首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
A study was undertaken to investigate the remedial effect of some soil amendments (farmyard manure (FYM), press mud compost (PMC), cereal straw (CS) at 5 t ha?1 and fresh cow dung slurry (FCD) @ 0.5 t ha?1) on dissipation kinetics of imidacloprid and sulfosulfuron under laboratory conditions. Incorporation of CS or FCD was found to be most effective in degrading both the pesticides at faster rates. Dissipation of both the pesticides could be well accounted by two component (1 + 1) first order kinetics. The computed values of parameters revealed that use of organic amendments increased the dissipated fraction of imidacloprid and sulfosulfuron. Incorporation of CS or FCD in soil maintained relatively higher dissipation rate constants for both faster and slower dissipation processes of pesticides in comparison to control. Hence, eco-friendly practices of CS or FCD incorporation as soil amendment in soil can play a vital role in preventing soil and water pollution.  相似文献   

2.
The environmental behaviour of metolachlor and diuron was studied in the Central-western region of Brazil, by means of a field study where six experimental plots were installed. The soil was classified as a Latosol, and the soil horizons were characterized. Sorption of metolachlor and diuron was evaluated in laboratory batch experiments. Metolachlor and diuron were applied to the experimental plots on uncultivated soil in October 2003. From this date to March 2004, the following processes were studied: leaching, runoff and dissipation in top soil. K oc of metolachlor varied from 179 to 264 mL g?1 in the soil horizons. K oc of diuron in the Ap horizon was 917 mL g?1, decreasing significantly in the deeper horizons. Field dissipation half-lives of metolachlor and diuron were 18 and 15 days, respectively. In percolated water, metolachlor was detected in concentrations ranging from 0.02 to 2.84 μg L?1. In runoff water and sediment, metolachlor was detected in decreasing concentrations throughout the period of study. Losses of 0.02% and 0.54% of the applied amount by leaching and runoff, respectively, were observed confirming the high mobility of this herbicide in the environment. In percolated water, diuron was detected with low frequency but in relatively high concentrations (up to 6.29 μg L?1). In runoff water and soil, diuron was detected in decreasing concentrations until 70 days after application, totalizing 13.9% during the whole sampling period. These results show the importance of practices to reduce runoff avoiding surface water contamination by these pesticides, particularly diuron.  相似文献   

3.
Abstract

In the course of a series of studies conducted to investigate the long-term behavior of 129I (which has a half-life of 16 million years) in the environment, seasonal variation in the concentration of stable iodine (127I) in precipitation and soil water to a depth of 2.5 m in a forest plot, an upland field and a paddy field in the upland area of Tsukuba, Japan, were determined. Iodine concentration in precipitation tended to increase during the summer (high air temperature) season and low-rainfall period, and a positive high correlation was observed between annual rainfall and the annual amount of iodine supplied by precipitation. No seasonal variations in iodine concentration in soil water were observed at any depth in the forest plot and upland field unlike at shallow depths (0.2 and 0.5 m) in the paddy field. In the paddy field, from the beginning of summer irrigation, under flooding conditions, iodine concentration in soil water at shallow depths (0.2 and 0.5 m) continuously increased, and immediately before mid-summer (intermittent) drainage and drainage, the maximum iodine concentration (approximately 50 µg L?1) and lowest Eh values (approximately ?150 to ?200 mV) were recorded. These high iodine concentration levels and low Eh values were ascribed to high air temperature (approximately > 25°C on average every 10 days) and the continuation of the groundwater level above the ground surface. As for the temporary winter irrigation period (mean daily air temperature 2?4°C), the iodine concentration was low (1.7–3.7 µg L?1) at all depths, as was the case in the non-irrigation period. After mid-summer drainage, and drainage, the iodine concentration in soil water at depths of 0.2 and 0.5 m decreased drastically as the groundwater level decreased. The mean annual amount of iodine accumulated in the surface soil horizons (0–0.67 m) in the forest plot was estimated to be approximately 2.9 mg m?2 (7.5 µg kg?1 dry soil), which coincided with the mean annual amount of iodine supplied to the earth surface by precipitation. A mildly oxidative subsurface 2Bw horizon (0.60–0.89 m) in the paddy field was estimated to illuviate approximately 3.1 mg m?2 (20 µg kg?1 dry soil) of iodine annually by retaining iodine in the soil water percolated to this horizon.  相似文献   

4.
The one-dimensional chromatographic flow model PEARL was used to simulate the movement of the insecticide imidacloprid and the fungicide procymidone through a greenhouse soil. The model was parametrized using measured and literature values of soil hydrological parameters. Soil water movement and soil temperature were reasonably well described by the model. The ability of PEARL to simulate the fate of imidacloprid and procymidone following four applications of each compound was evaluated against greenhouse data. Simulated imidacloprid residues in the 0-10 cm layer were in good agreement with measured data. Below 10 cm, the model overestimated imidacloprid remaining following the spray applications, whereas simulated residues following the chemigation applications were in reasonable agreement with measured data. Simulated residues of procymidone in the 0-10 cm layer were in general agreement with measured values. In the 10-20 cm layer, peaks in simulated concentrations occurred later than observed in the greenhouse. Predictions of procymidone residues below 20 cm were poor and underestimated compared to the measured data. For both pesticides, discrepancies between modeled and measured data in the 10-20 cm layer were attributed to the drip irrigation method used in the greenhouse. The model was unable to satisfactorily predict pesticide movement from the soil surface by irrigation water unless the scenario was modified to reflect the localized pattern of water application. Scenario analysis indicated that air boundary layer thickness is a key parameter for readily volatilized pesticides such as procymidone. This is of particular relevance to the greenhouse environment, where the boundary layer thickness may be greater than that in outdoor conditions.  相似文献   

5.
A rapid, simple, sensitive and cost-effective analytical method has been standardised to determine the residues of imidacloprid and thiamethoxam in soil. This method does not require any cleanup with costly sorbents. The recoveries of imidacloprid and thiamethoxam obtained in this no-cleanup method were on par with the protocol involving primary?Csecondary amine-based cleanup. This method requires less volume of solvent (20?mL of acetonitrile/sample) and is suitable for high throughput analyses involving large number of samples. The limit of quantification of the method was 0.01???g/g. Dissipation kinetics of imidacloprid and thiamethoxam in the soils of sugarcane ecosystem was studied by adopting this rapid method. The half-life of imidacloprid and thiamethoxam was 9.07 and 6.22?days when applied at 70 and 100?g a.i./ha, respectively. The dissipation of both the neonicotinoids followed first-order kinetics with good fit.  相似文献   

6.
Dissipation rates of copper following algaecide treatments resulting in pulse exposures can be accurately modeled if the component dissipation rates are known. Scaled experiments (in situ, laboratory and mesocosm) were used to parse and rank dominant processes from concurrent processes affecting copper fate in pulse exposures. Copper dissipation rates were measured cumulatively in situ and in mesocosms as well as individually in laboratory experiments. Predictions of the influence of individual dissipation rates on the cumulative dissipation rate were assessed mathematically. In situ aqueous copper dissipated rapidly following an algaecide treatment, with a measured half-life of 0.03 days. Based on laboratory experiments, the most rapid copper fate process was dilution with a half-life of 0.03 days, followed by sediment sorption with a half-life of approximately 3 days. Mesocosm experiments incorporating physical characteristics of the site (i.e., dilution, sediment, algae, and site water) resulted in similar copper dissipation rates (0.02 days) relative to the in situ copper dissipation rate. Prediction of the fate of copper from algaecide treatments requires incorporation of accurate estimates of dominant fate processes that can be determined physically and mathematically.  相似文献   

7.
The present study examined the effect of excessive application of farmyard manure (FM) on rice production and environmental pollution in paddy fields of Japan. A long-term field experiment was conducted during the period 1976–2006 to examine the trends of rice yield and yield components as affected by the excessive FM application (20 Mg ha?1 year?1 containing 110 kg N, 180 kg P2O5, and 320 kg K2O). Rice growth, soil fertility, and surface water quality were also assessed in the final year (2006). The results obtained were compared with those of a conventional practice with recommended doses of inorganic fertilizer (IF), i.e. 85 kg N, 68 kg P2O5, and 53 kg K2O ha?1 year?1, and an unfertilized control (CR). The excessive FM application resulted in a gradual decrease in grain yield, which was mostly explained by the reduction of grain fertility under the luxuriant rice growth. This reduction may have been due to the higher accumulation of soil nutrients such as N, P, and K. Moreover, the excessive FM application increased chemical oxygen demand, total P, and soluble K concentrations in the paddy surface water and their effluent loads compared to the conventional practice with the recommended IF application.  相似文献   

8.
Effects of soil pH and soil water content on prosulfuron dissipation   总被引:3,自引:0,他引:3  
The sulfonylurea herbicide prosulfuron, 1-(4-methoxy-6-methyltriazin-2-yl)-3-[2-(3,3,3-trifluoropropyl)phenylsulfonyl]urea, is used for the selective control of broadleaf weeds in corn, sorghum, and cereal grains. To investigate its fate in soils, this study examined the effects of soil pH and water content on the rates of dissipation processes and the products formed under aerobic conditions. Radiometry and chromatography analyses were used to quantify the degradation products and bound residues formed in incubations of 10 different soils. The pH-dependent hydrolysis of the sulfonylurea bridge to form phenyl sulfonamide was the primary transformation process. Significant microbial degradation of prosulfuron occurred in 2 of the 10 soils, yielding (14)CO(2) and desmethyl prosulfuron among the major products. The time required for 50% dissipation of the herbicide (DT(50)) was determined for each soil and water content treatment. At equivalent water contents, prosulfuron DT(50) values were positively correlated with soil pH (P < 0.0001), varying from 6.5 days at pH 5.4 to 122.9 days at pH 7.9. Soil pH and water content strongly influence the fate of sulfonylurea herbicides in agricultural fields. Differences in the effect of soil water content on dissipation kinetics in a comparison of two soils were attributed to differences in soil pH, texture, and the ability of indigenous microorganisms to transform the herbicide.  相似文献   

9.

Purpose

Biochar application has been shown to be effective in improving soil fertility and sequestering soil contaminants. However, the impact of biochar amendments on the environmental fate of pesticides and the bioavailability of pesticides to living organisms in the soil environment is still not fully understood.

Materials and methods

Dissipation of fomesafen and its bioavailability to corn (Zea mays L.) and the earthworm Eisenia fetida in an agricultural soil amended with three different rates of rice hull biochar (0.5, 1, and 2 % (w/w)) under laboratory conditions was investigated.

Results and discussion

Biochar amendment significantly increased the DT50 of fomesafen from 34 days in unamended soil to 160 days in 2 % biochar-amended soil. Furthermore, biochar amendment decreased fomesafen concentration in soil pore water resulting in lower plant uptake of the pesticide. In this case, total plant residue and soil pore water concentrations of fomesafen in 2 % biochar-amended soil decreased to 0.29 % and 0.28–45 % of that in the control, respectively. Similar results were obtained for bioavailability of fomesafen in earthworms, as the earthworm residue and soil pore water concentration of fomesafen in 2 % biochar-amended soil declined to 0.38–45 and 0.47–0.50 % compared to the level of the control, respectively.

Conclusions

As biochar could markedly reduce the concentration of fomesafen in soil pore water and subsequently reduce plant and earthworm uptake of fomesafen from contaminated soil, biochar amendment could be considered an appropriate option for immobilizing fomesafen in soils, protecting nontarget organisms from fomesafen contamination.
  相似文献   

10.
Abstract

The relationships between nitrogen (N) and phosphorus (P) concentrations in surface flooding water and those in the leachate of various soil depths were monitored, and temporal variation of leaching losses of N and P from a paddy plot during rice cultivation was estimated under the conditions of southern Korea. Even flooded conditions nitrification in subsurface soil was identified, but nitrate concentrations in leachate were less than 10 mg/L, the standard drinking water nitrate concentration set by the World Health Organization (WHO). The NO3‐N and ortho‐P concentrations in the leachate were generally higher than those in the surface flooding water. Field data implied that leaching losses would not be accurately estimated under the flooded conditions of the paddy field when using the N and P concentrations of surface flooding water and infiltration depth. The leaching losses of NO3‐N from paddy fields were high immediately after fertilization. The study results suggested that proper fertilization and irrigation strategies are required to reduce leaching losses of NO3‐N from paddy fields.  相似文献   

11.

Purpose

With widely applied water-saving irrigation techniques, the transformation and availabilities of copper (Cu) as both a micronutrient and a toxic metal are changed. However, little information is available on the binding forms, bioavailability, and fate of Cu in paddy fields with different irrigation management. Thus, we investigated the effects of irrigation management on the binding forms and the fate of Cu in a non-polluted paddy soil.

Materials and methods

Field experiments were conducted in 2011 on non-polluted rice fields in Kunshan, East China. Non-flooding controlled irrigation (NFI) was applied in three replications, with flooding irrigation as a control. Samples of soil, soil solution, irrigation water, and rice plants were collected. Fresh soil samples were digested using the modified European Community Bureau of Reference sequential extraction procedure and the dried crop samples digested at 160 °C using concentrated HNO3. Cu contents in irrigation water, soil solution, extraction for different binding fractions, and the digested solutions were measured using inductively coupled plasma optical emission spectrometry. Leaching loss of Cu was calculated based on the Cu contents in 47- to 54-cm soil solutions and deep percolation rates, which were calculated using the field water balance principle.

Results and discussion

NFI led to multiple dry–wet cycles and high soil redox potential in surface soil. The dry–wet cycles in NFI soil resulted in higher Cu contents in acid-extractable and oxidizable forms and lower Cu in residual form. High decomposition and mineralization rates of soil organic matter caused by the dry–wet cycles partially accounted for the increased Cu in acid-extractable form in NFI soils. The frequently high contents of Cu in reducible form in NFI fields might be due to the enhanced transformation of Fe and Mn oxides. As a result, Cu uptakes in NFI fields increased by 8.1 %. Meanwhile, Cu inputs by irrigation and loss by leaching in NFI fields were reduced by 47.6 and 46.6 %.

Conclusions

NFI enhanced the transformation of Cu from residual to oxidizable and acid-extractable forms. The oxidizable form plays a more important role than the reducible form in determining the transformation of Cu from the immobile to the mobile forms in NFI soils. NFI helps improve availability and decreases leaching loss of Cu as a micronutrient in a non-polluted paddy soil, but leads to a high concentration of Cu in rice.  相似文献   

12.
The soil mobility and dissipation of two pesticides with different physicochemical properties, namely mefenoxam, a systemic fungicide, and pendimethalin a selective herbicide, were determined in bare and tobacco tilled soil columns, which were installed in field conditions for over 125 days. Soil samples were collected at specific time intervals for a 125-day period and the rate of pesticide dissipation and leaching through the soil column was studied. The dissipation half-lives of mefenoxam from the top soil layer in tilled and bare soil columns were estimated at 10.3 and 13.1 days, respectively, while the corresponding half-lives for pendimethalin were 26.7 and 27.5 days, respectively. The dissipation of mefenoxam and pendimethalin from the top soil in tobacco cultivation was faster in comparison with bare soil; however, 120 days after their application, both pesticide residues were detected in the soil. Maximum concentrations of mefenoxam and pendimethalin were observed on the 15th and 33rd day, respectively, in the soil layer of 5–10 cm depth and on the 30th day and 63rd day, respectively, in the soil layer of 10–15 cm depth. Higher concentrations were observed in bare soil columns. The leaching of both pesticides was simulated with the continuous stirred tank reactor (CSTR) in series model. The simulated peak concentration and peak time for both pesticides fitted reasonably well to the experimental values.  相似文献   

13.
Abstract

An anaerobic incubation experiment was conducted to investigate methane (CH4) production potential in soil samples collected from a paddy field after exposure to free-air CO2 enrichment (FACE). The FACE experiment with two CO2 levels, ambient and ambient + 200 p.p.m.v CO2 during the rice growing season, was conducted at Shizukuishi, Iwate Prefecture, Japan. The soil was a wet Andosol. Soil samples were taken from the surface (0–1 cm) and the sub-surface (1–10 cm) soil layers 2 months after rice harvest. Sub-samples of the fresh soils were put into glass bottles and submerged under N2 gas headspace during the incubation. The results showed that, prior to incubation, the contents of total C and dissolved organic C (DOC) were significantly greater in FACE soil than ambient soil. During the incubation, CH4 production potential was approximately 2–4-fold higher in FACE soil than ambient soil and approximately 500–1,000-fold greater in surface soil than sub-surface soil. In general, the FACE soil contained more DOC than ambient soil, particularly in the surface soil layer. These findings suggest that FACE treatment exerted long-term positive effects on CH4 production and increased organic C content in this paddy soil, particularly in the surface soil layer.  相似文献   

14.
To evaluate whether the capacity of interlayer sites affects the dynamics of fixed ammonium (NH4+) in a paddy soil, a combination of potassium (K)–saturation treatment and stepwise extraction of nonexchangeable K with 0.01 mol L?1 hydrochloric acid was applied to a soil incubated anaerobically up to 70 days. The capacity of interlayer sites increased with an increase of weakly fixed NH4+ during the initial 28 days (r = 0.78, P < 0.01), and remained stable thereafter. On the other hand, the concentration of exchangeable NH4+ increased curvilinearly during the whole incubation period, which was correlated with an increase of weakly fixed NH4+ (r = 0.85, P < 0.01). These results suggested that the dynamics of weakly fixed NH4+ in a paddy soil is regulated not only by the chemical equilibrium between exchangeable and weakly fixed NH4+ but also by the capacity of interlayer sites within a few weeks after flooding.  相似文献   

15.
段亚玲  李景壮  王睿  廖朝选  杨一  陈恺  杨鸿波  谭红 《土壤》2017,49(3):500-504
为研究唑螨酯在环境中的行为特性,采用室内模拟试验方法,研究了唑螨酯在土壤中的降解及淋溶特性,通过降解半衰期和比移值Rf来评价其在土壤环境中的安全性。结果表明:唑螨酯在3种土壤中的降解符合一级动力学方程,好气条件下,在黄壤、水稻土和石灰土的降解半衰期分别为81.5、96.3和84.5 d,唑螨酯在水稻土中较难降解,在黄壤和石灰土中中等降解;厌气条件下的半衰期分别为154.0、56.3和43.3 d,水稻土和石灰土中中等降解,黄壤中较难降解。唑螨酯在黄土、水稻土和石灰土中比移值Rf均为0.083,唑螨酯在3种土壤中均不移动,正常条件下不会对地下水造成污染。综上所述,唑螨酯在土壤环境中具有较强的稳定性,因此应严格掌握其使用量和使用时期,同时建议加强对唑螨酯残留的跟踪监测。  相似文献   

16.
In this study, a suitable and near-real-time water status monitoring approach for winter wheat before harvest was developed with remotely sensed satellite data. Seven vegetation indices were extracted as remote-sensing parameters by making full use of the land surface reflection and land surface temperature transmitted by moderate resolution imaging spectroradiometer (MODIS) data. The correlation of each vegetation index and measured values of winter wheat and soil water contents in different crop growth periods was established. The simulation models, combining vegetation index, soil water content (SWC), and plant water content (PWC) in different winter wheat growth periods, were constructed to predict water content by using remote-sensing data. We found that the correlations between the difference vegetation index (DVI) and the perpendicular vegetation index (PVI) in the beginning of the stem elongation period with SWC were highly significant (P < 0.01); the correlation between the global environmental monitoring index (GEMI) in the ear emergency period and SWC was highly significant (P < 0.01). Furthermore, the correlation between the PVI in maturing period and SWC was highly significant (P < 0.01). Data of different coefficients of vegetation indices and PWC in different winter wheat growth periods illustrated that correlation between the DVI in the beginning of stem elongation period and PWC was highly significant (P < 0.01), while the correlation between the PVI in the maturing period and PWC was highly significant. Our results indicated that spatial and temporal vegetation indices were closely related to soil moisture and winter wheat water content in Wenxi County, Shanxi Province (P. R. China). The vegetation index is conceptually and computationally straightforward and may be used in prediction of environmental hydrological status.  相似文献   

17.
Abstract

To evaluate labile selenium (Se) content in agricultural soils in Japan and to investigate its determining factors, 178 soil samples were collected from the surface layer of paddy or upland fields in Japan and their soluble Se contents were determined. Two grams of soil was extracted with 20 mL of 0.1 mol L?1 sodium sulfate (Na2SO4) solution for 30 min in boiling water, and the released Se was reduced to Se (IV) after organic matter decomposition. The concentration of Se (IV) was then determined by high performance liquid chromatography (HPLC) with a fluorescence detector after treatment with 2,3-diaminonaphthalene (DAN) and extraction with cyclohexane. Soluble Se content ranged from 2.5 to 44.5 μg kg?1 with geometric and arithmetic means of 11.4 and 12.8 μg kg?1, respectively, and corresponded to 3.2% of the total Se on average. The overall data showed log-normal distribution. In terms of soil type, Non-allophanic Andosols and Volcanogenous Regosols had relatively high soluble Se content, and Wet Andosols and Lowland Paddy soils had relatively low soluble Se content. In terms of land use, upland soils had significantly higher soluble Se content than paddy soils (p < 0.01). The soluble Se content had significant positive correlation with total organic carbon (TOC) content of the extract, soil pH and total Se content (p < 0.01). In conclusion, total Se content in combination with soil pH was the main determining factor of the soluble Se content of agricultural soils in Japan.  相似文献   

18.
Earthworms can excrete copious amounts of mucus that may affect the fraction, transport fate, and bioavailability of contaminants in soil. However, interaction of mucus with organic contaminants is still not well-known. In the present study, complexation properties of surface mucus (from the earthworm species Eisenia foetida, Savigny) with imidacloprid were investigated using fluorescence excitation emission matrix (EEM) spectroscopy. It was found that carbohydrates and proteins are major components in mucus of this species. Two fluorescent peaks belonging to protein-like substances were identified in the EEM spectrum of mucus. The protein-like fluorescence was clearly quenched by imidacloprid, indicating that the protein-like substances reacted strongly with imidacloprid. The fluorescence quenching processes was governed by a static process. The values of effective quenching constant (logK a) for these two peaks were 11.46 and 7.96, respectively, indicating that there is a strong interaction between mucus and imidacloprid and mucus–imidacloprid complexes are formed. Higher binding constants (logK b?=?25.6 and 14.0) than those for heavy metals binding to dissolved organic matter or organic pollutants binding to proteins confirm the strong complexation between mucus and imidacloprid. Our study implies that earthworm surface mucus may significantly affect the fraction, toxicity, and bioavailability of organic contaminants in the soil due to its high affinity for organic contaminants.  相似文献   

19.
Abstract

An ideal state for agroecosystems to mitigate global warming should include both decreasing CO2 and CH4 emissions and increasing soil carbon storage. Two-year field experiments were carried out to examine the effects of water management (continuous flooding [CF] and Eh control [EH]) and rice straw management (application [+S] and removal [–S]) on the soil carbon budget in a single-cropping paddy field in Japan. The EH water management based on soil redox potential that the authors have proposed decreased the total CH4 emission during the rice growing period compared with CF. The +S increased CO2 emission as soil respiration during the non-flooded fallow period compared with –S, but also increased straw residues in the soil. However, there was little evidence for sequential carbon accumulation in the soil over the year by +S. The resultant annual budget of soil carbon was a loss of 32–103 g C m?2 in the EH+S treatment compared with a loss of 166–188 g C m?2 in the CF–S treatment. Taking into account the global warming potentials, the EH+S treatment also decreased the total CO2-equivalent emission compared with the CF–S treatment. Consequently, a combination of appropriate water management and straw application will be an effective option in decreasing both CO2-equivalent emission and sustaining soil carbon storage.  相似文献   

20.

Purpose

The aim of the research was to explore the effect of Chinese milk vetch (CM vetch) addition and different water management practices on soil pH change, C and N mineralization in acid paddy soils.

Materials and methods

Psammaquent and Plinthudult paddy soils amended with Chinese milk vetch at a rate of 12 g?kg?1 soil were incubated at 25 °C under three different water treatments (45 % field capacity, CW; alternating 1-week wetting and 2-week drying cycles, drying rewetting (DRW) and waterlogging (WL). Soil pH, dissolved organic carbon, dissolved organic nitrogen (DON), CO2 escaped, microbial biomass carbon, ammonium (NH4 +) and nitrate (NO3 ?) during the incubation period were dynamically determined.

Results and discussion

The addition of CM vetch increased soil microbial biomass concentrations in all treatments. The CM vetch addition also enhanced dissolved organic N concentrations in all treatments. The NO3–N concentrations were lower than NH4–N concentrations in DRW and WL. The pH increase after CM vetch addition was 0.2 units greater during WL than DRW, and greater in the low pH Plinthudult (4.59) than higher pH Paleudalfs (6.11) soil. Nitrogen mineralization was higher in the DRW than WL treatment, and frequent DRW cycles favored N mineralization in the Plinthudult soil.

Conclusions

The addition of CM vetch increased soil pH, both under waterlogging and alternating wet–dry conditions. Waterlogging decreased C mineralization in both soils amended with CM vetch. Nitrogen mineralization increased in the soils subjected to DRW, which was associated with the higher DON concentrations in DRW than in WL in the acid soil. Frequent drying–wetting cycles increase N mineralization in acid paddy soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号