首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 750 毫秒
1.
为实现快速准确地测量土壤的全氮含量,以北京地区粘壤土为样本,对其进行化学测量和光谱分析。利用波长为350~2 500 nm的光谱数据与实际测得的全氮含量进行相关性分析,选取相关性最大的特征波段构建土壤全氮含量的估算模型。将原光谱反射率和吸光度分别进行一阶微分、二阶微分变换,力求建立精准优化的土壤全氮含量预测模型。结果表明:反射率和吸光度与土壤全氮含量的相关性低,无法用于构建土壤全氮含量预测模型。在其他变换形式中,反射率二阶微分和吸光度二阶微分与土壤全氮含量的相关性最显著,相关系数的绝对值最大分别为0.868和0.846。相关性最大的特征波段为425~527 nm、819 nm、1 390~1 391 nm和2 200~2 219 nm。采用一元线性回归和多元逐步回归建立预测模型,最终得到土壤全氮含量最优估算模型以吸光度二阶微分为自变量的多元逐步回归模型,说明光谱结合多元逐步回归法预测土壤全氮含量的方法是可行的。最优模型决定系数R2为0.829,统计量F为86.377,均方根误差RMSE为0.104。该模型可用于预测北京地区粘壤土的土壤全氮含量。  相似文献   

2.
任志尚  彭慧慧  贺壮壮  杜娟  印祥  马成业 《农业机械学报》2020,51(S2):466-470,506
为了快速检测面条中马铃薯全粉含量,研究近红外高光谱成像技术定量检测面条中马铃薯全粉含量的可能性,自制了马铃薯全粉质量分数在0~35%内随机均匀分布的120个面条样品,在900~2500nm范围采集高光谱图像,随机选取80个样品作为校正集,分别采用原始光谱和经过6种预处理方法预处理后的光谱建立了偏最小二乘回归、主成分回归、支持向量机回归模型。结果表明经标准化预处理后用偏最小二乘回归建模效果最好,校正集决定系数(R2C)为0.8653,交叉验证集决定系数(R2CV)为0.6914。用回归系数法在经过标准化预处理后的光谱数据中提取了与全粉含量相关的特征波长,建立了马铃薯全粉含量偏最小二乘回归简化模型, 校正集决定系数(R2C)为0.8685,交叉验证集决定系数(R2CV)为0.8021,基于特征波长建立的模型效果优于全波段模型,模型效果得到了一定的提高。以剩余40个未参与校正模型建立的样品作为预测集,基于特征波长建立了标准化-偏最小二乘回归简化预测模型,预测集决定系数(R2P)为0.8546,模型具有较好的预测能力。结果表明利用近红外高光谱成像技术可检测面条中马铃薯全粉含量,可为马铃薯全粉面条的快速无损检测建立新的方法。  相似文献   

3.
土壤有机质含量田间实时测定方法   总被引:3,自引:0,他引:3  
为了实现对土壤有机质含量的快速测定,以关中塿土为材料,研究基于光谱分析的土壤有机质含量测定方法。首先用机载便携式近红外频谱仪采集土壤样本在波长900~1 700 nm范围的漫反射光谱,并对异常样本进行判别和剔除以提高建模精度,在比较2种不同样本划分方法对模型影响的基础上,用连续投影算法(SPA)对建模变量进行最优波长选择,然后通过3种线性建模方法对有机质含量预测结果进行分析,探明偏最小二乘法(PLS)方法效果最好,并建立了径向基(RBF)神经网络预测模型。测试集样本实验结果表明,用PLS建立的预测模型有机质含量测定值和预测值之间的决定系数为0.801 9,均方根误差为0.179 4;用RBF神经网络建模的决定系数和均方根误差分别为0.828 1和0.164 6,两种模型均具有较高的精度,可对有机质含量进行快速预测。  相似文献   

4.
基于卤钨灯光源和多路光纤的土壤全氮含量检测仪研究   总被引:1,自引:0,他引:1  
为了克服LED作为主动光源的土壤全氮含量检测仪波段单一、光强信号较弱、仪器信噪比难以提高的不足,基于卤钨灯光源和特制多路光纤设计了一款便携式土壤全氮含量检测仪。检测仪选用1108、1248、1336、1450、1537、1696nm作为土壤全氮敏感波长,选用高功率卤钨灯作为光源以提高信号强度,采用“一分六”特制光纤实现1路入射光通道和6路反射光通道。性能试验表明,调理电路和卤钨灯光源工作稳定,并且卤钨灯作为主动光源测量精度更高,“一分六”石英光纤测量精度高于其他类型光纤。根据检测仪吸光度和土壤全氮含量标准值建立了不同预测模型,结果表明,采用PLS建模精度最高,建模R2C为0.8613,验证R2V为0.8042,可以用于检测仪模型嵌入。田间试验结果表明,检测仪测量值和标准值的相关系数达到0.8280。设计的检测仪测量精度较高,可以满足田间快速准确检测的目的。  相似文献   

5.
北京典型耕作土壤养分的近红外光谱分析研究   总被引:1,自引:0,他引:1  
以北京郊区试验田采集的72个土壤样品为实验材料,应用傅里叶变换近红外光谱技术,分析了土样的全氮、全钾、有机质和pH值养分含量。采用偏最小二乘法(PLS)对光谱数据与土壤养分实测值进行回归分析,建立预测模型,以模型决定系数(R2)、校正标准差(RMSECV)、预测标准差(RMSEP)和相对分析误差(RPD)作为模型精度的评价指标。分析结果:土壤的全氮模型R2为95.44%,RMSECV为0.014 1,RMSEP为0.016 8,RPD为4.68;有机质模型R2为89.63%,RMSECV为0.37,RMSEP为0.47,RPD为3.11;全钾模型R2为85.62%,RM-SECV为0.173,RMSEP为0.204,RPD为2.64;pH值模型R2为87.33%,RMSECV为0.031,RMSEP为0.053,RPD为2.81。  相似文献   

6.
采集添加生物炭的土壤(标记为ABS)和不添加生物炭的土壤(标记为CS),获取其近红外光谱,通过预处理算法和偏最小二乘法(partial least squares,PLS)建立两种土壤氮含量预测模型。试验结果显示,CS和ABS分别经过Baseline和Smoothing预处理的预测模型效果最好,定向系数(determination coefficient,R2)分别为0.913和0.753,预测均方根误差(root mean square error of prediction,RMSEP)分别为0.093和0.753,利用近红外光谱可对两种土壤氮含量建模预测。研究了生物炭对土壤光谱及建模的影响,结果表明,添加生物炭会改变土壤成分含量,使近红外光谱和建模不同于普通土壤,而联合建模可减小差异的影响,取得较好的预测效果,联合建模结果显示,经过Smoothing预处理的预测效果最好,R2为0.907,RMSEP为0.086。  相似文献   

7.
为研究波长选择方法对稻谷千粒质量近红外光谱分析(NIRS)模型预测能力的影响,用偏最小二乘法(PLS),在600~1 100 nm的波长区间,建立稻谷千粒质量的全光谱近红外光谱预测模型,得到模型的内部交叉验证系数为0.714,外部验证决定系数为0.659,内部交叉验证误差和预测误差分别为1.809和1.756。采用相关系数法、互信息法、逐步回归法、无信息变量消除方法、遗传算法和间隔偏最小二乘法对建模波长区间进行选择和优化,再以同样的方法建立稻谷千粒质量NIRS预测模型。结果显示,通过波长选择和优化后,不仅参与建模的波长显著减少,而且所建模型的内部交叉验证和外部验证决定系数均有所增大,交叉验证误差和预测误差均有所减小。其中,采用遗传算法进行波长选择后,所建模型的内部交叉验证和外部验证决定系数最大,分别为0.729和0.710,交叉验证误差和预测误差则分别降低了9.50%和5.72%,是6种方法中最优的。表明经过波长选择后,可以提高稻谷千粒质量近红外光谱预测模型的预测能力。  相似文献   

8.
针对土壤悬液组分复杂以及单输入变量时电极预测精准度有限的问题,以提高离子选择电极预测土壤硝态氮含量精准度为目标,建立基于多参数融合的支持向量机(SVM)土壤硝态氮预测模型。采用灰色关联分析法对影响电极法测定土壤硝态氮的主要干扰因素进行排序,建立以主干扰因素及硝酸根电极检测电势的多参数融合SVM预测模型,并与传统Nernst模型和干扰因素全输入下的SVM模型作对比验证算法可行性。实验结果表明,土壤电导率、温度与Cl -电极检测电势为影响电极预测硝态氮精准度的主要干扰因素;输入参数为硝态氮电极检测电势、土壤电导率、温度与Cl -电极检测电势时,SVM土壤硝态氮预测模型效果最优,与光学法测定结果回归方程的调整决定系数为0.98,平均绝对偏差为3.38 mg/L,均方根误差为4.51 mg/L,基于多参数融合的SVM预测模型可显著提高电极法硝态氮检测精准度。  相似文献   

9.
准确预测冻融期土壤蒸发量,对于干旱半干旱地区水资源高效利用有着重要意义.基于传统极限学习机(ELM)输入权值与阈值随机给定导致预测结果精度不高的问题,提出了一种基于粒子群算法(PSO)优化极限学习机的冻融期土壤蒸发预测模型.以2016-2017年冻融期9个影响土壤蒸发的因素作为输入因子,实测土壤蒸发量作为输出因子,分别建立ELM模型、GA-ELM模型、PSO-ELM模型对冻融期土壤蒸发量进行预测.结果表明,对输入因子进行随机函数处理后可提高模型预测精度,PSO-ELM模型预测精度优于单一ELM模型和GA-ELM模型,其决定系数为0.9936,均方根误差为0.0109 mm/d,平均绝对误差为0.0079 mm/d,平均相对误差为4.91%,可用于冻融期土壤蒸发量的预测.  相似文献   

10.
曹永研  杨玮  王懂  李浩  孟超 《农业机械学报》2022,53(S1):241-248
为减少水分、粒度对传统方式选取特征波长建立的土壤有机质预测模型的影响,本文提出新的特征波长提取方法。采集中国农业大学上庄实验站土壤样本60份,将样本自然风干后一分为二,一份配成5个粒度梯度(粒径2~2.5mm、1.43~2mm、1~1.43mm、0.6~1mm、0~0.6mm),另一份过0.6mm筛后配成5个水分梯度(含水率5%、10%、15%、20%、25%)。通过标准仪器分别获取土壤有机质含量真值和土壤光谱信息,使用随机蛙跳算法进行特征波长提取,每个水分、粒度梯度下分别选取7个与土壤有机质含量真值相关性较高的波长作为对应梯度下选取的特征波长,分别建立多元线性回归(MLR)、偏最小二乘(PLS)、随机森林(RF)模型,结果表明:随着含水率增高,3种模型的建模集和预测集决定系数R2基本呈减小趋势;在2~2.5mm粒度梯度下,3种模型的建模集和预测集R2最低,在0~0.6mm梯度下,建模集和预测集R2最高,其余梯度下,建模集和预测集R2接近。结合滤光片带通范围(±15nm),挑选出水分梯度下相同或者接近的8个土壤有机质特征波长,粒度梯度下选取6个特征波长,最终结合化学键特性在水分梯度和粒度梯度下确定的14个特征波长下剔除了6个,确定8个特征波长:932、999、1083、1191、1316、1356、1583、1626nm。分别建立MLR、PLS、RF模型,结果表明:最终选取的有机质特征波长建立的3种模型建模集R2均不低于0.8、预测集R2均不低于0.75,其中PLS预测效果最佳,建模集、预测集R2分别为0.8809、0.8402。本研究所确定的有机质特征波长建立的模型具有更好的适用性和预测效果,相比于传统方式,一定程度上消除水分、粒度对预测的影响。  相似文献   

11.
土壤盐渍化是影响农业可持续发展的重要制约因素,为准确及时地获取土壤中盐分含量,实现盐渍化精准监测,以内蒙古自治区巴彦淖尔市五原县境内的覆被农田为研究对象,探讨无人机多光谱遥感平台结合机器学习模型估测不同深度土壤含盐量的可行性。首先,利用无人机搭载五波段多光谱相机获取研究区域高时空分辨率遥感图像数据,并同步采集地面不同深度处土壤盐分数据,使用皮尔逊相关系数法(PCC)、极端梯度提升(XGBoost)和灰色关联分析法(GRA)对构建的光谱指数进行优选;然后,采用决策树(DT)、反向传播神经网络(BPNN)、支持向量机(SVM)和随机森林(RF)4种机器学习方法建立植被覆盖下不同深度的农田土壤含盐量反演模型。结果表明,使用方案3(XGBoost-GRA)变量优选方法可以有效地筛选出敏感光谱指数,且基于此方法优选后的光谱指数建立含盐量估算模型的精度高于仅使用PCC或XGBoost法构建的反演模型。对比不同建模方法在不同土壤深度处的反演精度,可知随机森林RF模型整体表现最优,同时另外3种反演模型也取得了较好的预测效果,0~20 cm土壤深度处的预测效果是3个土壤深度中最优的,其中精度最高模型的决...  相似文献   

12.
基于PCA_SVR的油菜氮素光谱特征定量分析模型   总被引:4,自引:1,他引:4  
研究了采用光谱分析技术对油菜植株全氮进行定量分析的方法.采用逐步回归法对氮素的光谱特征波长进行选择,为克服光谱变量间多重共线性的影响,对变量进行了主成分分析(PCA),为提高模型的拟合优度,应用支持向量机回归(SVR)建立油菜氮素的定量分析模型.对不同氮素水平的油菜冠层光谱数据进行分析,结果表明,406、460、556、634、662、675nm的光谱反射率与油菜含氮量呈极显著相关.植株全氮SVR模型预测值与实测值的相关系数为0.89,模型的检验误差(RMSE)为2.51.  相似文献   

13.
为实现鲜枣内部综合品质的在线无损快速检测,利用可见/近红外光谱漫反射技术,针对完熟期壶瓶枣的内部品质,包括含水率、可溶性固形物含量、硬度、可溶性蛋白质含量、维生素C含量5项指标,分别采用竞争性自适应重加权算法(CARS)提取特征波长并建立最小二乘-支持向量机(LS-SVM)预测模型,硬度预测模型的相关系数和均方根误差分别为0.945 2和41.684 9,其余品质预测模型的相关系数均在0.923 0及以上、均方根误差均在3.779 2及以下。在此基础上,对5项品质指标进行了相关性分析,表明在0.01或0.05水平上两两指标间存在极显著或显著的相关性,故采用因子分析法构建了内部综合品质评价指标,建立了CARS-LS-SVM预测模型,结果表明该模型的相关系数和均方根误差分别为0.924 1和6.063 5,预测精度较高。研究表明,所建立的CARS-LS-SVM模型可有效实现鲜枣内部综合品质的评价。  相似文献   

14.
以醋糟有机基质为研究对象,采用便携式可见/近红外光谱仪获得基质样品的光谱信息,经过归一化和一阶微分预处理后,采用逐步回归法提取对有机基质全氮反应敏感的特征光谱,建立基于特征波长组合的线性回归模型.其中,以1 699、746、1 864和2 154 nm为特征波长的四元回归模型为最佳,其预测相关系数和预测均方根误差分别为0.933 4和1.04.结果表明,利用可见/近红外光谱技术,通过特征光谱的提取并建立相应的回归模型,可以实现对有机基质全氮含量的快速准确检测.  相似文献   

15.
土壤总氮和总磷含量的高光谱遥感预测   总被引:1,自引:0,他引:1  
用遥感技术监测土壤养分是精准施肥中的一个重要手段。为此,在对118个风干的土壤样本的室内反射光谱进行预处理的基础上,分析了土壤总氮和总磷浓度与预处理后的反射光谱的相关性。分别选用与总氮和总磷浓度具有较强相关性的3个波段(分别是684,724,1 890,2 002nm和2 342,1 092,639,2 262nm),用偏最小二乘方法建立了土壤总氮和总磷含量预测的高光谱分析模型。结果显示,利用预处理的反射光谱建立的土壤总氮与总磷模型的决定系数分别是0.842和0.622,其均方根误差分别是0.132g/kg和0.208g/kg。  相似文献   

16.
为提高热误差模型的预测能力,提出一种基于深度学习方法的数控机床热误差建模方法。利用模糊聚类法和灰色关联度分析法选取温度变量的热敏感点,采用深度自编码器(Stacked automatic encoder, SAE)网络从选出的输入样本中提取特征,构建特征集,然后使用遗传优化算法(Genetic optimization algorithm, GA)对BP神经网络参数进行寻优,从而提出一种基于SAE-GA-BP的数控机床热误差建模方法。以某大型龙门五面加工中心为实验对象,研究并选择了加工中心加工过程中的主要误差源——主轴热误差进行补偿,对主轴热误差深度学习模型和多元回归模型进行了分析对比。结果表明,在预测精度方面所提出的建模方法优于传统多元回归模型,从而验证了该建模方法的可行性和有效性。  相似文献   

17.
叶绿素含量是评价植物生长状况以及光合作用能力的重要指标。通过叶绿素测定仪实地测定表征紫丁香叶片的叶绿素含量的SPAD(soil plant analysis development)值,利用高光谱图像技术和机器学习算法反演推算紫丁香叶片叶绿素的含量。针对数据采集时噪声信息的干扰、相邻波段间相关性强、冗余信息多的问题,利用空洞卷积去噪自动编码器(Atrous Convolutional Denoising Auto Encoder,Atrous-CDAE)将原始高光谱数据由204维减少到51维,并减少噪声干扰。结合1DCNN建立紫丁香叶片叶绿素含量的预测模型,并与原始数据和其他4种数据处理方法进行比较。结果表明:相比于原始高光谱数据和其他数据处理方法,经Atrous-CDAE处理后的数据预测结果最佳,预测集中决定系数R2为0.972 3,均方根误差RMSE为1.326 6。利用Atrous-CDAE处理的数据与其他经典预测模型组合均取得较优的预测结果,表明Atrous-CDAE可有效地提取数据潜在表征。对其他数据结合本文所提1DCNN模型进行预测,其R2均在0.94以上,RMSE均在2以下,表明该预测模型具有一定的适应性。  相似文献   

18.
全氮含量是土壤肥力的核心指标之一,快速、准确测定耕层土壤全氮含量对农业生产具有重要意义.以南京市江宁区典型水稻田为研究对象,采用棋盘式布点法选取了60个点位,每个点位均在0~30 cm表土层进行取样,利用大疆精灵4多光谱无人机同时获取了土壤样本分别在5个波段(450,560,650,730,840 nm)的光谱反射率,通过土壤全氮含量与光谱反射率多元线性分析,揭示了光谱反射率数据特有的多重共线性问题,构建了基于岭回归的无人机遥感影像反演土壤全氮含量预测模型.计算结果表明,岭回归系数取0.12时,其回归R2达到了0.408,方差膨胀因子均在10以下,且回归系数具有统计学意义.基于岭回归的反演模型可以较好兼顾反演精度与光谱数据多重共线性问题.研究成果可为无人机遥感土壤氮素营养诊断提供理论依据.  相似文献   

19.
基于土壤水分的播深调整技术,需要对播种沟土壤水分进行测量,以便根据落种点处的土壤水分信息进行播种调节,改变播种策略。本文设计了一种可见光近红外(Visible and near-infrared,VIS NIR)式土壤水分传感器。使用高分辨率光谱仪采集不同水分梯度的土壤光谱数据,采用偏最小二乘回归法(Partial least squares regression,PLSR)进行建模分析,并结合多种数据降维方法进行变量筛选,得出不同土壤含水率的敏感波段分别在410、540、780、970 nm附近;通过对这4种波长进行组合建模分析,选择得出预测最优的VIS和NIR波长组合为410 nm和970 nm。采用这两种波长设计传感器,并进行实验室试验,结果表明:当传感器与被测土壤表面距离d较近时(0~3 mm),测量精度和稳定性最好;当d为0~3 mm、土壤质量含水率处于0.69%~28.45%时,真实值与预测值之间决定系数R2达到0.81,均方根误差(RMSE)为2.90%;当土壤质量含水率处于0.69%~22%时,真实值与预测值之间R 2提高至0.93,此时均方根误差降低为1.72%。通过析因试验得出,在显著性水平为0.05时,温度与光照强度对传感器正常工作没有明显影响。土槽试验表明,真实值与预测值之间R2为0.82,RMSE为1.23%,满足玉米等作物播种环节土壤水分的测量要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号