首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
在陕西关中地区研究了有限灌溉与旱地蓄水保墒栽培相结合的不同栽培模式和施氮量对冬小麦夏玉米轮作体系中硝态氮残留的影响。结果表明,种植五季作物后不同栽培模式0200.cm土壤剖面残留硝态氮平均在2183~29.kg/hm2之间,且残留的硝态氮主要集中在100200.cm土层。不同栽培模式相比,垄沟模式0200.cm土层的硝态氮残留量最高。随着种植年限和施氮量的增加,0200.cm土层硝态氮残留量随之显著增加。施用240kg/hm2氮肥,第五季作物收获后0200.cm土层硝态氮的残留量达477.kg/hm2;从第三季作物收获到第五季作物收获,残留硝态氮的增加量占这一时期氮肥施用量的比例高达51.6%。种植作物五季后,常规、节水和覆草模式在080.cm土层硝态氮残留量相对较低,而80.cm以下土层硝态氮残留量随着施氮量的增加明显增加。垄沟栽培模式在0200.cm土壤剖面残留硝态氮的量随施氮量增加显著增加,且在0120.cm土层硝态氮残留量明显高于其它模式。  相似文献   

2.
以在陕西关中土垫旱耕人为土区进行的连续6年定位试验为对象,研究了长期覆盖栽培及施氮量对玉米?小麦轮作体系下土壤有机质、全氮及土壤剖面硝态氮残留量和分布的影响。结果表明,不同栽培模式对土壤有机质和全氮含量的影响为覆草垄沟常规节水,其中覆草模式影响达显著水平。增施氮肥不同程度地提高了土壤有机质和全氮含量。经过12季玉米-小麦的轮作,不同栽培模式0~200cm土壤剖面硝态氮残留量为垄沟节水覆草常规,垄沟和节水栽培模式与常规栽培硝态氮累积量差异达显著水平。随种植年限和施氮量增加,0~200cm土壤中硝态氮累积量明显增加,施240kg·hm-2N(N240)处理0~200cm土壤硝态氮累积量显著高于施120kg·hm-2N(N120)处理。不同施氮量下硝态氮在0~200cm土壤剖面的分布存在差异,与不施氮(N0)和N120处理相比,N240处理下各栽培模式在120cm以下的土壤硝态氮含量随深度增加而显著增加。  相似文献   

3.
利用^15N同位素示踪技术研究了不同的施氮量和底追比例对小麦氮素利用和土壤硝态氮的影响。结果表明:底追比例均为5:5,处理2(纯氮施用量为168kg/hm^2)与处理1(纯氮施用量为240kg/hm^2)比较,处理2成熟期植株中土壤氮素的积累量,肥料氮的利用率均高于处理1的,但处理2的土壤硝态氮含量低;籽粒产量、蛋白质含量、湿面筋含量和面团稳定时间处理间无显著差异。纯氮施用量均为168kg/hm^2,氮肥全部用于拔节期追施的处理3与处理2比较,处理3成熟期植株中土壤氮素的积累量,籽粒蛋白质含量、面团稳定时间和0~40cm土层土壤硝态氮的含量均高于处理2的;肥料氮的利用率和籽粒产量处理间无显著差异。成熟期不同处理0~60cm土层土壤硝态氮含量均低于播种前,在60~80cm土层形成累积峰并高于播种前,但80cm以下层次与播前相比无明显差异。  相似文献   

4.
不同施氮量对夏玉米产量、氮肥利用率及氮平衡的影响   总被引:39,自引:0,他引:39  
通过田间小区试验研究了不同施氮量对夏玉米产量、氮肥利用率、硝酸盐淋溶及氮平衡的影响。结果表明,施氮对夏玉米子粒有显著的增产作用,但随施氮量的增加产量变化不大。氮肥利用率在9.2%-22.6%之间,随施氮量的增加而降低。施氮可明显提高0-160cm剖面土壤NO3^--N含量,而且随深度的增加NO3^--N含量呈降低趋势,累积峰主要在20—60cm之间。玉米收获后,随着施氮量的增加氮素的损失量增加,各施氮处理的硝态氮残留量在121~221kg/hm^2之间,以N250处理的残留量最高,残留率近65%。  相似文献   

5.
  【目的】  研究不同氮肥类型下缓释氮肥与尿素掺混对3个不同冬小麦品种生长发育、干物质累积量、产量、氮素转运、吸收利用效率以及土壤硝态氮残留的影响,探索适宜提高陕西关中地区冬小麦产量的氮肥配比,为该地冬小麦高效生产的肥料管理提供科学依据。  【方法】  本试验设置了4个氮肥处理,分别为纯尿素 (U)、纯缓释氮肥 (S)、缓释氮肥与尿素8∶2掺混 (SU1)、缓释氮肥与尿素6∶4掺混 (SU2),施氮量为180 kg/hm2;以不施氮肥 (N0) 为对照。选取关中地区农民主栽的3个冬小麦品种[小偃22 (XY22)、西农979 (XN979) 和郑麦379 (ZM379)]为试材,每个品种设5个处理。观测冬小麦在主要生育期的株高和叶面积指数,并分析冬小麦成熟期的干物质累积量、产量、植株氮素累积量和土壤硝态氮残留量。  【结果】  施氮量相等时,缓释氮肥与尿素掺施能显著促进冬小麦生长发育,增加冬小麦的产量和成熟期植株氮素累积量。SU2处理下不同冬小麦品种的株高、叶面积指数、产量和成熟期植株氮素累积量均达到最大值,且0—100 cm土层剖面硝态氮残留量最小。SU2处理下3个冬小麦品种的产量分别比U和S处理提高了31.81%~31.99%和9.66%~25.38%;营养器官的氮素向籽粒的转移率也分别提高了21.31%~51.12%和2.60%~20.78%。此外,缓释氮肥与尿素掺施能显著提高3个冬小麦品种的氮素吸收利用效率,显著促进开花后营养器官的氮素向籽粒转运,XY22、XN979和ZM379在SU处理下,冬小麦营养器官氮素转运对籽粒的贡献率分别为49.71%、48.32%和49.39%;在SU2处理下3个冬小麦品种的氮肥农学利用率和氮肥偏生产力均最大,分别为17.54和41.95 kg/kg、17.94和41.53 kg/kg、11.32和38.56 kg/kg。冬小麦收获后,XY22在SU2处理下0—100 cm土层硝态氮的残留总量在3个品种中最小, 为112.67 kg/hm2,比U处理下的硝态氮累积总量明显下降13.48%。这表明缓释氮肥与尿素掺施可以显著提高表层土壤硝态氮含量,减少硝态氮向土壤深层淋失,提高氮肥的利用效率。  【结论】  施氮量为180 kg/hm2时,缓释氮肥与尿素按6∶4掺混是本试验条件下冬小麦高效生产的最佳掺施比例。  相似文献   

6.
【目的】以秸秆还田定位试验为平台,探讨玉米秸秆还田配施氮肥对冬小麦产量、土壤硝态氮积累、氮素表观盈余和氮肥利用率的影响规律,明确砂姜黑土玉米秸秆全量还田条件下冬小麦生长季的最佳施氮量。【方法】试验以秸秆处理为主区,设秸秆还田和秸秆移除2个水平;施氮量为副区,设6个水平,分别为0、162.0、202.5、243.0、283.5、324.0 kg/hm2。测定了冬小麦播种前、拔节期、成熟期地上部植株含氮量,土壤0—20、20—40和40—60 cm硝态氮含量,小麦产量以及籽粒氮含量,计算了冬小麦生育期土壤的氮素表观盈余,小麦基施和追施氮肥的利用效率以及不同阶段的氮素盈余。【结果】玉米秸秆还田后小麦增产365 844 kg/hm2,增产率为4.2%9.3%,尤其以配施243.0 kg/hm2的增幅最高,产量达9858 kg/hm2。小麦整个生育期,秸秆还田显著增加了0—60 cm土层的土壤硝态氮累积量,而秸秆移除条件下,土壤硝态氮累积量与氮肥施用量相关,高量氮肥增加了硝态氮累积量,N施用量高于243.0 kg/hm2时,硝态氮累积量较小麦播种前增加19.8%28.6%。施氮均显著增加了植株氮素积累量;小麦播种到拔节期,植株的氮素积累量随基肥比例的增加而增加。小麦生育期不施氮处理表现为氮素亏缺,施氮处理显著增加了0—60 cm土层的土壤氮素盈余量,且随基肥、追肥量的增加而增加,盈余值每增加100.0kg/hm2,秸秆还田配施氮肥和单施氮肥的土壤剖面硝态氮积累量就会分别增加74.2和91.4 kg/hm2。秸秆还田配施氮肥提高了氮肥农学效率、植株地上部氮肥吸收利用率、籽粒氮肥吸收利用率,特别是在高氮肥时,基肥和拔节肥的利用率显著高于单施氮肥。在施氮处理间、相同氮肥施用下秸秆还田和移除处理间氮素收获指数均无显著差异。氮肥表观回收率随施氮量的增加而降低,基肥表观回收率显著高于拔节肥表观回收率。【结论】秸秆还田和施氮水平对小麦植株氮素的吸收转运没有显著影响,但可提高基施和追施氮肥的利用率,可增加土壤0—60 cm土层中硝态氮的含量。综合各项指标,冬小麦生长季玉米秸秆全量还田适宜的氮肥配施量为202.5 243.0 kg/hm2。  相似文献   

7.
水氮互作对冬小麦氮素吸收分配及土壤硝态氮积累的影响   总被引:6,自引:1,他引:6  
试验采用完全随机裂区设计,研究不同灌水和施氮处理对田间冬小麦氮素吸收转运分配以及成熟期土壤剖面硝态氮分布积累的影响.结果表明:冬小麦氮素吸收速率在拔节-开花期达到最大;阶段氮素吸收量、籽粒氮素积累量和氮收获指数均随灌水量的增加而增加,表现为W1500>W1200>W900>W0;施氮量超过150 kg/hm2时,籽粒氮素积累量、氮收获指数,拔节-成熟期的氮素吸收量不再显著增加;灌水和施氮均能增加冬小麦营养器官氮素转移量,氮素转运率随施氮量增加而增加,氮素转运贡献率随灌水量的增加而降低;冬小麦成熟期表层(0-20 cm)土壤硝态氮含量随着灌水量增加而降低,表现为W0>W900>W1200>W1500;相同灌水处理下,各土层硝态氮含量随施氮量的增加而增加,施氮处理能显著增加0-120 cm土层硝态氮含量,当施氮量超过150 kg/hm2时,随灌水量增加,土壤剖面中的硝态氮由上层向下层移动.  相似文献   

8.
【目的】明确玉米条带不同追施氮量对间作作物产量、 吸氮量和土壤硝态氮动态变化的影响,并阐明间作系统不同施氮量的后茬农学效应和环境效应。【方法】玉米和大豆播种时均施用相同的基肥(其中氮肥用量为N 45 kg/hm2),根据大喇叭口期玉米条带追施氮量的不同(N 0、 75、 180 kg/hm2)设置三个处理(N0、 N75、 N180),并且大豆生育期间均不追施氮肥,然后实时监测玉米和大豆各个关键生育期的生物量和土壤硝态氮动态变化,并对比分析各处理的后茬冬小麦产量和土壤硝态氮残留量。【结果】随着玉米条带追施氮量的增加,玉米条带生物量、 产量和吸氮量均无显著变化,而且玉米追施氮量的多少对大豆生物量、 产量和吸氮量没有明显影响。间作种植系统土壤硝态氮含量受到追施氮量的影响,氮肥追施后,020 cm土壤硝态氮含量显著上升,但2040 cm土壤硝态氮含量变化不大。追施氮量越多,玉米条带和大豆条带的土壤硝态氮含量也越高,作物收获后土壤硝态氮残留量也越高,玉米条带追施N 180 kg/hm2的间作系统作物收获后土壤硝态氮含量高出其他两个处理12%~25%。此外,后茬作物冬小麦产量、 吸氮量并未随着前茬间作系统施氮量的增加而增加,但小麦收获后的0100 cm土壤硝态氮残留却随着前茬间作系统施氮量的增加而增大,相对仅施用基肥而不追施氮肥的间作系统,前茬间作系统追施氮肥导致后茬小麦收获后土壤(0100 cm)硝态氮残留量增加了22.38%~70.18%。【结论】针对玉米与大豆间作种植模式,只施用玉米基肥(其中氮肥用量为N 45 kg/hm2)而不追肥,或者在施用基肥的基础上,仅在玉米条带上追施少量氮肥(N 75 kg/hm2),不会影响间作体系产量,还可降低后茬小麦0100 cm土壤中的硝态氮残留。  相似文献   

9.
灌溉与施氮对留茬免耕春小麦氮素吸收和氮肥损失的影响   总被引:1,自引:1,他引:0  
在甘肃省石羊河流域绿洲灌区,采用裂区设计大田试验,研究不同灌溉量(常规灌溉(327 mm)、节水20%灌溉(261 mm)、节水40%灌溉(196 mm))和施氮量(0,140,221,300 kg/hm^2)对留茬免耕春小麦植株吸氮量、收获期土壤硝态氮(NO3^--N)含量和氮肥损失的影响。结果表明,在留茬免耕农田中,灌溉量从196 mm增加到327 mm,小麦籽粒含氮量从1.55%增加到1.71%,植株吸氮量从134 kg/hm^2增加到190kg/hm^2。当施氮量超过221 kg/hm^2时,籽粒含氮量、秸秆含氮量、植株吸氮量不再显著增加。施氮300,221,140 kg/hm^2处理的植株吸氮量比不施氮处理的分别提高47%,37%和18%;在春小麦收获期,土壤表层(0-60 cm)NO3^--N含量随灌溉量增加而减少,随施氮量增加而增加,灌溉和施氮对60 cm以下土壤NO3^--N含量影响不明显。与不施氮处理相比,施氮300,221,140 kg/hm^2的氮肥损失分别为186,137,94 kg/hm^2。  相似文献   

10.
  【目的】  当前华北平原冬小麦–夏玉米生产中,存在氮肥投入量大、氮肥利用效率低等问题,在滴灌水肥一体化条件下研究施氮量对冬小麦–夏玉米周年产量、氮素利用效率和土壤全氮含量、硝态氮残留的影响,以期为该地区小麦–玉米节肥、高产高效的栽培模式提供理论依据。  【方法】  于2018—2020年在青岛农业大学胶州现代农业示范园开展小麦、玉米滴灌施肥田间试验。设冬小麦/夏玉米生长季不施氮(N0)和施氮 150/150 kg/hm2 (N1)、210/225 kg/hm2 (N2) 和270/300 kg/hm2 (N3) 4个水平,以传统施肥方式和常规施氮量240/240 kg/hm2为对照(CK)。分析冬小麦和夏玉米产量、氮素吸收量和土壤氮素残留量。  【结果】  N2处理冬小麦、夏玉米产量最高,与N3处理无显著差异,但显著高于N0、N1和CK处理;N3处理冬小麦、夏玉米的干物质积累量、氮素吸收量最高,与N2处理差异较小,而显著高于N0、N1和CK处理。冬小麦、夏玉米氮肥偏生产力随着施氮量的提高而降低;冬小麦季氮素利用效率随着施氮量的提高而降低;夏玉米季,N2、N1和N0处理的氮素利用效率显著高于N3和CK处理,且N0、N1和N2处理间无显著差异;冬小麦、夏玉米氮肥农学利用率均随着施氮量的提高而降低,N2施氮水平下,氮素利用效率和氮肥农学利用率均表现较优。随着施氮量的增加,0—100 cm土层土壤全氮含量和硝态氮含量呈增加的趋势,全氮积累主要集中在0—40 cm土层,N3、N2和CK处理0—100 cm土层土壤全氮含量与N0和N1处理之间的差异随着轮作年数的增加而逐渐增大,N2处理较N3和CK处理有效抑制了硝态氮在表层土壤的积累和向深层土壤的迁移,降低了硝态氮淋失风险。  【结论】  冬小麦季施氮210 kg/hm2和夏玉米季施氮225 kg/hm2 (N2)可实现周年作物增产高效,提高氮素利用效率,显著降低硝态氮向深层土壤迁移,降低硝态氮淋失风险,是滴灌水肥一体化下华北平原麦玉周年轮作适宜的施氮量。  相似文献   

11.
在每公顷产9000 kg小麦的高产条件下,以济麦22为试验材料,设置全生育期不灌水(W0)、底墒水(W1)、底墒水+拔节水(W2)、底墒水+拔节水+开花水(W3)、底墒水+开花水 (W4) 5个灌溉处理,每次灌水60 mm,研究了灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响。结果表明:1)与不灌水处理(W0)相比较,灌水处理显著增加了小麦植株氮素积累量、子粒氮素积累量和开花后营养器官氮素向子粒的转移量;随着灌水量的增加,成熟期小麦植株氮素积累量、开花后营养器官积累的氮素向小麦子粒转移量和转移率均呈现先增加后降低的趋势,以W2处理最高。2)随着小麦生育进程的推进,0—200 cm土层土壤硝态氮含量先降低后回升再降低,在拔节期最低。成熟期,W0处理0—40 cm土层的土壤硝态氮含量显著高于灌水处理;随灌水量的增加,100—160 cm土层土壤硝态氮含量增加,W2处理显著低于W3和W4处理;160—200 cm土层的土壤硝态氮含量无显著差异。3)随灌水量的增加,氮素吸收效率、氮素收获指数和氮肥生产效率先增加后降低,W2处理最高;而氮素利用效率则呈逐渐降低趋势,其中W0处理的氮素利用效率显著高于其他处理,W2、W3、W4处理间无显著差异。在本试验条件下,综合考虑氮素利用、子粒产量和土壤中硝态氮的淋溶,底墒水和拔节水各灌60 mm的W2为最佳处理,可供生产中参考。  相似文献   

12.
高肥力稻田分次施氮对氮素淋失的影响   总被引:8,自引:5,他引:8  
通过自行设计的渗漏计研究在控水灌溉条件下稻田不同氮肥处理氮素淋失的动态规律,结果表明:在水稻整个生育期间,渗漏水中铵态氮、硝态氮保持较低的浓度,均小于1mg/L,但对硝态氮而言,仍是氮素淋失的主要类型。从总的趋势来看,渗漏水中氮素浓度随施肥量增加而增加。每次施肥后,不同处理渗漏水中的NO3--N浓度均表现为短期内迅速上升、后期逐渐下降的趋势,其中NH4 -N浓度与NO3--N消长规律相似,但表现出峰值超前的特征。各小区渗漏计中NH4 -N、NO3--N及TN累积渗漏量与施肥量之间存在显著相关性,R2分别达到0.933*,0.984**和0.982**。另外从环境和经济角度考虑,建议在土壤质地粘重、基础肥力较高的水稻土施肥量控制在75~150kg/hm2为宜,控制氮素淋失主要时期为施肥后一周内,特别在基肥施后尤为关键。  相似文献   

13.
冬小麦对基肥和追肥15N的吸收与利用   总被引:2,自引:1,他引:1  
【目的】 研究不同生育期 (花期、灌浆期和收获期) 肥料氮的去向和氮素的吸收运转对冬小麦产量形成的贡献。 【方法】 采用15N示踪结合盆栽试验,尿素N 90 mg/kg等分为基施和拔节期追施。分别在开花期、灌浆期和收获期破坏性取样,测定冬小麦地上部、根和土壤15N含量等指标。 【结果】 在整个生育期,冬小麦吸氮量42.8%来自土壤,57.2%来自肥料,其中来自基肥和追肥的比例分别为26.6% 和30.6%。冬小麦植株对氮肥15N 的吸收率随作物的生长而增加,从开花期到收获期增加了50%,15N氮肥在土壤中的残留率从开花期到收获期下降约50%。冬小麦收获后,约28.6%的肥料15N残留在土壤中,肥料15N损失率为33.9%,基肥氮的损失率比追肥氮高21%。冬小麦对肥料15N的全部回收率为37.5%,其中籽粒吸收量约是秸秆的4倍,64.9%的籽粒氮素从开花前营养器官吸收转运而来。 【结论】 在整个生育期,冬小麦吸收的氮素来源于肥料和土壤氮的比例约为6∶4,基肥和追肥氮对冬小麦氮素吸收具有同等贡献,在当前N 250 kg/hm2的施氮水平下,适当增加追肥氮的比例可以减少氮肥损失率。残留在土壤中的肥料氮对于补充土壤氮素消耗具有重要意义。   相似文献   

14.
为了解陕西省关中地区冬小麦小偃22氮、 硫吸收与转运及产量对硫肥的响应,通过大田试验研究了不同施硫水平下冬小麦的氮、 硫吸收转运规律和产量效应。结果表明, 全生育期内各器官的吸硫量随施硫量的增加而提高,吸氮量随施硫量的增加先升高后降低; 施硫促进了小麦花后营养器官氮、 硫向子粒的运转,氮素向子粒的转运率(71.40%~75.27%)远远高于硫素向子粒的转运率(8.52%~27.73%),同时增加了总转运量对子粒氮、 硫的贡献率。各器官中的 N/S 比随着施硫量的增加而降低,其中,孕穗期叶片中的N/S比变异最显著,与产量的相关性最好。子粒产量随施硫量的增加而增加,在施硫量为 S 150 kg/hm2时,增产幅度达30.1%。因此,在施硫量为S 37.5~150 kg/hm2 范围内,增施硫肥可促进冬小麦对氮、 硫的吸收和转运,提高单位面积穗数和每穗粒数,有显著增产效果。  相似文献   

15.
华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析   总被引:35,自引:13,他引:35  
通过田间试验研究了华北地区冬小麦/夏玉米轮作体系对氮素的环境承受力。结果表明,冬小麦和夏玉米达到最高产量时的施氮量分别是112和180.kg/hm2。氮肥利用率和农学利用率随施氮量的增加而降低,生理利用率表现出抛物线的趋势。在农户习惯施氮条件下,冬小麦和夏玉米的氮肥利用率分别是10%和6%,每千克氮肥分别增产2和3千克。灌水和集中降雨是引起土壤硝态氮明显下移的主要因素。氮素平衡计算的结果表明,低施氮量时,氮素盈余以残留Nmin为主,高量施氮则以表观损失为主。将收获后090.cm土壤中的硝态氮的量控制到150kg/hm2,可以在兼顾环境的前提下获得较高的产量;此时冬小麦季的施氮量是122.kg/hm2,产量(干物重)达到最高产量4331.kg/hm2;夏玉米季的施氮量是145.kg/hm2,产量(干物重)是7965.kg/hm2,达到最高产量的97%。  相似文献   

16.
秸秆还田下不同N肥用量的耦合试验研究表明,与单施N肥处理比较,秸秆还田能明显改善冬小麦的光合性能,提高小麦千粒重,进而提高小麦产量。秸秆还田下随施N量增加,小麦各时期光合速率和蒸腾速率显著提高,但当施N量超过225kg/hm2,反而引起光合性能降低。本试验结果表明,秸秆还田下配施N肥主要通过影响每hm2穗数影响产量,以秸秆还田配施N 225kg/hm2的处理为宜。  相似文献   

17.
徐晓峰  焦念元 《核农学报》2021,35(4):953-959
为明确氮肥减施对宽幅播种冬小麦产量和氮肥利用效率的影响,设置氮肥减施(减肥处理)、农户习惯施肥量(习惯施肥处理)、不施氮(无肥处理)3个处理,通过大田试验研究了不同处理冬小麦的群体动态、干物质积累特征、产量及其构成和氮肥利用效率的影响。结果表明,无肥处理的产量比习惯施肥处理低36.83%,而减肥处理的产量比习惯施肥处理高6.01%。无肥处理的最大茎蘖数显著低于习惯施肥处理,导致亩穗数和收获期生物量显著低于习惯施肥处理。减肥处理的最大茎蘖数也显著低于习惯施肥处理,但由于成穗率显著提高,亩穗数和收获期生物量与习惯施肥处理无显著差异。无肥处理的有穗单茎花后干物质积累量、花后干物质对籽粒的贡献率与习惯施肥处理无显著差异。而减肥处理的花后干物质积累量、花后干物质积累对籽粒的贡献率比习惯施肥处理分别显著提高39.70%和14.51个百分点。减肥处理的地上部氮吸收量与习惯施肥处理无显著差异,但氮收获指数提高2.97%,氮肥农学效率提高12.94%,氮肥偏生产力提高41.09%,氮肥利用率提高11.90个百分点。上述试验结果表明,宽幅播种配合氮肥减施可通过降低最大茎蘖数,提高成穗率,促进花后干物质积累及向籽粒分配,提高氮肥利用效率和产量。本研究为宽幅播种冬小麦实行氮肥减施提供了科学依据。  相似文献   

18.
不同类型专用小麦氮素吸收积累差异研究   总被引:17,自引:7,他引:17  
2000至2002年在田间条件下,研究3个不同类型专用小麦品种(强筋小麦皖麦38、中筋小麦扬麦10号和弱筋小麦宁麦9号)氮素吸收积累差异。试验结果表明,成熟期植株含氮率与子粒含氮率均以强筋小麦皖麦38最高,弱筋小麦宁麦9号最低。成熟期植株氮积累量为皖麦38最高,子粒氮积累量为扬麦10号最高。不同品种不同生育阶段吸收的氮素占一生总氮量的比例不同,弱筋小麦宁麦9号在出苗拔节期氮积累量占整个生育期中的比例较其它品种高,而强筋小麦皖麦38在开花成熟期较其它两个品种高。结果还表明,不同类型专用小麦品种每生产百公斤子粒所需吸收的氮量也不相同。  相似文献   

19.
水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响   总被引:3,自引:1,他引:2  
为给强筋小麦(Triticum aeativum L.)高产优质栽培的水、氮合理运筹提供理论依据,在高产地力条件下,选用强筋小麦品种济麦20,设置不施氮(N0)、施氮180 kg/hm2 (N1)、240 kg/hm2 (N2)3个施氮水平,每个施氮水平下设置不灌水(W0)、底墒水+拔节水+开花水(W1)、底墒水+冬水+拔节水+开花水(W2)、底墒水+冬水+拔节水+开花水+灌浆水(W3)4个灌水处理,每次灌水量均为60 mm,研究了水氮互作对麦田耗水量、土壤硝态氮运移、氮素利用效率和水分利用效率的影响。结果表明,(1)增加施氮量,开花期和成熟期0—140 cm各土层的土壤硝态氮含量显著升高;增加灌水时期,土壤硝态氮向深层的运移加剧,成熟期0—80 cm各土层的土壤硝态氮含量降低,120—140 cm土层的土壤硝态氮含量升高。N1W1处理在开花期0—60 cm土层的土壤硝态氮含量较高,成熟期土壤硝态氮向100—140 cm土层运移少,有利于植株对氮素的吸收。(2)随施氮量的增加,子粒产量先升高后降低,以N1最高。N1水平下,W1处理获得了较高的子粒产量、子粒氮素积累量、氮素利用效率、氮肥农学利用率和氮肥偏生产力;在此基础上增加冬水(W2),上述指标无显著变化;再增加灌浆水(W3),上述指标显著降低。(3)施氮提高了小麦对土壤水的利用能力,随施氮量增加,土壤供水量及其占总耗水量的比例显著升高。N1水平下,W1处理获得了最高的水分利用效率;再增加灌水时期,水分利用效率显著降低,开花至成熟阶段的耗水模系数显著升高,灌水量占总耗水量的比例升高,降水量和土壤供水量占总耗水量的比例降低。本试验条件下,施氮为180 kg/hm2,灌底墒水+拔节水+开花水3水的N1W1处理,是兼顾高产、高效的水氮运筹模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号