首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The potential ecological hazard of metals in soils may be measured directly using a combination of chemical and biological techniques or estimated using appropriate ecological models. Terrestrial ecotoxicity testing has gained scientific credibility and growing regulatory interest; however, toxicity of metals has often been tested in freshly amended soils. Such an approach may lead to derivation of erroneous toxicity values (EC50) and thresholds. In this study, the impact of metal amendments on soil ecotoxicity testing within a context of ion competition was investigated. Four coarse-textured soils were amended with copper (Cu) and nickel (Ni), incubated for 16 weeks and conditioned by a series of total pore water replacements. RhizonTM extracted pore water Cu, Ni, pH and dissolved organic carbon (DOC) concentrations were measured after each replacement. Changes in ecotoxicity of soil solutions were also monitored using a lux-based biosensor (Escherichia coli HB101 pUCD607) and linked to variations in soil solution metal and DOC concentrations, pH and selected characteristics of the experimental soils (exchangeable calcium (Ca) and magnesium (Mg)). Prior to conditioning of soils, strong proton competition produced relatively high EC50 values (low toxicity) for both, Cu and Ni. The successive replacement of pore waters lead to a decline of labile pools of metals, DOC and alleviated the ecotoxicological protective effect of amendment impacted soil solution chemistry. Consequently, derived ecotoxicity values and toxicity thresholds were more reflective of genuine environmental conditions and the relationships observed more consistent with trends reported in historically contaminated soils.  相似文献   

2.
Bioaccumulation of trace metals in plant tissues can present a health risk to wildlife, and potentially to humans. The Passamaquoddy tribe in Maine was concerned about health risks of cadmium (Cd) because of a health advisory for moose liver and kidney consumption due to high Cd levels. This study found relatively low to moderate concentrations of Cd, nickel (Ni), lead (Pb), and zinc (Zn) concentrations in four common terrestrial moose browse species, associated forest soils, and two species of aquatic vegetation on Passamaquoddy tribal land in eastern Maine. Terrestrial plant tissue concentrations ranged from 0.1 to 1.97, 0.65 to 7.08, 0.29 to 2.0, and 42 to 431 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Deciduous species, particularly aspen and birch, may be a more significant source of Cd and Zn to wildlife compared to coniferous or aquatic species. Aquatic plant tissue concentrations ranged from 0.11 to 0.14, 0.46 to 1.01, 0.8 to 0.9, and 22 to 41 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Total O horizon concentration means for coniferous and deciduous were 0.50 and 1.00, 4.27 and 4.11, 55 and 21, and 55 and 167 mg kg?1 for Cd, Ni, Pb and Zn, respectively. The study provides baseline vegetation and soil trace metal concentrations for a remote region in Maine impacted by non-point sources.  相似文献   

3.
Six fertilizer trials on calcareous soils in Saudi Arabia were conducted for the prediction of Zn deficiency in soybean (Glycine max L., var Merr). Zinc level before planting was tested by using 3 different extractants, i.e. DTPA, AB-DTPA and EDTA. Zinc was applied in the form of ZnSO4 · 7H2O at 0, 5, 10, 15, 20 and 40 kg Zn ha?1. Plant samples were taken at early bloom and tissue was analysed for Zn. Two methods were used to judge the critical deficiency level of Zn: Cate-Nelson and chisquare models. The critical level estimated according to the Cate-Nelson method for DTPA extractable soil Zn was 0.43 mg kg?1 in the growing season 1991. EDTA gave a much higher level (1.80 mg kg?1) and AB-DTPA gave an intermediate level (0.68 mg kg?1). Chi-square statistical procedure gave a very similar critical level of 0.66 mg kg?1 for AB-DTPA but lower for either DTPA (0.38 mg kg?1) or EDTA (1.32 mg kg?1). The critical level based for three growing seasons ranged from 0.25 to 0.68, 0.32 to 0.82 and 1.12 to 3.4 mg Zn kg?1 for DTPA, AB-DTPA and EDTA extractants, respectively. The values obtained by the linear regression equation with soybean leaf concentration were 0.45 and 0.70 mg Zn kg?1 for DTPA and AB-DTPA, respectively. Such values are very close to those determined by using the Cate-Nelson method. On the other hand, the value obtained for EDTA (1.15 mg Zn kg?1) was comparatively lower than that calculated by applying the Cate-Nelson method.  相似文献   

4.
虱螨脲在土壤中的降解、吸附和移动特性   总被引:1,自引:0,他引:1  
采用室内模拟试验方法,研究了虱螨脲在3种土壤中的降解、吸附和移动特性。结果表明:25℃下,虱螨脲在江西红壤中的降解半衰期为101d,属于中等降解农药;在太湖水稻土和东北黑土中的降解半衰期分别为74.5d和55.5d,属于较易降解农药。土壤有机质含量是影响虱螨脲降解速率的主要因素;3种土壤对虱螨脲具有较强的吸附性,且土壤有机质含量越高,对虱螨脲的吸附性越强;3种土壤对虱螨脲的吸附自由能变化均小于40kJ·mol^-1,属于物理吸附;虱螨脲在土壤中不易移动,正常条件下不会造成地下水的污染。  相似文献   

5.
In the Mediterranean region, much emphasis is placed on the role of fertilizers in enhancing crop production to achieve food security. Given the complex nature of phosphorus (P) reactions in soils, considerable research has dealt with fertilizer aspects related to efficient P use, but comparatively less emphasis has been given to plant variation with respect to P efficiency. In this study, selection and adaptation of P‐efficient corn genotypes was seen as one possible approach to enhancing P efficiency. Thus, a greenhouse experiment with 10 corn genotypes (traditional to modern), five P application rates (0–200 mg kg?1), and four field trials with three genotypes for 2 years were carried out on various calcareous soils (Vertic Torrifluvent, Vertic Calciorthid, Entic Chromoxerert, and Typic Xerofluvent). Measurements were made of root characteristics. Treatments in the field trials were five P application rates as main plots (0–68 P ha?1) and three corn genotypes as subplots. Genotypes were selected for the field trials from the greenhouse experiment as “efficient‐responsive,” “efficient‐nonresponsive,” and “inefficient‐responsive.” Dry‐matter (DM) yield and plant P uptake by plants increased with P application rates in the greenhouse experiment. Root length and mass were considerably increased by increasing P levels. Genotypes were classified for P efficiency. The studies indicated that because corn genotypes respond to P‐fertilizer application differently, this trait could be utilized to exploit native and applied P more efficiently, especially at low levels of available P and when P‐ fertilizer use is limited. This differential response derives from morphological, physiological, and genetic variability among the genotypes. Although genotypic efficiency is important for fertilizer management, the contribution of the efficiency is not a substitute for fertilizers, especially if high yields are required. Nevertheless, breeding for P‐use efficiency should be a component of any program to improve crop yield potential.  相似文献   

6.
Heavy metals can be transferred from soils to other ecosystem parts and affect ecosystems and human health through the food chain. Today the use of biosolids to improve the nutrient contents of a soil is a common practice. Contamination of soils by potentially toxic elements (e.g., Cd, Ni, Cr, Pb) from amendments of biosolids is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. In this context, heavy metal concentrations were studied in agricultural soils devoted to vegetable crops in the province of Alicante (SE Spain), where an intensive agriculture takes place. This study is aimed at ascertaining the chemical partitioning of Cd, Ni, Cr, and Pb in agricultural soils repeatedly amended with sludge. Selected soil properties relevant to control the mobility and bioavaibility of heavy metals were analyzed for the general characterisation of these agricultural soils. The distribution of chemical forms of Cd, Ni, Cr, and Pb in five biosolids-amended soils was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible, and residual forms. The biosolids incorporation has modified the soil composition, leading to the increment of heavy metals. The residual, reducible, and carbonate-sorbed forms were dominant. Detailed knowledge of the soil at the application site, especially pH, CEC, buffering capacity, organic matter, clay minerals, and clay content, is essential.  相似文献   

7.
Abstract

Information on the availability of different soil phosphorus (P) forms is useful for crop production. Phosphorus contents of 12 Iranian calcareous soils from upper‐, mid‐, and lower‐slope positions of two arid and two semiarid toposequences were fractionated to various organic and inorganic pools, and correlations of the P fractions with wheat responses were investigated. Among the inorganic P (IP) fractions, apatite type (Ca10‐P) and dicalcium phosphate equivalents (Ca2‐P) possessed the highest and the lowest amounts of P reserve in the soils, respectively. On average, about 20% of the total P was found in organic form (OP), of which 32% was labile (LOP), 51% was moderately labile (MLOP), and 17% was nonlabile (NLOP). The amounts of the soil P fractions were considerably influenced by the positions of the soils on the landscapes. The maximum contents of soil IP, Ca2‐P, Fe‐P (iron‐bound P), and Ca10‐P were observed in the lower‐slope positions. The amount of soil available [0.5 M sodium bicarbonate (NaHCO3) extractable] P was significantly correlated with Ca2P (r=0.895), Fe‐P (r=0.760), and Occl‐P (iron‐occluded P) (r=0.897). Direct correlation studies, however, showed that wheat shoot dry‐matter yield (DMY) was significantly affected by the amounts of Ca2‐P, Fe‐P, OP, LOP, and MLOP fractions both at early (4 weeks) and late (10 weeks) stages of growth. All organic and inorganic P fractions, except Al‐P (aluminum‐bound P), Ca8‐P (octacalcium phosphate equivalents), and NLOP, also showed significant relations to the amount and/or concentration of P in wheat tissues at 4 and 10 weeks after sowing. Among the measured soil properties, the amount of organic carbon was the most affecting factor on the size of the P fractions.  相似文献   

8.
Fomesafen, 5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide, is used widely for weed control in soybeans since its introduction to China. Little information is available on its adsorption, desorption and movement in Chinese soils. The adsorption, desorption and mobility of fomesafen in six Chinese soils was studied. Adsorption isotherms agreed with the Freundlich equation very well. The results of regressionanalysis indicated that soil pH was more important than organic matter for fomesafen adsorption. Fomesafen was more readily desorbed from soils with 0.01 M CaSO4 solution. Soil TLC and column leaching studies showed that fomesafen and its metabolites was less mobile in Chinese soils. About 89.82% of applied fomesafen and its metabolites still remained in upper 5 cm layer 60 days after treatment under field conditions.  相似文献   

9.
Knowledge of the release of heavy metals (HM) and their chemical speciation is necessary for characterizing HM behavior in soils. The kinetics and characteristics of iron (Fe) and manganese (Mn) release were studied in 10 contaminated calcareous soils using 0.01 M calcium chloride (CaCl2), 0.01 M ethylenediamine tetraacetic acid (EDTA), and 0.01 M malic acid (malic acid) extractions. Iron and Mn in soil samples were fractionated before and after 2084 h kinetic release using a sequential extraction procedure. The proportion of Fe and Mn released by EDTA was greater than that with CaCl2 and malic acid. A power model satisfactorily described Fe and Mn release from soils. In general, the mean release rate of Fe was greater than that of Mn, indicating a greater rate of Fe release from contaminated soils. It was shown that Fe and Mn distributions were similar in native soils and they were mainly found in Fe-Mn oxides and organic-matter (OM) fractions. There were changes in the proportional distribution of Fe and Mn in all soils during the 2084 h kinetic study with different extraction solutions. In general, the proportions of Fe and Mn associated with carbonate (CARB) and OM fractions tended to decrease, with corresponding increases in the Fe-Mn oxides for Mn and residual (RES) fractions for Fe during the kinetic study with all extraction solutions. The Fe and Mn solubility at the initial and final stages of release was controlled by siderite (FeCO3), vivianite [(Fe)3(PO4)2·8H2O], MnCO3(am), MnHPO4, and rhodochrosite (MnCO3) minerals in all extraction solutions. Based on a risk assessment and percentage of release of metals, there is a high potential for Mn release into the food chain from contaminated soils.  相似文献   

10.
A greenhouse experiment with green gram on boron (B) deficient calcareous soils was conducted for two years at Ludhiana (Punjab), India to study soil B fractions and response of green gram to B application. Three soils with calcium carbonate (CaCO3) content 0.8 (Soil I), 2.1 (Soil II) and 4.6 (Soil III) percent were collected from different sites of Ludhiana and Bhatinda districts, Punjab, India. The treatments comprised of five levels of soil applied B (0, 0.5, 0.75, 1.0, and 1.5 mg B kg?1). The experiment was laid out in completely randomized design (CRD) factorial design with three replications. Readily soluble B comprised 0.39 to 0.76 percent in Soil I, 0.32 to 0.54 percent in Soil II, and 0.21 to 0.34 percent in Soil III of the total B, taking into account of all the levels of B applied at both stages of crop growth. Readily soluble B increased with increasing application rates of B and decreased from grand growth stage (40 days after sowing) to maturity of the crop. Specifically adsorbed, oxide bound, residual, and total B was higher in Soil III as compared to Soil II or Soil I. At maturity, specifically adsorbed B converted into other fractions to maintain equilibrium in soil solution. Organically bound B was greater than oxide bound B. Among all fractions, the residual fraction accounted for the major fraction of the total B. Soil application of lowest level of B was adequate to cause significant increase in dry matter yield and seed yield of green gram regardless of type of soil.  相似文献   

11.
Changes in the soil chemical environment can be expected to increase the leaching of trace metals bound in soils. In this study the mobility of trace metals was monitored in a column experiment for two contaminated urban soils. Four different treatments were used (i.e. rain, acid rain, salt and bark). Leachates were analysed for pH, dissolved organic carbon (DOC) and for seven trace metals (cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)). The salt treatment produced the lowest pH values (between 5 and 6) in the effluent whereas the DOC concentration was largest in the bark treatment (40–140 mg L?1) and smallest in the salt and acid treatments (7–40 mg L?1). Cadmium, Ni and Zn were mainly mobilised in the salt treatment, whereas the bark treatments produced the highest concentrations of Cu and Pb. The concentrations of Cu, Cr, and Hg were strongly correlated with DOC (r 2?=?0.90, 0.91 and 0.96, respectively). A multi-surface geochemical model (SHM-DLM) produced values for metal dissolution that were usually of the correct magnitude. For Pb, however, the model was not successful indicating that the retention of this metal was stronger than assumed in the model. For all metals, the SHM-DLM model predicted that soil organic matter was the most important sorbent, although for Pb and Cr(III) ferrihydrite was also important and accounted for between 15 and 50% of the binding. The results confirm the central role of DOC for the mobilization of Cu, Cr, Hg and Pb in contaminated soils.  相似文献   

12.
ABSTRACT

Phosphorus (P) deficiency and low P-use efficiency are induced by soil properties, especially in calcareous soils, which are dominant in semi-arid regions of the world such as the Mediterranean region. Alternative approaches to P fertilization involve exploiting plant genetics in order to achieve more efficient use of P by the growing crop. Accordingly, in a greenhouse pot experiment, we evaluated P-efficiency in wheat genotypes grown in typical calcareous soils in southern Turkey. Ten common local genotypes were grown in six soil series for eight weeks using five P application rates (0, 25, 50, 100, and 200 mg P kg?1). Dry matter (DM) yield and P content were significantly increased by increasing P rates, with significant differences between soils. Some genotypes performed better under P stress because of better P utilization efficiency. Shoot DM was the most sensitive indicator of genetic variability under P-deficient conditions. Genotypes classified as efficient-responsive (Adana-99, 1014, Golia, Balatilla) had above average DM yield when P was not added, and responded well to P applications; efficient-non-responsive genotypes (Firat-93, Seri-82, Genc-99, Panda) had below average DM yield, but responded to P applications; inefficient-non-responsive genotypes (Fuat Bey and Ceyhan-99) had below average DM yield; and no genotypes were in the inefficient responsive category. Such P response categorization is needed for better breeding programs for nutrient-use efficiency. The study may aid in selecting P-efficient genotypes in low-P soils, especially where little P is used. The use of P-efficient genotypes should be seen as complement to, rather than a substitute for, chemical P fertilization depending on local conditions.  相似文献   

13.
Experiments under laboratory and greenhouse conditions were conducted to investigate the response of wheat to Zn application in five loess-derived alkaline calcareous soils and to assess the contribution of Zn in various soil fractions on its uptake by plants. Zinc in soil extracted by different reagents was also determined. Total Zn ranged from 58 to 81 mg/kg. On an average 45% of total Zn in all soil fractions was associated with sand, silt and clay. Whereas silt alone held 33% of total Zn among soil fractions in the five soils. Ammonium acetate extractable and acid residual Zn (Sand, silt and clay) explained 98% of variation of Zn in plants, and 70 or 75% of Zn in the AB-DTPA extract and DTPA extract respectively. Application of 10 mg Zn/kg soil significantly (P < 0.01) increased plant shoot dry weight, Zn concentration and total Zn content in plants over control. Concentration of Zn in plants was significantly positively correlated with Zn extracted with DTPA and AB-DTPA in soils.  相似文献   

14.
Arsenic (As) poisoning of groundwater in Bangladesh has become a major environmental and health issue. The extensive use of groundwater in irrigation of rice has resulted in elevated As in soils and crops. A study was undertaken to determine As concentrations in groundwater, soils, and crops in 16 districts of southwestern Bangladesh. Groundwater samples were collected from shallow-tube and hand-tube wells (STW and HTW) used for irrigation and drinking water. Soil and rice plants were sampled from the command area of the tube wells. Arsenic concentrations were determined using an atomic absorption spectrometer equipped with flow injection hydride generator. Groundwater samples contained <10 to 552 μg As L?1. Arsenic concentrations in 59% of STW samples exceeded 50 μg As L?1, the national standard for As in drinking water. Unlike groundwater, most of the surface water samples contained <10 μg As L?1. Concentrations of As in the soils from the command area of the tube wells ranged from 4.5 to 68 mg kg?1. More than 85% of the soils contained <20 mg As kg?1. The mean As concentration in the rice grain samples was 0.23 mg kg?1, which is much less than the maximum food hygiene standard. A positive relationship was observed between groundwater and soil As, implying that soil As level increases as a result of irrigation with contaminated water. However, irrigation water As did not show any relation with rice grain As. The findings suggest that surface water bodies are a safe source of irrigation water in the As-contaminated areas.  相似文献   

15.
Abstract

Zinc sulfate (ZnSO4 · H2O) has traditionally been the “reliable” source of zinc (Zn) fertilizer, but other sources of Zn are also available. Some are derived from industrial by‐products, varying from flue dust reacted with sulfuric acid to organic compounds derived from the paper industry. The degree of Zn mobility in Zn sources derived from these various by‐products is related to the manufacturing process, the source of complexing or chelating agents (organic sources), and the original product used as the Zn source. Many claims are made regarding the relative efficiency of traditional inorganic Zn fertilizers and complexed Zn sources. The objective of this column study was to compare the mobility of several commercial Zn fertilizer materials (organic and inorganic) that are commonly used to correct Zn deficiencies in soils. The sources included three granular inorganic Zn sources, two granular organically complexed Zn sources, and liquid ZnEDTA. Soil columns were leached five times with deionized water. Leaching events were separated by approximately 48 h. At the conclusion of the leaching phase, columns were analyzed for plant‐available Zn. Water solubility was the primary factor affecting Zn movement, not total Zn content or organic complexation of the fertilizers. The Zn sources evaluated can be separated into three groups: ZnEDTA, ZnLigno, and ZnSO4 were the most mobile Zn sources; the ZnOx55 was less mobile, but seemed mobile enough to meet crop needs; ZnOx26 and ZnSuc were relatively immobile Zn sources.  相似文献   

16.
Laboratory batch and greenhouse pot experiments were conducted to determine the extraction efficiency of ethylenediaminetetraacetic acid (EDTA) for solubilizing lead (Pb) and cadmium (Cd) and to explore the natural and chemically induced Pb and Cd phytoextraction efficiencies of spinach and mustard after EDTA application. The EDTA was applied at 0, 1.25, 2.5, and 5.0 mM kg?1 soil in three replicates. Addition of EDTA increased significantly the soluble fraction Pb and Cd over the control and maximum increases for Pb (1.42- and 1.96-fold) and Cd (1.45- and 1.38-fold) were observed with the addition of 5.0 mM EDTA kg?1 in Gujranwala and Pacca soils, respectively. Similarly, addition of EDTA increased significantly the Pb and Cd concentrations in the plant shoots, soil solution, bioconcentration factor, and phytoextraction rate. Mustard exhibited better results than spinach when extracting Pb and Cd from both contaminated soils.  相似文献   

17.
Eurasian Soil Science - Arid and semiarid soils of southern Iran may fix a large content of applied potassium (K), but the fixed K may be gradually supplied to plants. Sixteen representative soils...  相似文献   

18.
The effect of soil pH on solubility of the potentially toxic trace elements (PTEs) [cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn)] was assessed using two native and spiked calcareous soils. Multiple PTEs solutions were added to soils and equilibrated (aged) for 40 days. Then, PTEs solubility was measured at different pH level (1–3 units below and above the pH of native soils). In native soils, all PTEs displayed a V-shaped pH-dependent solubility pattern with important releases at pH 4 and 10 (native soil 1) and 5 and 11 (native soil 2). In spiked soils, the general tendency for the pH where solubility started was in the order Cd > Ni > Zn > Cu. Solubility of added trace elements increased with a decrease in pH. Solubility of PTEs occurred at a lower pH in the soil with a higher carbonate content than the other soil (both native and spiked). In order to predict the effect of soil pH on solubility of PTEs, surface complexation and ions exchange models of PHREEQC program were used. The model simulated the PTEs solubility in soils very well. Comparison of experimental and simulated data indicated that ions exchange and surface complexation were the main mechanisms for predicting PTEs solubility in soils. Environmental implications concerning PTEs mobility might be derived from these findings.  相似文献   

19.
Robb  F.  Young  S. D. 《Water, air, and soil pollution》1999,111(1-4):201-214
A model was tested which predicts the pH and solution metal concentration in the solution phase of soil amended with (waste-) incinerator fly ash (FA). Graded quantities of calcareous metal-rich FA were equilibrated with an acid clay soil, in aerated CaCl2 suspensions (0.01 M), to give a pH range of 3.1 (100% soil) to 7.5 (100% FA). As the FA loading was increased, the concentrations of Zn, Cd and Pb in solution passed through a maximum and then declined until the pH of the soil/ash mixtures approximated that of the pure FA (pHFA). This apparently complex pattern was accurately described by a simple pH- dependent adsorption equation relating adsorbed metal (Mads) to divalent metal concentration in solution (M2+) and pH through 3 constants designated n, Kads} and m: For pH < pHFA, log (Mads (M2+)n) = Kads + m pH However, at greater ash loadings the solution metal concentration and pH remained constant with FA addition and a solubility product (Ks) could be applied: For pH ≥ pHFA, og(M2+) = log Ks - 2 pH Metal concentrations in solution [Msoln] were greatest at very low FA loadings (around 2%); at lower FA additions [Msoln] was limited by total metal concentration while at higher additions of ash the solubility of metals was suppressed by the liming effect of the fly ash. It was therefore concluded that low levels of dust transfer from disposal sites to surrounding acidic soils may be the greatest source of metal pollution to biological and aquatic systems.  相似文献   

20.
Pyrite (FeS2) is usually a waste from complex sulfide ores. Yet, it may be a remediation additive for calcareous soils deficient in iron (Fe) and other micronutrients such as copper (Cu), zinc (Zn), and manganese (Mn). In this study, leaching experiments were conducted under laboratory conditions and a 30-day pot trial (with wheat) to evaluate the effect of applying different amounts of pyritic tailings on micronutrient and heavy-metal concentrations in a calcareous soil and on crop growth (dry-matter production). The application of pyritic tailings to the calcareous soils improved the levels of Fe, Cu, Zn, and Mn, and dry-matter biomass of wheat also significantly increased. The heavy-metal contents in soil and plant were well below the permissible limit for soil and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号