首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
REASONS FOR PERFORMING STUDY: Nuclear scintigraphy is commonly used as a diagnostic aid for foot pain, but there is limited information about different patterns of radiopharmaceutical uptake (RU) and their correlation with the results of other imaging modalities. OBJECTIVES: To describe patterns of RU in horses with foot pain. MATERIALS AND METHODS: Scintigraphic images of the feet of 264 horses with front foot pain were analysed subjectively and using region of interest analysis. Magnetic resonance images of all feet were analysed prospectively; the navicular bones were reassessed retrospectively and assigned a grade. A Spearman rank correlation test was used to test for a relationship between the scintigraphic grade of the navicular bone and magnetic resonance imaging (MRI) grade. Sensitivity and specificity of scintigraphy for detection of lesions in the deep digital flexor tendon (DDFT), the collateral ligaments (CL) of the distal interphalangeal (DIP) joint and the navicular bone were determined. RESULTS: Increased radiopharmaceutical uptake (IRU) was detected in: a) the navicular bone (36.6%); b) pool phase images in the DDFT (13.0%); and c) at the insertion of the DDFT on the distal phalanx (14.3%). There was focal IRU at the insertion of the medial or lateral CL of the DIP joint in 9.4% and 1.5% of limbs, respectively. There was IRU in the medial and lateral palmar processes in 7.6% and 3.4% of limbs, respectively. There was a significant positive correlation between the scintigraphy grade and total MRI grade for the navicular bone and no difference between either focal or diffuse IRU and total MRI grade. There was high specificity, but low sensitivity of scintigraphy for detection of MR lesions of the navicular bone, the DDFT and the CLs of the DIP joint. CONCLUSIONS: Positive nuclear scintigraphic results are good predictors of injury or disease of the navicular bone, DDFT and CLs of the DIP joint. However, a negative scintigraphic result does not preclude significant injuries. CLINICAL RELEVANCE: Nuclear scintigraphy is a useful tool in the investigation of foot lameness and may help to determine the significance of MR lesions, especially if >1 lesion is identified that may be contributing to lameness.  相似文献   

2.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the collateral sesamoidean ligaments (CSLs), distal sesamoidean impar ligament (DSIL), deep digital flexor tendon (DDFT), navicular bone, navicular bursa, distal interphalangeal (DIP) joint or collateral ligaments (CLs) of the DIP joint may contribute to palmar foot pain. METHODS: Feet were selected from horses with a history of unilateral or bilateral forelimb lameness of at least 2 months' duration that was improved by perineural analgesia of the palmar digital nerves, immediately proximal to the cartilages of the foot (Group 1, n = 32); or from age-matched control horses (Group 2, n = 19) that were humanely destroyed for other reasons and had no history of forelimb foot pain. Eight units of tissue were collected for histology: the palmar half of the articular surface of the distal phalanx, including the insertions of the DDFT and DSIL; navicular bone and insertion of the CSLs; DDFT from the level of the proximal interphalangeal (PIP) joint to 5 mm proximal to its insertion; synovial membrane from the palmar pouch of the DIP joint and the navicular bursa; CLs of the DIP joint and DSIL. The severity of histological lesions for each site were graded. Results were compared between Groups 1 and 2. RESULTS: There was no relationship between age and grade of histological abnormality. There were significant histological differences between groups for lesions of the flexor aspect, proximal and distal borders, and medulla of the navicular bone; the DSIL and its insertion and the navicular bursa; but not for lesions of the CSLs, the dorsal aspect of the navicular bone, distal phalanx and articular cartilage, synovium or CLs of the DIP joint. CONCLUSIONS: Pathological abnormalities in lame horses often involved not only the navicular bone, but also the DSIL and navicular bursa. Abnormalities of the navicular bone medulla were generally only seen dorsal to lesions of the FFC. POTENTIAL RELEVANCE: Adaptive and reactive change may be occurring in the navicular apparatus in all horses to variable degrees and determination of the pathogenesis of lesions that lead to pain and biomechanical dysfunction should assist specific preventative or treatment protocols.  相似文献   

3.
REASONS FOR PERFORMING STUDY: Causes of palmar foot pain and the aetiopathogenesis of navicular disease remain poorly understood, despite the high incidence of foot-related lameness. HYPOTHESES: Abnormalities of the deep digital flexor tendon (DDFT) may contribute to palmar foot pain; ageing degenerative changes may be seen in horses free from lameness; and horses with lameness are likely to have a greater severity of abnormalities than age-matched horses with no history of foot pain. METHODS: Feet were selected from horses with a history of uni- or bilateral forelimb lameness of at least 2 months' duration. Histology of the DDFT from the level of the proximal interphalangeal joint to its insertion were examined and the severity of lesions for each site graded. Associations between lesions of the navicular bone, collateral sesamoidean ligaments (CSL), distal sesamoidean impar ligament, navicular bursa, distal interphalangeal (DIP) joint synovium and collateral ligaments of the DIP joint and DDFT were assessed. RESULTS: There was no relationship between age and grade of histological abnormality of the DDFT. There were significant histological differences between groups for lesions of the dorsal layers of the DDFT, but not for lesions of the palmar aspect. There were significant associations between histological grades for the superficial dorsal layer of the DDFT and flexor aspect of the navicular bone; and between the deep dorsal layer of the DDFT and the proximal border and medulla of the navicular bone. The navicular bursa grade was correlated with grades for the superficial dorsal, deep dorsal and deep palmar layers of the DDFT. The histological grades for the CSL and the superficial dorsal layer of the DDFT were also associated. CONCLUSIONS: Pathological abnormalities in lame horses often involved the DDFT in addition to the navicular bone. Vascular and matrix changes may precede changes in the fibrocartilage of the navicular bone. POTENTIAL RELEVANCE: Identification of factors leading to vascular changes within the interstitium of the DDFT and changes in matrix composition, may help in future management of palmar foot pain.  相似文献   

4.
REASONS FOR PERFORMING STUDY: The diagnosis of foot-related lameness often remains elusive and it can be difficult to offer rational treatment, or to predict outcome. OBJECTIVES: To describe the spectrum of injuries of the foot identified using magnetic resonance imaging (MRI), to determine their relative prevalence among MRI diagnoses and to establish the long-term results of treatment. METHODS: The MR images of horses examined from January 2001--December 2003 were reviewed. Horses were selected for MRI if the pain causing lameness was localised to the foot using perineural analgesia but any clinical, radiological or ultrasonographic abnormalities were insufficient to explain the degree of lameness. The clinical significance of lesions identified using MRI was determined with reference to the results of local analgesia, radiography, ultrasonography and nuclear scintigraphy. Follow-up information was obtained in January 2004 for horses which had been examined 6-36 months previously and the outcome classified as excellent (horse returned to full athletic function without recurrent lameness), moderate (sound, but only in light work), or poor (persistent or recurrent lameness). RESULTS: One hundred and ninety-nine horses underwent MRI examinations. Deep digital flexor (DDF) tendonitis was the most common injury (59%) with primary injury in 65 horses (33%) and a further 27 horses (14%) having lesions of the DDF tendon and navicular bone. Seventeen percent of horses had injuries to multiple structures, including 24 with DDF tendonitis. Desmitis of a collateral ligament (CL) of the distal interphalangeal (DIP) joint was the second most common injury (62 horses, 31%), with primary injuries in 30 horses (15%) and a further 32 horses (16%) that had CL desmitis in conjunction with other injuries. Prognosis was best for horses with traumatic injuries of the middle or distal phalanges, with 5 of 7 horses (71%) having an excellent outcome. Horses with primary lesions of the DDF tendon or CL of the DIP joint had excellent results in only 13 of 47 (28%) and 5 of 17 horses (29%), respectively. Horses with combined injuries of the DDF tendon and navicular bone, or primary navicular bone abnormalities, had a poor outcome, with the majority of horses suffering persistent lameness. CONCLUSIONS: A wide variety of lesions associated with foot pain were identified using MRI, a high proportion of which were primary soft tissue injuries with a guarded prognosis for return to full athletic function. POTENTIAL RELEVANCE: It is now possible to propose more rational treatment strategies for the variety of foot injuries identified using MRI than had previously been possible; however, further information concerning aetiopathogenesis of these injuries is needed to improve their management.  相似文献   

5.
REASONS FOR PERFORMING STUDY: There have been no previously published case series of horses examined using either scintigraphy or MRI to diagnose collateral ligament injuries not detectable using ultrasonography or radiography, nor have other concurrent soft tissue lesions been described. OBJECTIVES: To describe the clinical features of horses with desmitis of the collateral ligaments of the distal interphalangeal (DIP) joint and to evaluate the results of radiographic, ultrasonographic, scintigraphic and magnetic resonance imaging (MRI) examinations. METHODS: Horses were examined between January 2001 and January 2003 and were selected for inclusion in the study if there was unequivocal evidence of collateral desmitis of the DIP joint based on ultrasonography or MRI. Subject details, case history, results of clinical examination and responses to local analgesic techniques were reviewed. The results of radiographic, ultrasonographic, scintigraphic and MRI examinations were assessed. RESULTS: Eighteen horses were identified with desmitis of a collateral ligament of the DIP joint, 3 horses (Group 1) based on ultrasonography alone, 7 (Group II) with positive ultrasonographic and magnetic resonance images and 8 (Group III) with no lesion detectable using ultrasonography, but lesions identified using MRI. Seventeen horses had forelimb injuries and one a hindlimb injury. The medial collateral ligament was injured most frequently (13 horses). In the majority of horses, no localising clinical signs were seen. Lameness was invariably worse in circles compared with straight lines. Lameness was improved by palmar digital analgesia in 16 horses (87%), but only 6 were nonlame. Intra-articular analgesia of the DIP joint produced improvement in lameness in 6/15 horses (40%). In 16 horses, no radiographic abnormality related to the DIP joint or collateral ligament attachments was identified. Eight of 14 horses (57%) had focal, moderately or intensely increased radiopharmaceutical uptake (IRU) at the site of insertion of the injured collateral ligament on the distal phalanx. Alteration in size and signal in the injured collateral ligament was identified using MRI. In addition, 5 horses had abnormal mineralisation and fluid in the distal phalanx at the insertion of the ligament. Eleven horses had concurrent soft tissue injuries involving the deep digital flexor tendon, distal sesamoidean impar ligament, navicular bursa or collateral ligament of the navicular bone. CONCLUSIONS AND POTENTIAL RELEVANCE: Collateral desmitis of the DIP joint should be considered as a cause of foot lameness. Although some injuries are detectable ultrasonographically, false negative results occur. Focal IRU at the ligament insertion on the distal phalanx may be indicative of injury in some horses. MRI is useful for both characterisation of the injury and identification of any concurrent injuries. Further follow-up information is required to determine factors influencing prognosis.  相似文献   

6.
Analgesia usually occurs within 5 min after administration of local anaesthetic solution into joints or around nerves in the distal portion of the limb. Gait should be assessed within 10 min after diagnostic regional analgesia of the distal portion of the limb because rapid diffusion of anaesthetic solution can result in anaesthesia of other nerve branches, thus confusing results of the examination. A palmar digital nerve block (PDNB) anaesthetises most of the foot, including the distal interphalangeal (DIP) joint (coffin joint), rather than just the palmar half of the foot, as was once commonly believed. To avoid partially anaesthetising the proximal interphalangeal joint (pastern joint), the palmar digital nerves should be anaesthetised near or distal to the proximal margin of the collateral cartilages. Clinicians should be aware that an abaxial sesamoid nerve block (ASNB) may ameliorate or abolish pain within the metacarpo/metatarso‐phalangeal joint (fetlock joint). Mepivacaine administered into the DIP joint desensitises the DIP joint and probably the palmar digital nerves to also cause anaesthesia of the navicular bursa, the navicular bone, the toe region of the sole, the digital portion of the deep digital flexor tendon (DDFT) and the distal portions of the collateral ligaments of the DIP joint. When a large volume of mepivacaine HCl (e.g. 10 ml) is administered, the heel region of the sole may also be desensitised. Only a small percentage of horses with disease of the collateral ligament(s) of the DIP joint show a significant improvement in lameness after intra‐articular analgesia of the DIP joint, and no horse is likely to improve after intrabursal analgesia of the navicular bursa. A PDNB, however, improves lameness substantially in most horses that are lame because of disease of the collateral ligament(s) of the DIP joint, and all affected horses are likely to become sound after an abaxial sesamoid nerve block. The degree of improvement in lameness associated with injury to one or both collateral ligaments of the DIP joint after PDNB is determined by the extent of the injury and the level at which the palmar digital nerves are anaesthetised. The further proximal the level of the injury within the collateral ligament, the less likely that lameness is ameliorated by analgesia of the DIP joint or a PDNB. Verschooten's technique appears to be the most accurate technique for centesis of the navicular bursa. Even though analgesia of the DIP joint results in analgesia of the navicular bursa, analgesia of the navicular bursa does not result in analgesia of the DIP joint. Pain arising from the DIP joint can probably be excluded as a cause of lameness when lameness is attenuated by analgesia of the navicular bursa. Analgesia of the digital flexor tendon sheath (DFTS) is likely to desensitise only structures that are contained within or border on the sheath itself (i.e. the superficial and deep digital flexor tendons, the straight and oblique distal sesamoidean ligaments, the annular ligaments of the fetlock and pastern, and the portion of the DDFT that lies within the foot). Because lameness caused by disease of the DDFT within the foot may fail to improve appreciably after analgesia of the palmar digital nerves, the DIP joint, or the navicular bursa, a portion of the DDFT within the foot and distal to the DFTS probably receives its sensory supply from more proximal deep branches of the medial and lateral palmar digital nerves that enter the DFTS. Performing intrathecal analgesia of the DFTS on horses with lameness that is unchanged after anaesthesia of the palmar digital nerves but resolves after an ASNB, may be useful in localising lameness to that portion of the DDFT that lies within the foot. Resolution of lameness after intrathecal analgesia of the DFTS justifies suspicion of a lesion within the digital portion of the DDFT or within structures contained within the DFTS. The belief that concurrent or sequential intra‐articular administration of medication substantially increases the risk of joint infection or that inflammation caused by the local anaesthetic solution may dampen the therapeutic response to intra‐articular medication appears to be unfounded.  相似文献   

7.
It was hypothesised that in solar bone images of the front feet of clinically normal horses, or horses with lameness unrelated to the front feet, there would be less than a 10% difference in the ratio of uptake of radiopharmaceutical in either the region of the navicular bone, or the region of insertion of the deep digital flexor tendon (DDFT), compared to the peripheral regions of the distal phalanx. Nuclear scintigraphic examination of the front feet of 15 Grand Prix show jumping horses, all of which were free from detectable lameness, was performed using dorsal, lateral and solar images. The results were compared with the examinations of 53 horses with primary foot pain, 21 with foot pain accompanying another more severe cause of lameness and 49 with lameness or poor performance unrelated to foot pain. None of the horses with foot pain had radiological changes compatible with navicular disease. All the images were evaluated subjectively. The solar views were assessed quantitatively using regions of interest around the navicular bone, the region of insertion of the deep digital flexor tendon and the toe, medial and lateral aspects of the distal phalanx. In 97% of the feet of normal showjumpers, there was <10% variance of uptake of the radiopharmaceutical in the navicular bone, the region of insertion of the DDFT and the peripheral regions of the distal phalanx. There was a significant difference in uptake of radiopharmaceutical in the region of the navicular bone in horses with foot pain compared to normal horses. There was a large incidence of false positive results related to the region of insertion of the DDFT. Lateral pool phase images appeared more sensitive in identifying potentially important DDFT lesions. There was a good correlation between a positive response to intra-articular analgesia of the distal interphalangeal joint and intrathecal analgesia of the navicular bursa and increased uptake of radiopharmaceutical in the region of the navicular bone in the horses with primary foot pain. It is concluded that quantitative scintigraphic assessment of bone phase images of the foot, in combination with local analgesic techniques, can be helpful in the identification of the potential source of pain causing lameness related to the foot, but false positive results can occur, especially in horses with low heel conformation.  相似文献   

8.
Reasons for performing study: Diagnostic navicular bursoscopy has been described in limited cases. Review of greater numbers is needed to define its contribution to case management and prognostic values. Objectives: To report: 1) clinical, diagnostic and endoscopic findings in a series of cases, 2) surgical techniques and case outcomes and 3) prognostic values. The authors hypothesise: 1) lameness localising to the navicular bursa is commonly associated with dorsal border deep digital flexor tendon (DDFT) lesions, 2) endoscopy allows extent of injuries to be assessed and treated, 3) case outcome relates to severity of DDFT injury and 4) the technique is safe and associated with little morbidity. Materials and methods: All horses that underwent endoscopy of a forelimb navicular bursa for investigation of lameness were identified. Case files were reviewed and those with injuries within the bursa selected for further analysis. Results: One‐hundred‐and‐fourteen horses were identified. Ninety‐two had injuries within the bursa and DDFT injuries were identified in 98% of bursae. Of those examined with magnetic resonance imaging (MRI), 56% had combination injuries involving the DDFT and navicular bone. Sixty‐one percent of horses returned to work sound, 42% returned to previous performance. Horses with extensive tearing and combination injuries of the DDFT and navicular bone identified with MRI, had worse outcomes. Conclusions: Lameness localising to the navicular bursa is commonly associated with injuries to the dorsal border of the DDFT. Endoscopy permits identification and characterisation of injuries within the navicular bursa and enables lesion management. Outcome following debridement is related to severity of injury but overall is reasonable. Potential relevance: Horses with lameness localising to the navicular bursa may have tears of the DDFT. Bursoscopy is able to contribute diagnostic and prognostic information and debridement of lesions improves outcome compared to cases managed conservatively.  相似文献   

9.
10.
OBJECTIVE: To examine articular cartilage of the distal interphalangeal (DIP) joint and distal sesamoidean impar ligament (DSIL) as well as the deep digital flexor tendon (DDFT) for adaptive responses to contact stress. SAMPLE POPULATION: Specimens from 21 horses. PROCEDURE: Pressure-sensitive film was inserted between articular surfaces of the DIP joint. The digit was subjected to a load. Finite element models (FEM) were developed from the data. The navicular bone, distal phalanx, and distal attachments of the DSIL and DDFT were examined histologically. RESULTS: Analysis of pressure-sensitive film revealed significant increases in contact area and contact load at dorsiflexion in the joints between the distal phalanx and navicular bone and between the middle phalanx and navicular bone. The FEM results revealed compressive and shear stresses. Histologic evaluation revealed loss of proteoglycans in articular cartilage from older horses (7 to 27 years old). Tidemark advancement (up to 14 tidemarks) was observed in articular cartilage between the distal phalanx and navicular bone in older clinically normal horses. In 2 horses with navicular syndrome, more tidemarks were evident. Clinically normal horses had a progressive increase in proteoglycans in the DSIL and DDFT. CONCLUSIONS AND CLINICAL RELEVANCE: Load on the navicular bone and associated joints was highest during dorsiflexion. This increased load may be responsible for microscopic changes of tidemark advancement and proteoglycan depletion in the articular cartilage and of proteoglycan production in the DSIL and DDFT Such microscopic changes may represent adaptive responses to stresses that may progress and contribute to lameness.  相似文献   

11.
Diagnostic analgesia of the distal interphalangeal (DIP) joint is theoretically helpful to localize the source of pain in the foot to the joint and/or navicular bursa. However, it has been suggested that potential diffusion of local anesthetic agent to nearby distal limb nerves may anesthetize other areas of the foot. The objective of this study was to compare the results of palmar digital (PD) and abaxial sesamoid (AS) nerve blocks to intra-articular anesthesia of the DIP joint in horses with distal forelimb lameness. Palmar digital nerve block (group 1) or PD and AS nerve blocks (group 2) were used to abolish digital pain in 22 horses. The following day lameness was again evaluated in all horses before and 2, 5, and 10 minutes after DIP joint anesthesia. All lameness evaluations were performed objectively with a body-mounted inertial sensor system (Lameness locator; Equinosis LLC, Columbia, MO). In group 1 horses, overall improvement in group lameness was the same after DIP joint block, but only six showed positive response after DIP joint analgesia, five after 2 minutes, and one after 5 minutes. In group 2 horses, overall improvement in lameness was less after DIP joint block, with seven showing a positive response after DIP joint analgesia, one after 2 minutes, four after 5 minutes, and two after 10 minutes. Intra-articular analgesia of the DIP joint and perineural analgesia of the digit result in overlapping but unequal areas of analgesia. In addition, a time-dependent response was observed after DIP joint block with full effect requiring 5–10 minutes.  相似文献   

12.
REASONS FOR PERFORMING STUDY: Analgesia of the palmar digital (PD) nerves has been demonstrated to cause analgesia of the distal interphalangeal (DIP) joint as well as the sole. Because the PD nerves lie in close proximity to the navicular bursa, we suspected that that analgesia of the navicular bursa would anaesthetise the PD nerves, which would result in analgesia of the DIP joint. OBJECTIVES: To determine the response of horses with pain in the DIP joint to instillation of local anaesthetic solution into the navicular bursa. METHODS: Lameness was induced in 6 horses by creating painful synovitis in the DIP joint of one forefoot by administering endotoxin into the joint. Horses were videorecorded while trotting, before and after induction of lameness, at three 10 min intervals after instilling 3.5 ml local anaesthetic solution into the navicular bursa and, finally, after instilling 6 ml solution into the DIP joint. Lameness scores were assigned by grading the videorecorded gaits subjectively. RESULTS: At the 10 and -20 min observations, median lameness scores were not significantly different from those before administration of local anaesthetic solution into the navicular bursa (P > or = 0.05), although lameness scores of 3 of 6 horses improved during this period, and the 20 min observation scores tended toward significance (P = 0.07). At the 30 min observation, and after analgesia of the DIP joint, median lameness scores were significantly improved (P < or = 0.05). CONCLUSIONS: These results indicate that pain arising from the DIP joint can probably be excluded as a cause of lameness, when lameness is attenuated within 10 mins by analgesia of the navicular bursa. POTENTIAL RELEVANCE: Pain arising from the DIP joint cannot be excluded as a cause of lameness when lameness is attenuated after 20 mins after analgesia of the navicular bursa.  相似文献   

13.
Foot pain is a common presenting complaint in Warmblood horses. The aim of this retrospective, cross‐sectional study was to determine the spectrum of foot lesions detected by magnetic resonance imaging (MRI) in Warmblood horses used for dressage, jumping, and eventing. The medical records of 550 Warmblood horses with foot pain that were scanned using standing MRI were reviewed and the following data were recorded: signalment, occupation, lameness, diagnostic analgesia, imaging results, treatments, and follow‐up assessments. Associations between standing MRI lesions and chronic lameness following treatment were tested. Abnormalities of the navicular bone (409 horses, 74%), distal interphalangeal joint (362 horses, 65%), and deep digital flexor (DDF) tendon (260 horses, 47%) occurred with the highest frequency. The following abnormalities were significantly associated (P < .05) with chronic lameness following conservative therapy: moderate to severe MRI lesions in the trabecular bone of the navicular bone, mild or severe erosions of the flexor surface of the navicular bone, moderate sagittal/parasagittal DDF tendinopathies, and moderate collateral sesamoidean desmopathies. Also, identification of concurrent lesions of the DDF tendon, navicular bone, navicular bursa, and distal sesamoidean impar ligament was associated with chronic lameness after conservative therapy. Development of effective treatment options for foot lesions that respond poorly to conservative therapy is necessary.  相似文献   

14.
Magnetic resonance (MR) imaging is increasingly used in the diagnosis of equine foot pain, but improved understanding of how MR images represent tissue-level changes in the equine foot is required. We hypothesized that alterations in signal intensity and tissue contour would represent changes in tissue structure detected using histologic evaluation. The study objectives were to determine the significance of MR signal alterations in feet from horses with and without lameness, by comparison with histopathologic changes. Fifty-one cadaver feet from horses with a history of lameness improved by palmar digital analgesia (n = 32) or age-matched control horses with no history of lameness (n = 19) were stored frozen before undergoing MR imaging and subsequent histopathological examination at standard sites (deep digital flexor tendon, navicular bone, distal sesamoidean impar ligament, collateral sesamoidean ligament, and navicular bursa). Using MR images, signal intensity and homogeneity, size, definition of anatomic margins, and relationships with other structures were described. Alterations were graded as mild, moderate, or severe for each structure. For each anatomic site examined histologically the structures were described and scored as no changes, mild, moderate, or severe abnormalities, also taking into account adhesion formation within the navicular bursa detected on macroscopic examination. Alterations in MR signal intensity were related to changes at the tissue level detected by histologic examination. A sensitivity and specificity comparison of MR imaging with histologic examination was used to evaluate the significance of MR signal alterations for detection of moderate-to-severe lesions of the deep digital flexor tendon (DDFT), navicular bone, distal sesamoidean impar ligament (DSIL), collateral sesamoidean ligament (CSL) and navicular bursa. Agreement between the MR and histologic grading was assessed for each structure using a weighted kappa agreement. Direct comparison between histology and MR imaging for individual limbs revealed that signal alterations on MR imaging did represent tissue-level changes. These included structural damage, fibroplasia, fibrocartilaginous metaplasia, and hemosiderosis in ligaments and tendons; trabecular damage, osteonecrosis, fibroplasia, cortical defects, and increased vascularity in bone; and fibrocartilage defects. MR imaging had a high sensitivity and specificity for most structures. MR imaging had high specificity for lesions of the DDFT, CSL and navicular bursa, quite high specificity for lesions of the medulla of the navicular bone and its proximal aspect, with moderate specificity for the DSIL, and distal, dorsal and palmar aspects of the navicular bone, and was sensitive for detection of abnormalities in all structures except the dorsal aspect of the navicular bone. When MR and histologic grades alone were compared, there was good agreement between MR and histologic grades for the navicular bursa, DDFT, navicular bone medulla and CSL; moderate-to-good agreement in grades of the distal and palmar aspects of the navicular bone; fair to moderate in grades of the DSIL, and poor agreement for the dorsal and proximal aspects of the navicular bone. The results of this study support our hypothesis and indicate the potential use and limitations of MR imaging for visualization of structural changes within osseous and soft tissue structures of the equine foot.  相似文献   

15.
Foot conformation in the horse is commonly thought to be associated with lameness but scientific evidence is scarce although it has been shown in biomechanical studies that foot conformation does influence the forces acting on the deep digital flexor tendon (DDFT) and the navicular bone (NB). The aim of this study was to determine the relationships between foot conformation and different types of lesion within the foot in lame horses. It was hypothesised that certain conformation parameters differ significantly between different types of foot lesions. Conformation parameters were measured on magnetic resonance images in the mid-sagittal plane of 179 lame horses with lesions of their deep digital flexor tendon (DDFT), navicular bone (NB), collateral ligaments of the distal interphalangeal joints and other structures.Conformation parameters differed significantly between lesion groups. A larger sole angle was associated with combined DDFT and NB lesions, but not with NB lesions alone. A more acute angle of the DDFT round the NB was associated with DDFT and NB lesions, and a lower heel height index with DDFT injury. The larger the sole angle the smaller the likelihood of a DDFT or NB lesion with odds ratios of 0.86 and 0.90, respectively. This study shows an association between foot conformation and lesions but it does not allow the identification of conformation as causative factor since foot conformation may change as a consequence of lameness. Future studies will investigate foot-surface interaction in lame vs. sound horses, which may open a preventative and/or therapeutic window in foot lame horses.  相似文献   

16.
Foot pain is an important cause of lameness in horses. When horses with foot pain have no detectable radiographic abnormalities, soft‐tissue assessment remains a diagnostic challenge without magnetic resonance (MR) imaging. Ultrasonography can provide an alternative to MR imaging when that modality is not available but the extent of changes that might be seen has not been characterized. We reviewed the ultrasonographic findings in 39 horses with lameness responding positively to anesthesia of the palmar digital nerves and without radiographically detectable osseous abnormalities. Thirty of the 39 horses had lesions affecting the deep digital flexor tendon (DDFT), 27 had abnormalities in the distal interphalangeal joint of which six had a visible abnormality in the collateral ligament. Ultrasonographic abnormalities were seen in the podotrochlear bursa in 22 horses and in the ligaments of the navicular bone in two horses. Abnormalities of the navicular bone flexor surface were detected in eight horses. In three of the 39 horses, only the DDFT was affected. The other 36 horses had ultrasonographic abnormalities in more than one anatomical structure. Based on our results, ultrasonographic examination provides useful diagnostic information in horses without radiographic changes.  相似文献   

17.
Reasons for performing study: Lameness associated with lesions of the deep digital flexor tendon (DDFT) in the digit is now recognised as an important cause of lameness, but there is currently limited information about the pathological nature of the lesions. Objectives: To compare: signal intensity changes on magnetic resonance images with histopathology; and histopathological changes in the DDFT from horses with no history of foot‐related lameness (Group C) and horses with lesions of the DDFT confirmed using magnetic resonance imaging (MRI) (Group D). Methods: Transverse sections of the DDFT were harvested from 3 sites in all horses: 1) immediately proximal to the navicular bursa (E1); 2) at the level of the navicular bone (E2); and 3) close to the tendon's insertion (E3). If lesions were identified at E1 or had been identified further proximally using MRI, additional sections were obtained until, in most cases, the proximal limit of the lesion was identified. All DDFTs were graded histopathologically using predefined criteria. The MR images were reviewed to determine the location and sequences in which increased signal intensity was seen. Results: No haemorrhage or inflammatory cell infiltration was seen in any horse. At level E 1 , septal thickening, ghosting of blood vessels and blood vessel occlusion were common in Group D, but were not seen in Group C. Less commonly, there was core necrosis, only seen in Group D. At level E 2 , septal and vascular changes were most obvious in Group D. Core necrosis, dorsal splitting, crevicing and fibrillation were seen only in Group D. Septal and vascular changes were present in both Groups C and D at level E 3 , but fibrocartilaginous metaplasia, splitting, crevicing and fibrillation, or core necrosis or fibroplasia were seen only in Group D. Core lesions in Group D often extended proximal to E 1 , and ranged in length from 0.5–13 cm. Core necrosis was generally associated with increased signal intensity in fat suppressed images. Conclusions: Lesions of the DDFT in the digit appear to be primarily degenerative, and may be a sequel to vascular compromise. Increased signal intensity on fat suppressed MR images is not necessarily associated with frank fluid or evidence of inflammation, but may reflect major matrix changes in the tendon. Potential relevance: Further information about the causes of these lesions is required to develop preventative strategies.  相似文献   

18.
Despite the increasing use of magnetic resonance imaging (MRI), ultrasound remains a valuable tool to diagnose injuries that cause distal extremity lameness in the horse. The key to a successful examination is a strong knowledge of anatomy in combination with proper ultrasonographic technique and the patience and dedication to learn these skills. Similar to all imaging modalities, it is equally important to recognize and consider the limitations of ultrasound in this region so that findings can be interpreted appropriately. Ultrasound can be used to diagnose injuries to the deep digital flexor tendon (DDFT), straight distal sesamoidean ligament and branches of the superficial digital flexor tendon using standard pastern ultrasonographic technique. The addition of newer techniques to image the DDFT at the level of P2, the navicular bursa and the collateral sesamoidean ligament can enhance the diagnostic utility of ultrasound in horses with distal extremity lameness. Although visibility is limited, ultrasound can be used to diagnose collateral ligament injuries of the coffin joint in many affected horses. Transcuneal imaging may be useful in some horses to detect abnormalities of the distal sesamoidean impar ligament and navicular bone, but evaluation of the DDFT is limited. Ultrasound should be considered in all horses with distal extremity lameness, regardless of the ability to perform advanced imaging procedures. Information gained is often complementary to other imaging modalities and may provide the basis for recheck examination purposes.  相似文献   

19.
This paper describes the clinical and radiographic features, and response to treatment, of 45 horses which showed lameness that was improved by intra-articular anaesthesia of the distal interphalangeal (DIP) joint. Although many horses had poor conformation of the foot of the lame limb, the majority showed no localising clinical signs suggestive of involvement of the DIP joint. Lameness was usually unilateral. No horse with bilateral lameness responded to treatment. Palmar digital nerve blocks frequently improved or alleviated lameness, although in some horses palmar (abaxial sesamoid) nerve blocks were required to eliminate lameness. This difference in response did not affect response to treatment. Intra-articular anaesthesia of the DIP joint usually resulted in resolution of lameness within 5 mins; a partial improvement in lameness or a slow response were poor prognostic indicators. None of the horses had radiographic abnormalities compatible with navicular disease. Radiographic changes of the distal interphalangeal joint per se were generally detectable only in lateromedial views and were identified in less than one third of the horses. Success rates were low following treatment of cases with radiographic abnormalities. In those with no radiographic abnormalities the response to corrective trimming and shoeing and intra-articular administration of sodium hyaluronate, once or repeatedly, was variable and no parameters could be used to predict the likely outcome. Treatment was successful in approximately 30 per cent of cases. Subsequent treatment of horses which remained lame, by intra-articular administration of polysulphated glycosaminoglycans, was not helpful; only a small proportion became sound following prolonged (nine months) rest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Reasons for performing study: The significance of distal border fragments of the navicular bone is not well understood. There are also no objective data about changes in thickness and proximal/distal extension of the palmar cortex of the navicular bone. Objectives: To describe the distribution of distal border fragments and their association with other radiological abnormalities of the navicular bone and describe the shape of the navicular bone in sound horses and horses with foot‐related lameness, including navicular pathology. Methods: Sound horses had radiographs acquired as part of a prepurchase examination. Lame horses had forelimb lameness abolished by palmar nerve blocks performed at the base of the proximal sesamoid bones. Diagnosis was assigned prospectively based on results of local analgesia and all imaging findings. The thickness of the palmar cortex of the navicular bone and size of proximal/distal extensions were measured objectively. Other radiological abnormalities were evaluated subjectively and each navicular bone graded. Results: Fifty‐five sound and 377 lame horses were included. All measurements were larger in lame compared with sound horses except the size of the distal extension of the palmar cortex. Fragments were observed in 3.6 and 8.7% of sound and lame horses respectively and in 24.1% of horses with a diagnosis of primary navicular pathology. There was an association between fragments and overall navicular bone grade, radiolucent areas at the angles of the distal border of the navicular bone and number and size of the synovial invaginations. Conclusions and potential relevance: The palmar cortex of the navicular bone was thicker in lame compared with sound horses. Distal border fragments were most frequent in horses with navicular pathology. Evaluation of changes in shape of the navicular bone may also be important for recognition of pathological abnormalities of the bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号