首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A fixed-bed photocatalytic reactor equipped with a cylindrical parabolic light concentrator was studied to remove organic dyes from water using natural volcanic ashes particles and nanostructured titania supported on volcanic ashes as photocatalytic materials. The influences of flow rate, photocatalyst and photocatalytic material adsorption capacity were studied. A fixed-bed photocatalytic reactor was designed and built in the laboratory; a methylene blue aqueous solution, used as model compound for dye contaminated water, was fed into the reactor. Methylene blue destruction efficiencies were monitored spectrophotometrically. Combined effects of dye adsorption and photodecomposition on photocatalyst were studied and compared by infrared spectroscopy.  相似文献   

2.
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in wastewater effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatalytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal, and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.  相似文献   

3.
Cuprous oxide-modified diatomite waste (Cu2O-DW) as a low-cost and effective adsorbent was prepared via a hydrothermal route combined with acid-alkali treatment. The microstructure and surface properties of the obtained Cu2O-DW composite was characterized by Brunauer-Emmett-Teller, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorption behaviors of three different types of dyes such as cationic dye methyl blue (MB), anionic dye acid orange (AO), and reactive dye reactive yellow (RY) onto the as-prepared Cu2O-DW were investigated. Several experimental parameters such as contact time, adsorbent dosage, initial dye concentration, and initial pH values were systematically estimated. The experimental results indicated that as-prepared Cu2O-DW have a better adsorption performance for MB, AO, and RY. Moreover, the kinetic and isotherm models were also used to account for the adsorption mechanism of dye molecules onto Cu2O-DW. The results demonstrated that three different dyes are all fitted well with pseudo-first-order kinetic model. Additionally, the Langmuir and Freundlich isotherm model is more suitable for describing the adsorption process of RY and MB on the as-prepared Cu2O-DW, respectively, and the AO adsorption is propitious to the D-R isotherm model. The value of adsorption energy (E?<?8 kJ mol?1) confirmed that the physical adsorption is dominator during the adsorption process. The findings of the study demonstrated that the synthesized Cu2O-DW composite can be a promising adsorbent for the removal of organic dyes from wastewater and it provided a sustainable development method for cycling the diatomite waste from the brewery.  相似文献   

4.
The partial phase transformation of nanometer TiO2 powder from anatase phase to rutile phase was realized by heat-treatment and a new TiO2 photocatalyst which could be excited by visible light was obtained. The heat-treated TiO2 powder at different stage of transition crystal was characterized and monitored by XRD, TEM, FT-IR and UV–vis DRS methods. The test of photocatalytic activity of the heat-treated TiO2 powder was carried out by the photocatalytic degradation of rhodamine B and acid orange II dyes, respectively, in aqueous solution under visible light irradiation. The results indicate that the nanometer TiO2 photocatalyst heat-treated at 500°C for 60 min shows the highest photocatalytic activity, that is, it can effectively degrade the rhodamine B and acid orange II under visible light irradiation. The remarkable improvement of photocatalytic activity of heat-treated TiO2 powder at 500°C for 60 min was mainly illustrated by the formation of special interphase between rutile and anatase phases, which not only restrains the recombination of photogenerated electrons and holes, but also reduces the adsorbability of nanometer anatase TiO2 powder properly for various dyes. Additionally, the effects of dye-assisting chemicals such as Na2CO3 and NaCl on the photocatalytic degradation were also studied.  相似文献   

5.
Nanocomposite of CeO2?CSnO2 containing different CeO2 contents was prepared by coprecipitation process. The material obtained was characterized by X-ray diffraction and N2 adsorption?Cdesorption isotherms. Its photocatalytic activity was tested in the degradation of azo dye of leather, Direct Black 38, in aqueous solution under sunlight. The photocatalytic activity of the coupled CeO2?CSnO2 oxide ranged depending on the CeO2 contents. The optimum amount of CeO2 for the synthesis of CeO2?CSnO2 was 7?wt.% since the nanoparticles showed high photocatalytic activity in the degradation of the dye, similar to that of the TiO2?CP25 photocatalyst. The kinetics of photocatalytic degradation and total organic carbon removal under sunlight were found to follow a first-order rate law. The results indicated that CeO2?CSnO2 can be used for the removal of dyes from wastewater.  相似文献   

6.
Mesoporous silica with wormhole framework structure (HMS-OH) and its amine-functionalized material (HMS-NH2) were prepared through an electrically neutral assembly pathways, post-grafting process of 3-aminopropyltriethoxysilane (APTES), respectively. Their adsorption behaviors toward cationic dyes as well as heavy metal ions in aqueous system and the capture capacities for CO2 molecules all have been investigated. As-synthesized HMS-OH showed a high removal efficiency and rapid sorption rate to cationic dyes because of large surface area and versatile pore structure. HMS-NH2 exhibited better heavy metal ions and more CO2 gas sorption capacities due to the intrinsic property of amine groups grafted on the surface. The adsorption isotherms of methylene blue (MB) onto HMS-OH, Cu(II) onto HMS-NH2 were fitted with Langmuir model and kinetic processes followed well the pseudo-second order pattern. There results revealed that both HMS-OH and HMS-NH2 had a potential application in the treatment of cationic dyes, heavy metal ions, and greenhouse gas CO2.  相似文献   

7.
The objective of this study was to investigate and compare the kinetic photocatalytic degradation of mono azo dyes Acid Orange 7 (AO7) and Methyl Orange (MO) under solar light irradiation with titanium dioxide (TiO2) as a photocatalyst. Several operational parameters affecting the photocatalytic degradation of dye were evaluated such as different azo dyes, initial dye concentration, TiO2 dosage, with and without aeration and sunlight irradiation. The data obtained was well fitted with the Langmuir?CHinshelwood kinetic model. It was observed that the pseudo-first-order rate constants for AO7 were higher than MO in all cases, indicating that the photocatalytic degradation of AO7 was easier and more rapid than MO. The analysis of chemical oxygen demand and UV?CVis spectra shows the AO7 and MO not only being decolorized due to the breakdown of azo bond but also being mineralized if the azo dye solutions were continually exposed to solar light irradiation after the decolorization process.  相似文献   

8.
Water contamination has reached an alarming state due to industrialization and urbanization and has become a worldwide issue. Dyes contaminate water and are addressed extensively by researchers. Various technologies and materials have been developed for the treatment of contaminated water. Among them, adsorption has attracted great attention due to its ease and cost-effective nature. In recent years, graphene-based composites have shown great potential for the removal of contaminants from water. The literature reveals the usefulness of composites of graphene with metal oxides, carbon derivatives, metal hybrids and polymers for the removal of organic dyes from contaminated water. In this review, efforts have been made to compile the studies on the removal of cationic and anionic dyes from water using graphene-based composites.  相似文献   

9.
Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis   总被引:1,自引:0,他引:1  
The photocatalytic degradation of di-(2-ethylhexyl) phthalate (DEHP) in solution using titanium dioxide (TiO2) was analyzed in this study. It was found that DEHP was completely removed in the solution after 150 min irradiation. The effect of different factors, such as photocatalyst amount, DEHP concentration, light intensity, pH, and temperature on photocatalytic degradation was investigated. The degradation mechanism of DEHP with proton and hydroxyl radicals oxidation were also studied. It is suggested that either ethylhexyl or ester chain scissions of the aliphatic part of DEHP was the dominant degradation mechanism of the process. The photocatalytic degradation process was well described by first-order reaction. The final mineralization product was carbon dioxide and the intermediate products were identified by GC-MS. Thus, the photocatalytic degradation treatment of DEHP in wastewater is a relative simple and fast method.  相似文献   

10.
Lin  Lin  Xu  Bin  Lin  Yi-Li  Yan  Lie  Shen  Kai-Yuan  Xia  Sheng-Ji  Hu  Chen-Yan  Rong  Rong 《Water, air, and soil pollution》2013,224(7):1-9
A novel immobilized visible light-active photocatalyst (TiO2/polyvinyl alcohol after thermal treatment (T-PVA)/cordierite honeycomb (CHC)) was successfully prepared by a simple and convenient method combining sol–gel and thermal treatment using tetrabutyl titanate (TBOT) as the titanium source, polyvinyl alcohol (PVA) as the precursor of conjugated polymer, and CHC as the support. The synthesized photocatalyst was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, and field emission scanning electron microscopy. The results showed that PVA was dehydrated to produce conjugated unsaturated T-PVA. The T-PVA not only extended the response spectrum of TiO2 to visible light region, but also strengthened the adhesion of TiO2 to CHC. The TiO2/T-PVA/CHC showed both outstanding adsorption properties and excellent photocatalytic performance under visible light on the decolorization of Rhodamine B. Over eight cycles, the photocatalyst continued to maintain perfect photocatalytic activity, showing good stability.
Figure
Schematic illustration of TiO2/T-PVA/CHC composite photocatalyst  相似文献   

11.
Acrylamide/itaconic acid (AAm/IA) hydrogels prepared by irradiating with γ radiating were used in experiments on the uptake of some cationic dyes such as basic red 5 (BR-5), basic violet 3 (BV-3) and brilliant cresyl blue (BCB). The removal of the cationic dyes to AAm/IA hyrogels is studied by batch adsorption technique. In the experiments of the adsorption, L3 type (Langmiur) adsorption in Giles classification system was found. Adsorption studies indicated that monolayer coverages of AAm/IA hydrogel by these dyes were increased with following order; BCB > BR-5 > BV-3.  相似文献   

12.
In this work, photocatalytic degradation of two reactive dyes, Reactive Yellow 84 (RY 84) and Reactive Black 5 (RB 5), on FeTiO3/TiO2 heterojunction in the presence of UV–visible radiation and H2O2 has been reported. FeTiO3/TiO2 heterojunction has been prepared from ilmenite FeTiO3 and anatase TiO2 by employing oxalic acid as an organic linker. FeTiO3/TiO2 ratios have been varied from 1 to 5 wt.%, and the materials were characterized by X-ray diffraction, scanning electron microscope and diffused reflectance UV–visible spectroscopic analysis. The photocatalytic activity of FeTiO3/TiO2 heterojunction for the degradation of the organic dyes RY 84 and RB 5 in the presence of UV–visible light was found to be higher than that of pure TiO2. The addition of H2O2 increases the rate of degradation of both dyes on FeTiO3/TiO2 heterojunction. It facilitates the fast degradation of dye solutions even when their concentration was above 100 mg/l, which is otherwise very slow due to the low transmittance of light by the dye solution. The extent of mineralisation of the reactive dye during photocatalytic degradation was estimated from chemical oxygen demand analysis. FeTiO3/TiO2 heterojunction photocatalyst was also found to have good photostability; the material retains almost 97 % of its initial activity even in the fifth cycle.  相似文献   

13.
Photocatalytic methods were applied to remove the recalcitrant or toxic pollutants from the water. The two models of wastewater containing either non-ionic surfactant Triton X-100 or commercially available wash-up liquid were tested in a self-constructed band reactor during the laboratory studies. The photocatalyst, being typed TiO2, was supported by porous Al2O3 and modified by the addition of Cu, Fe, Zn, Ni, Mo or Co. The photocatalysts were characterised by N2 adsorption?Cdesorption, XRF, XRD, SEM-EDX, Raman and UV?CVis spectroscopy. All catalysts were efficient in the photocatalytic oxidation of surfactants, and they enabled at least 85?% COD reduction. TiO2/Al2O3 photocatalysts modified by the transition metals were efficient only for more complicated compositions of surfactants. The effect of H2O2 (0.01?vol.%) addition was also examined and compared with a type of compound and catalyst used??in this case a positive effect for Triton X-100 was only observed over the photocatalyst modified by Ni. When it comes to the wash-up liquid photoremoval, all studied photocatalysts seem to be slightly influenced by H2O2 addition. It was also observed that it is not economically justified to conduct such treatment for more than 2?h.  相似文献   

14.

Background, aim, and scope  

Various metals such as cationic metals (Cu, Pb, Zn) and anionic metals (As, Cr) often coexist in real soils, and normal soil washing techniques for the removal of cationic metals with a single-washing reagent make it rather difficult to simultaneously remove all of them. Oxalate could effectively remove anionic As and EDTA could effectively remove the cationic metals, so it was possible to remove all coexisting cationic and anionic metals by washing with the combination of Na2EDTA and oxalate. The objective of this study was to (1) discuss the possibility of removing five metals, As, Cd, Cu, Pb, and Zn, effectively from the soil by washing with Na2EDTA-combined oxalate; (2) optimized through the consecutive washing.  相似文献   

15.
The textile industry is known to generate large quantities of effluents contaminated with dyes that are not fixed to the fibers during the dyeing process. The available technologies to remove these dyes from the wastewater are expensive and ineffective. Within this context, low-cost, easy-maintenance technologies for the removal of dyes have been studied, such as adsorption on aquatic macrophytes. Thus, the macrophyte Salvinia sp., raw or pretreated with NaOH or H3PO4, was used as biosorbent of Blue 5G reactive dye. The study showed that pH and temperature affect the dye removal capacity. The analysis of the infrared spectrum (FTIR) showed that chemical treatment of the Salvinia sp. modified the biomass surface and affected dye adsorption capacity. The pseudo-second-order kinetic model satisfactorily described the experimental data for raw and NaOH-pretreated biomass, and the pseudo-first-order model was more appropriate to describe the experimental data obtained with H3PO4-pretreated biomass. The highest capacity of Blue 5G dye removal was obtained with raw biomass, at 333?K and pH?1.0, with 98.35?% adsorption.  相似文献   

16.
Adsorption of methylene blue from aqueous solutionsonto unexpanded and expanded perlite samples activatedby H2SO4 and NaCl solutions has beeninvestigated, to assess the possibility of usingperlite for removing cationic dyes from aqueoussolutions. The effects of pH and temperature of dyesolution on the adsorption capacities have beenevaluated. The experimental data were correlatedreasonably well by the Langmuir adsorption isothermand the isotherm parameters (Q m and K) have beencalculated. The removal efficiency (P) anddimensionless separation factor (R) have shown thatperlite can be used for removal of methylene blue fromaqueous solutions, but unexpanded perlite is more effective.  相似文献   

17.
A magnetic chitosan-modified Fe3O4@SiO2 with sodium tripolyphosphate adsorbent (MTPCS) was synthesized by surface modification of Fe3O4@SiO2 with chitosan using sodium tripolyphosphate (STPP) as the cross-linker in buffer solution for the adsorption of Cu(II) ions from aqueous solution. The structure and morphology of this magnetic nanoadsorbent were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area measurements, Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial pH, adsorbent amount, and initial concentration of heavy metal ions were investigated by batch experiments. Moreover, adsorption isotherms, kinetics, and thermodynamics were studied to understand the mechanism of adsorbing metal ions by synthesized MTPCS. The results revealed that adsorption kinetics was best depicted by the pseudo-second-order rate mode and intraparticle-diffusion models. The adsorption isotherm fitted well to the Langmuir model. Moreover, thermodynamic study verified the adsorption process was endothermic and spontaneous in nature. The maximum adsorption occurred at pH 5 ± 0.1, and the adsorbent could be used as a reusable adsorbent with convenient conditions.  相似文献   

18.
To evaluate the interaction between anionic species when they were adsorbed on variable charge soils, we measured the adsorption of NO3 - and SO4 2- on. an Andisol equilibrated with a mixture of KNO3 and K2SO4 solutions. The amount of NO3 - adsorption declined with the increase in the concentration of SO4 2-. On the other hand, the amount of SO4 2- adsorption increased with the increase in the concentration of NO3 -. These phenomena can not be explained by the simple “exchange theory” or the “Three-plane model” unless surface complexation is associated with the changes in the electrical potential of the surface. Therefore, in order to explain the phenomena by using the “Four-plane model” with surface complexation, a new equation was derived for the Diffuse Double Layer (DDL) charge from the “main equation of DDL theory” (equation of electrical potential in DDL) instead of the “Gouy-Chapman equation,” which can be used only for single symmetric electrolytes but nor for a mixture. By introducing the new equation to the computer program for analyzing the Four-plane model, the interaction between anionic species adsorbed on Andisols could be explained well. It was considered that SO4 2- acted as a regulator for the ionic concentration, osmotic pressure and pH of the soil solution, and consequently, these factors affected the vertical distribution and mobility of anionic species and also the mobility of counter-ions in Andisols.  相似文献   

19.
The degradation of diethyl phthalate (DEP) in aqueous solution by titanium dioxide (TiO2) photocatalysis has been investigated in our research. DEP was completely removed in the solution by 50-min irradiation. Results show that DEP degradation rate was affected by initial DEP concentration, photocatalyst amount, light intensity, and pH. Photocatalytic degradation intermediates were identified by gas chromatography-mass spectrometry intermediates were identified by gas chromatography-mass spectrometry. The major intermediates are methyl benzoate, ethyl benzoate, and carboxylic derivatives. The photocatalytic degradation process was found to obey first-order reaction. Consequently, the result of photocatalytic degradation could be an efficient method of DEP removal from wastewater.  相似文献   

20.
This study was focused on the application of a highly doped layered perovskite, La2Ti2O7, as the photocatalyst for the photocatalytic decomposition of an azo dye, Reactive Red 22 (RR22). The temporal behavior of the photocatalytic decomposition of RR22 in aqueous solution by the UV/La2Ti2O7 with a batch photoreactor operated in a recirculation mode was studied under various operating conditions including solution pH, light intensity, and La2Ti2O7 loading. The decomposition of RR22 in aqueous solution by La2Ti2O7 photocatalytic process was found to be feasible. An empirical kinetic equation was developed for modeling the photocatalytic decomposition of RR22 in aqueous solution using UV/La2Ti2O7 photocatalytic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号