选择和纹理特征的降维极大地提高了信息提取的精度及效率;基于面向对象的CART决策树分类法的总体分类精度相比基于像元的最大似然法的精度从76.53%提高到88.56%,Kappa系数从0.711 7提高到0.862 3,绿地平均用户精度从72.73%提高到84.63%;同时比常规的面向对象的方法更快速灵活地确定分类特征及阈值,大幅度地提高了提取效率及精度。  相似文献   

8.
农作物种植结构遥感提取研究进展   总被引:35,自引:2,他引:35  
农作物种植结构信息对农业生产管理、农业可持续发展及国家粮食安全等具有重要意义。本文中概括了农作物种植结构遥感提取的理论基础,归类了近10年间不同农作物种植结构遥感提取技术方法,重点评述了不同技术方法的特点及应用情况,讨论和展望了未来农作物种植结构遥感提取研究的发展方向。当前,光谱特征、时相特征和空间特征是农作物种植结构遥感提取的三大理论基础。基于单一影像源的种植结构提取方法操作简单,但往往难以获取种植结构“最佳识别期”的遥感影像;基于多时序影像源的种植结构提取方法可以充分利用农作物季相节律特征,成为当前农作物种植结构遥感提取的主流方法。在基于多时序影像源的种植结构提取方法中,多特征参量法较单一特征参量法更适用于农作物种植结构复杂区域,基于多特征参量的统计模型法一定程度上解决了混合像元问题,但模型的鲁棒性有待提高。此外,遥感与统计数据融合的农作物种植结构提取法在国家及全球大尺度的农作物种植结构提取中具有优势,但较低的制图分辨率使得数据产品的区域适宜性较差。未来农作物种植结构遥感提取将以区域“作物一张图”为目标,充分发挥多源数据组合利用的优势,围绕多类型作物同步提取和大范围作物种植结构提取开展深入研究,重点加强遥感数据预处理、特征参量提取和分类器高效选择等关键技术研究,从而提升农作物种植结构遥感提取的时空尺度,满足多方位的农业应用需求。  相似文献   

9.
基于ETM~+的遥感影像信息提取研究   总被引:2,自引:0,他引:2  
以沈阳市苏家屯区为试验区,对ETM+图像的光谱信息和纹理信息进行综合分析,以达到提高影像分类精度的目的.利用光谱信息提取水体、植被;采用基于灰度共生矩阵的纹理量的分类法,通过TM5波段提取灰度共生矩阵和灰度联合矩阵,计算并提取最能反映类别差异的纹理量值将光谱信息混淆的水田、旱田、居民地用分离,得到最终的分类结果.结果表明:将纹理特征应用于图像分类中可区分光谱混淆的地类,光谱与纹理特征结合得到的分类精度要高于单纯光谱的分类精度.  相似文献   

10.
基于小波变换的遥感影像纹理信息提取   总被引:1,自引:0,他引:1  
小波变换作为一种时间-频率分析方法,具有变焦性、对称性、正则性等特点,而纹理反映的是遥感影像中DN值的空间排列规律,利用小波提取遥感影像中的纹理特征信息,具有独特的优势.特别是结合金字塔状结构的小波变换和树状结构的小波包变换,提取的纹理特征信息在地质上具有重要应用价值.该研究以漠河县西北部砂宝斯的遥感影像为例,结合影像特点及应用目的,运用小波变换方法,提取了具有方向性的遥感纹理信息.  相似文献   

11.
以福建沙县为研究区,以SPOT-5影像为数据源,采用灰度共生矩阵方法提取健康林分与受害林分的纹理特征,构建最佳纹理量,分别采用像元统计和面向对象的方法进行虫害信息提取,结果精度分别为72.00%、74.75%。研究结果证明了利用遥感影像纹理特征进行马尾松毛虫害监测的可行性,为利用融合影像光谱信息与纹理信息进行虫害信息提取研究提供了实例支撑和技术参考,同时面向对象的方法优于传统的基于像元统计的分类方法,精度稍高,"椒盐现象"也有所改善。  相似文献   

12.
以滁州市为例,结合水稻物候的特征波段,选用反映水稻物候期时相的TM数据,并基于多特征波段,构建CART决策树分类提取水稻种植面积。结果表明,植被指数、湿度因子、绿度因子、纹理特征等多特征参与CART决策树分类能够提高总体精度。基于光谱信息、植被指数和纹理特征的决策树分类的总精度比以最大似然法进行的监督分类方法提高了6.942 1百分点,Kappa系数提高了0.110 4。合理选用作物物候期数据及其遥感影像的特征波段能够有效降低分类误差,为地形复杂地区获取作物种植面积提新的方法。  相似文献   

13.
土壤盐渍化是制约黄河三角洲农业发展的关键问题,及时准确地掌握土壤盐渍化信息对土地资源保护和开发利用具有积极意义。本研究以黄河三角洲核心区域垦利区2019年4月17日的Sentinel-2遥感影像为数据源,在ENVI和e Cognition软件支持下,利用灰度共生矩阵法提取遥感影像的二阶矩、对比度、熵、相关性等纹理特征信息,结合归一化植被指数(NDVI)、盐分指数(SI)等光谱特征信息,通过预设分类规则实现对黄河三角洲垦利区的盐渍土分类。结果表明,加入二阶矩、对比度、熵、相关性4个纹理特征统计量,再结合光谱信息对垦利区盐渍土进行分类,总体分类精度为92.4%,Kappa系数为0.89,相较于仅利用光谱信息的分类方法,总分类精度提高了10.5个百分点;各分类类别的生产者精度与使用者精度较仅依靠光谱信息分类的分类结果均明显提高,其中中度盐渍土的分类效果最好,其生产者精度与使用者精度最高,分别为95.0%、95.9%。本研究提出利用遥感光谱结合纹理特征实现滨海区盐渍土信息的提取方法,提高了盐渍土分类精度,为准确掌握研究区土壤盐渍化信息提供了新途径。  相似文献   

14.
针对区域尺度森林地上生物量的分布情况,以大兴安岭生态观测站为例,提出了一种融合光学影像纹理和机载LiDAR点云特征的森林地上生物量遥感估测方法。该方法首先提取Landsat 8 OLI不同波段在不同运算窗口下的纹理特征;然后对机载LiDAR点云进行滤波提取地面点,并利用地面点对点云数据进行高度归一化处理,提取点云特征因子;最后结合提取的遥感特征因子,利用支持向量回归的方法对研究区森林地上生物量进行估测,并对结果进行精度验证。结果表明:不同波段和窗口尺寸的建模精度差异较大,蓝光波段在7×7运算窗口下模型精度最高(R~2=0.73,R_(MSE)=22.32 t/hm~2);点云高度分位数变量的建模精度呈正态分布,变量H_(50)的建模精度最高(R~2=0.75,R_(MSE)=19.24 t/hm~2);与单一的遥感特征变量相比,融合光学影像纹理和机载LiDAR点云特征的模型精度有了一定提高,且针叶林和混交林的估测R_(MSE)分别为19.63和20.40 t/hm~2。因此,该方法可以为区域性的森林地上生物量估测提供有效参考。  相似文献   

15.
利用MODIS和Radarsat-2遥感数据对大连新港2010年7月16日的海上溢油信息进行提取分析,经过预处理的MODIS遥感数据,采用波段运算提取出溢油信息。较高分辨率的Radarsat-2数据经过几何校正、滤波等预处理,根据溢油的特点采用纹理分析法提取出边界明显的溢油信息,并与MODIS的溢油结果进行比较分析,排除MODIS图像上的非溢油信息,实现两种数据的优势互补。利用ArcGIS 9.3软件分别对2010年7月18日的MODIS数据和2010年7月19日的Radarsat-2数据提取出的溢油区域进行面积计算,其结果分别为174km2和198 km2与中国海监船的报道相符合,说明了此方法的可行性。  相似文献   

16.
基于无人机可见光遥感影像的耕地精准分类方法研究   总被引:2,自引:0,他引:2  
无人机可见光遥感具有使用成本低、操作简单、实时获取遥感影像、地面分辨率高等优势。提出了一种利用无人机可见光遥感影像进行耕地精准分类的方法,以广东省惠州市惠东县铁涌镇石桥村部分耕地的可见光遥感影像为研究对象,对耕地的面积信息、形状信息以及位置信息进行监测和提取,采用面向对象法对影像中两种基于可见光波段的植被指数、纹理信息、形状信息进行分析,研究出分类提取耕地信息的较佳方案。经过反复实验确定分割尺度45、合并尺度90为分割参数,同时利用波段信息和纹理信息对未种植作物耕地和其他地物进行分离。该方法总体精度为89.23%,Kappa系数为0.72。实验结果表明利用无人机可见光遥感数据对耕地进行分类虽然存在一些细碎地块被错提、误提的情况,但总体精度仍然保持在一个很高的水准,可以为耕地作物分类提供参考,为实现精准农业提供精准的数据基础。  相似文献   

17.
利用遥感影像提取裸地是监测裸地空间分布的一个重要手段。针对目前普遍存在的边界不清晰、空间信息丢失、小面积裸地漏提和与高反射率建筑不易区分等问题,设计了一种改进DenseNet的遥感裸地提取深度学习模型,主要采取密集连接块、坐标卷积和密集空洞空间金字塔3种方法,增强DenseNet模型在获取坐标信息、丰富裸地空间特征信息、对全局上下文信息感知等方面的能力,减少模型对于空间细节特征丢失环节,提高裸地遥感提取的精度。实验表明,该方法提取裸地的总精度为97.66%、交并比为68.69%、综合评价指标F1为81.44%、召回率为76.62%以及虚警率为25.68%,明显优于其他机器学习方法和深度学习方法。此外,该模型对于多源遥感影像上的裸地提取也具有良好的普适性,在高分一号、高分六号和哨兵二号等遥感数据集上测试的总精度分别为95.80%、93.00%和92.55%;交并比分别为75.18%、75.13%和50.47%;综合评价指标分别为85.83%、85.80%和67.08%。因此,改进的DenseNet模型方法较其他方法更适用于裸地的提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号