首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.  相似文献   

2.
About 20% of all massive stars in the Milky Way have unusually high velocities, the origin of which has puzzled astronomers for half a century. We argue that these velocities originate from strong gravitational interactions between single stars and binaries in the centers of star clusters. The ejecting binary forms naturally during the collapse of a young (≤1 million years old) star cluster. This model replicates the key characteristics of OB runaways in our galaxy, and it explains the presence of runaway stars of ≥100 solar masses (M(⊙)) around young star clusters, such as R136 and Westerlund 2. The high proportion and the distributions in mass and velocity of runaways in the Milky Way are reproduced if the majority of massive stars are born in dense and relatively low-mass (5000 to 10,000 M(⊙)) clusters.  相似文献   

3.
4.
Arp H 《Science (New York, N.Y.)》1966,151(3715):1214-1216
Pairs of radio sources which are separated by from 2 degrees to 6 degrees on the sky have been investigated. In a number of cases peculiar galaxies have been found approximately midway along a line joining the two radio sources. The central peculiar galaxies belong mainly to a certain class in the recently compiled Atlas of Peculiar Galaxies. Among the radio sources so far associated with the peculiar galaxies are at least five known quasars. These quasars are indicated to be not at cosmological distances (that is, red shifts not caused by expansion of the universe) because the central peculiar galaxies are only at distances of 10 to 100 megaparsecs. The absolute magnitudes of these quasars are indicated to be in the range of brightness of normal galaxies and downward. Some of the radio sources which have been found to be associated with peculiar galaxies are galaxies themselves. It is therefore implied that ejection of material took place within or near the parent peculiar galaxies with speeds between 10(2) and 10(4) kilometers per second. After traveling for times of the order of 10(7) to 10(9) years, the luminous matter (galaxies) and radio sources (plasma) have reached their observed separations from the central peculiar galaxy. The large red shifts measured for the quasars would seem to be either (i) gravitational, (ii) collapse velocities of clouds of material falling toward the center of these compact galaxies, or (iii) some as yet unknown cause.  相似文献   

5.
A supernova explosion, the final death throe of a massive star, creates an expanding bubble of hot gas that overruns up the surrounding medium. When a supernova remnant encounters a dense interstellar cloud, the compression may trigger gravitational collapse and the formation of a new generation of stars. This event can be detected through intense stimulated emission in the 1720-megahertz transition of the hydroxyl radical, OH, which yields unique insights into the physical processes and conditions occurring during the interaction.  相似文献   

6.
The Voyager 2 encounter with the Neptune system included radio science investigations of the masses and densities of Neptune and Triton, the low-order gravitational harmonics of Neptune, the vertical structures of the atmospheres and ionospheres of Neptune and Triton, the composition of the atmosphere of Neptune, and characteristics of ring material. Demanding experimental requirements were met successfully, and study of the large store of collected data has begun. The initial search of the data revealed no detectable effects of ring material with optical depth tau [unknown] 0.01. Preliminary representative results include the following: 1.0243 x 10(26) and 2.141 x 10(22) kilograms for the masses of Neptune and Triton; 1640 and 2054 kilograms per cubic meter for their respective densities; 1355 +/- 7 kilometers, provisionally, for the radius of Triton; and J(2) = 3411 +/- 10(x 10(-6)) and J(4) = -26(+12)(-20)(x10(-6)) for Neptune's gravity field (J>(2) and J(4) are harmonic coefficients of the gravity field). The equatorial and polar radii of Neptune are 24,764 +/- 20 and 24,340 +/- 30 kllometers, respectively, at the 10(5)-pascal (1 bar) pressure level. Neptune's atmosphere was probed to a pressure level of about 5 x 10(5) pascals, and effects of a methane cloud region and probable ammonia absorption below the cloud are evident in the data. Results for the mixing ratios of helium and ammonia are still being investigated; the methane abundance below the clouds is at least 1 percent by volume. Derived temperature-pressure profiles to 1.2 x 10(5) pascals and 78 kelvins (K) show a lapse rate corresponding to "frozen" equilibrium of the para- and ortho-hydrogen states. Neptune's ionosphere exhibits an extended topside at a temperature of 950 +/- 160 K if H(+) is the dominant ion, and narrow ionization layers of the type previously seen at the other three giant planets. Triton has a dense ionosphere with a peak electron concentration of 46 x 10(9) per cubic meter at an altitude of 340 kilometers measured during occultation egress. Its topside plasma temperature is about 80 +/- 16 K if N(2)(+) is the principal ion. The tenuous neutral atmosphere of Triton produced distinct signatures in the occultation data; however, the accuracy of the measurements is limited by uncertainties in the frequency of the spacecraft reference oscillator. Preliminary values for the surface pressure of 1.6 +/- 0.3 pascals and an equivalent isothermal temperature of 48 +/- 5 K are suggested, on the assumption that molecular nitrogen dominates the atmosphere. The radio data may be showing the effects of a thermal inversion near the surface; this and other evidence imply that the Triton atmosphere is controlled by vapor-pressure equilibrium with surface ices, at a temperature of 38 K and a methane mixing ratio of about 10(-4).  相似文献   

7.
Some exploding stars (supernovae) are powerful emitters of centimeter radio radiation. Detailed observations have shown that these supernovae quickly become detectable in the radio range, first at shorter wavelengths (higher frequencies) and later at progressively longer and longer wavelengths (lower frequencies). This part of the phenomenon appears to be well explained by a monotonic decrease in the amount of ionized material surrounding the radio-emitting regions as the shock from the explosion travels outward. The radio emission itself is of a nonthermal, synchrotron origin, as is the case in most bright cosmic radio sources. Once the absorption effects become negligible, the radio intensity declines with time until reaching the detection limit of the telescope. Models suggest that the absorbing material originates in a dense wind of matter lost by the supernova progenitor star, or by its companion if it is in a binary system, in the last stages of evolution before the explosion. The synchrotron radio emission can be generated either externally by the shock wave from the explosion propagating through this same high density stellar wind or internally by a rapidly rotating neutron star, which is the collapsed core of the exploded star. Present results appear to favor the former model for at least the first several years after the supernova explosion, although the latter model remains viable.  相似文献   

8.
Voyager 2 radio occultation measurements of the Uranian atmosphere were obtained between 2 and 7 degrees south latitude. Initial atmospheric temperature profiles extend from pressures of 10 to 900 millibars over a height range of about 100 kilometers. Comparison of radio and infrared results yields mole fractions near the tropopause of 0.85 and 0.15 +/- 0.05 for molecular hydrogen and helium, respectively, if no other components are present; for this composition the tropopause is at about 52 kelvins and 110 millibars. Distinctive features in the signal intensity measurements for pressures above 900 millibars strongly favor model atmospheres that include a cloud deck of methane ice. Modeling of the intensity measurements for the cloud region and below indicates that the cloud base is near 1,300 millibars and 81 kelvins and yields an initial methane mole fraction of about 0.02 for the deep atmosphere. Scintillations in signal intensity indicate small-scale stucture throughout the stratosphere and upper troposphere. As judged from data obtained during occultation ingress, the ionosphere consists of a multilayer structure that includes two distinct layers at 2,000 and 3,500 kilometers above the 100-millibar level and an extended topside that may reach altitudes of 10,000 kilometers or more. Occultation measurements of the nine previously known rings at wavelengths of 3.6 and 13 centimeters show characteristic values of optical depth between about 0.8 and 8; the maxim value occurs in the outer region of the in ring, near its periapsis. Forward-scattered signals from this ring have properties that differ from those of any of Saturn's rings, and they are inconsistent with a discrete scattering object or local (three-dimensional) assemblies of orbiting objects. These signals suggest a new kdnd of planetary ring feature characterized by highly ordered cylindrical substructures of radial scale on the order of meters and azimuthal scale of kilometers or more. From radio data alone the mass of the Uranian system is GM(sys) = 5,794,547- 60 cubic kilometers per square second; from a combination of radio and optical navigation data the mass of Uranus alone is GM(u) = 5,793,939+/- 60 cubic kilometers per square second. From all available Voyager data, induding imaging radii, the mean uncompressed density of the five major satellites is 1.40+/- 0.07 grams per cubic centimeter; this value is consistent with a solar mix of material and apparently rules out a cometary origin of the satellites.  相似文献   

9.
A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.  相似文献   

10.
Observations of the Trapezium region in the Orion Nebula obtained with the high-resolution x-ray imaging instrument on board the Einstein Observatory reveal at least 58 sources of x-ray emission. All but two of the sources can be identified with visible stars. The strongest x-ray source is the star Theta(1)C, which excites the emission nebula. Its x-ray luminosity is 6 x 10(32) ergs per second. The rest of the x-ray sources may be identified with stars of all spectral types. Strong x-ray emission is not observed from members of the infrared cluster embedded within the Orion molecular cloud.  相似文献   

11.
Several interesting cloud and atmospheric features of the Saturn system have been observed by the long-wavelength channel of the two-channel ultraviolet photometer aboard the Pioneer Saturn spacecraft. Reported are observations of the most obvious features, including a Titan-associated cloud, a ring cloud, and the variation of atmospheric emission across Saturn's disk. The long-wavelength data for Titan suggest that a cloud of atomic hydrogen extends at least 5 Saturn radii along its orbit and about 1.5 Saturn radii vertically. A ring cloud, thought to be atomic hydrogen, has also been observed by the long-wavelength channel of the photometer; it shows significant enhancement in the vicinity of the B ring. Finally, spatially resolved observations of Saturn's disk show significant latitudinal variation. Possible explanations of the variation include aurora or limb brightening.  相似文献   

12.
The discovery of two Earth-mass planets orbiting an old ( approximately 10(9) years), rapidly spinning neutron star, the 6.2-millisecond radio pulsar PSR B1257+12, was announced in early 1992. It was soon pointed out that the approximately 3:2 ratio of the planets' orbital periods should lead to accurately predictable and possibly measurable gravitational perturbations of their orbits. The unambiguous detection of this effect, after 3 years of systematic timing observations of PSR B1257+12 with the 305-meter Arecibo radiotelescope, as well as the discovery of another, moon-mass object in orbit around the pulsar, constitutes irrefutable evidence that the first planetary system around a star other than the sun has been identified.  相似文献   

13.
Radio spectral line emission from hydroxyl radicals has been detected from four infrared stars. The emission from the infrared star NML Cygni at 1612 megahertz is the strongest radio emission line yet detected. Sixteen other stars with infrared excesses showed no detectable hydroxyl radio emission.  相似文献   

14.
Terrell J 《Science (New York, N.Y.)》1966,154(3754):1281-1288
Many difficulties face the conventional interpretation of the red shift of quasars as a Hubble shift, with associated immense distances. These objects are not of galactic size or nature, and are not associated with galaxies or clusters of galaxies. The continuing energy source for such enormous powers for a period of 10(6) to 10(7) years has not been clearly revealed. The absence of the expected absorption for the Lyman-alpha spectral line of hydrogen is a new difficulty. Because of the relativistic limit on the diameter which can produce rapid fluctuations of light output, there may not be enough surface to radiate the required light.A similar and perhaps more serious difficulty exists for the fluctuating radio output. Calculations given here for synchrotron radiation self-absorption lead to a reasonably accurate formula for the angular diameter of a radio source. For the quasar 3C 273B these relations indicate a conflict with the usually assumed distance. However, the discrepancy may be explained in terms of strong variation of radio diameter with frequency. For CTA 102 the conflict is more serious, and could be explained -for cosmological distance-only by rejecting the data of Sholomitskii. These difficulties are removed by the hypothesis that the observed quasars were ejected from a gravitational collapse at the center of our own galaxy, which may have occurred roughly 5 million years ago. The resultant distances, of the order of a million lightyears, reduce the energy problem by a factor of 10(6) or 10(7). On this basis the optical diameter would be less than a light-hour, about the size of the earth's orbit. A rotating mass of a few thousand solar masses with this diameter would account for the unusual line width, could easily produce the required radiated energy, and could readily account for observed short fluctuation periods and variations in spectrum. It is suggested that the radio output may be produced by high-speed passage of the quasar through intergalactic gas. This would probably correspond to a radio size of a few light-years or less, in agreement with the fluctuations. Since the radio power would be considerably less than that of radio galaxies, it is suggested that radio galaxies may have ejected groups of quasars. This would explain the peculiarly distant locations of the radio sources for many such galaxies. The objections to this model that have been raised are apparently not fatal. In particular, the receding hydrogen cloud discovered by Koehler to be in the line of sight to 3C 273 is more plausibly interpreted as having been ejected from our own galaxy, in the manner observed for other galaxies, than as being associated with the Virgo cluster of galaxies. The latter interpretation, which would place 3C 273 further away, is in conflict with Lyman-alpha absorption data for 3C 9 and other quasars. Thus the local model seems to give a reasonable explanation not only of quasars but also of radio galaxies, bothv of which seem largely to defy explanation on other grounds. Whether or not this model is valid, it is clear that an understanding of quasars will radically change our understanding of the universe.  相似文献   

15.
By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.  相似文献   

16.
The optical double quasar 0957+561 has been interpreted as the gravitational double image of a single object. A radio map made with the Very Large Array of the National Radio Astronomy Observatory shows unresolved sources coincident With the optical images as well as a complex of related extended emission. Although the results cannot rule out the gravitational lens hypothesis, the complex radio structure is more easily interpreted as two separate quasars. The optical and radio properties of the two quasars are so similar that the two must have been formed at the same time with similar initial conditions.  相似文献   

17.
In late December 1990, a new radio source appeared near the center of our galaxy rivaling the intensity of Sgr A(*) (the compact radio source at the galactic center). Following its first detection, the flux density of the galactic center transient (GCT) increased rapidly to a maximum 1 month later, and then declined gradually with a time scale of about 3 months. Surprisingly, the GCT maintained a steep radio spectrum during both its rising and decay phases. The neutral hydrogen (HI) absorption shows similar absorption to that in front of Sgr A(*); this indicates that the GCT lies near the galactic center. Furthermore, both HI and OH observations show an additional deep absorption at +20 kilometers per second with respect to the local standard of rest. Thus, the GCT is either embedded in or located behind a molecular cloud moving with that velocity. The cloud can be seen on infrared images. Its opacity is shown to be inadequate to conceal a supernova near the galactic center. It is argued that the GCT was probably transient radio emission from synchrotron-radiating plasma associated with an x-ray binary system.  相似文献   

18.
Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.  相似文献   

19.
Since the time of the Voyager flybys of Saturn in 1980-1981, Saturn's eccentric F ring has been known to be accompanied on either side by faint strands of material. New Cassini observations show that these strands, initially interpreted as concentric ring segments, are in fact connected and form a single one-arm trailing spiral winding at least three times around Saturn. The spiral rotates around Saturn with the orbital motion of its constituent particles. This structure is likely the result of differential orbital motion stretching an initial cloud of particles scattered from the dense core of the F ring. Different scenarios of formation, implying ringlet-satellite interactions, are explored. A recently discovered moon candidate, S/2004 S6, is on an orbit that crosses the F-ring core at the intersection of the spiral with the ring, which suggests a dynamical connection between S/2004 S6 and the spiral.  相似文献   

20.
The binary LP 101-15/16 having the proper motion of 1.62 seconds of arc per year has been studied with the prime-focus spectrograph of the 200-inch (508 cm) telescope. Indications are that LP 101-15/16 is the first pair of pygmy stars ever discovered. One of its components, LP 101-16, is probably a blue pygmy star which is at least four magnitudes fainter than the ordinary white dwarfs. Also, two of the Balmer lines in absorption appear to be displaced toward the red by amounts which indicate the existence of an Einstein gravitational red shift corresponding to about 1000 km sec-1. On the other hand LP 101-15 is red and shows an entirely new type of spectrum, which suggests that it may be a first representative of a type of red pygmy star which is 2.5 magnitudes fainter than the M-type dwarf stars of the main sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号