首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural changes in the cell wall and delignification pattern caused by Trametes versicolor and Trametes hirsuta in the sap wood of Leucaena leucocephala were examined by light and confocal laser scanning microscopy. The in vitro decay test was conducted for 12 weeks. Both species of Trametes used in this study caused anatomical characteristics specific to simultaneous white rot. Formation of boreholes, erosion troughs, erosion channels with U-shaped notches in tangential sections and thinning of cell walls were evident in the wood inoculated with each of the fungal species. Cell separation due to removal of middle lamellae occurred at the early stages of infection (30 d) with T. versicolor. In contrast, middle lamellae remained intact in wood inoculated with T. hirsuta and showed cell separation due to degradation of the outer layer of the secondary wall and degradation of the middle lamellae observed only in severely decayed wood at late stages. Confocal microscopy revealed the delignification pattern particularly from cell corners and vessel walls at an advanced stage of decay, indicating strong ligninolytic activity of both species in the sapwood of L. leucocephala.  相似文献   

2.
Abstract

The effect of heat treatment on decay resistance of white birch was evaluated for different incubation periods ranging from 2 to 12 weeks using three species of brown rot and one species of white rot fungus. The results of weight loss tests showed that the white rot fungus, Trametes versicolor, effectively degraded the untreated wood (73.5%). While the degradation of untreated wood by brown rot fungi species, Gloephyllum trabeum (11.6%) and Conifora puteana (6.2%), was considerably less compared to T. versicolor, the third brown rot fungi studied, Poria placenta, caused an appreciable degradation of the same species (52.4%). The results clearly showed that the heat treatment reduced the effect of fungi attack on white birch. Increasing the heat treatment temperature from 195 to 215°C resulted in reduction of weight loss, consequently, reduction in fungal attack. As an example, the weight loss reductions due to T. versicolor, P. placenta, G. trabeum and C. puteana attack was 62.2%, 71.3%, 89.6% and 100%, respectively, compared to the weight loss of untreated wood when it is heat treated at 215°C. Thus, these results confirmed that the heat treatment increased the biological resistance of white birch.  相似文献   

3.
Chemical, light and electron microscopic studies were carried out on wood of Oriental beech (Fagus orientalis Lipsky) decayed by the white‐rot fungi Pleurotus ostreatus and Trametes versicolor for 30, 60 and 120 days according to the modified European standard EN 113. Mass loss as well as lignin, cellulose and carbohydrate content were determined before and after fungal attack. There were no significant differences of wood mass loss and chemical composition between both fungi at the end of incubation. After each incubation period, small specimens were stained for microscopic studies. The micromorphology of fungal cell wall degradation was rather similar for both fungi. Both decreased the cell wall thickness to the same extent. The accumulation of hyphae as well as the rupture of cell walls was also similar. The occurrence of hyphae, cavities in the pits and vessel walls followed nearly the same patterns. The parenchyma cells were completely destroyed. Altogether, both fungi produced a simultaneous white rot in Oriental beech wood.  相似文献   

4.
During the monitoring of the health status of nurseries and plantations in Serbia, a decline in a 5‐year‐old Paulownia tomentosa plantation was recorded. Trees displayed symptoms of dieback, massive breaking at different positions, the appearance of decay and fungal fruitbodies at the stems. Using standard isolation methods, white colonies with cottony surfaces and regular growth were obtained from the decaying wood samples, and after the oxidation degree analysis, it was determined that these isolates belonged to Davidson's group 6, indicating white rot basidiomycetes. To identify the isolated fungus, the ITS region of one selected isolate was sequenced. Based on the morphological analysis of the obtained colonies, collected fruitbodies and ITS sequence analysis, this fungus was identified as Trametes hirsuta. This is the first report of T. hirsuta on Paulownia tomentosa in Serbia. Irregularly performed pruning as the possible infection route and the implications of these findings are discussed.  相似文献   

5.
ABSTRACT

The goal of this study was to demonstrate how synchrotron-based X-ray fluorescence microscopy (XFM) can be used to better understand the mechanisms of copper tolerance in wood decay fungi. Copper is a major component in commercial wood preservatives as it is toxic to many wood decay fungi. However, certain fungi are copper tolerant and can attack preservative-treated wood, resulting in structural damage to treated wood members. Here we used large-field XFM to visualize six different elements (K, Ca, Mn, Fe, Cu, and Zn) in the mycelia and wood inoculated with four different species of brown rot wood decay fungi. Wood blocks were partially dipped into a solution of copper sulfate, exposed to fungi in malt extract agar petri dish assays for nine weeks, and then imaged and compared to blocks that were partially dipped in water. The blocks were imaged immediately adjacent to an end-matched control that was placed in malt extract agar petri dish assays for 9 weeks, but not exposed to the fungi so that the differences in the elemental distributions could be directly compared. The colonized wood and mycelia were rich in K, Ca, Mn, and Fe; however, the elements and the spatial distribution in the mycelia and wood differed across fungal species. The most interesting results were the maps showing the copper distribution. While three of the four fungi grew on the copper-rich region of the wood, only one species, Fibroporia radiculosa, dramatically reduced the copper concentration in the region of fungal growth.  相似文献   

6.
In this research, we examined decay patterns occurring in Quercus castaneifolia wood under natural conditions compared with controlled decay in vivo. Pleurotus ostreatus‐infected oak wood was obtained from the Sari forests in the north of Iran. The species causing decay was verified as P. ostreatus using rDNA‐ITS sequencing of pure cultures from infected sapwood. In addition to P. ostreatus, two wood‐inhabiting Ascomycota, Trichoderma harzianum and T. lixii, were present. Mass loss in oak sapwood samples exposed to P. ostreatus for 60 days was around 10 per cent. Samples were prepared from both naturally decayed wood and wood decayed under controlled conditions and examined using microscopy. P. ostreatus was found to produce a simultaneous white‐rot decay pattern in both conditions.  相似文献   

7.
Summary We are investigating wood decay biocides that are both effective in protecting wood from decay and more environmentally compatible than other biocides. A series of halophenyl sulfonamides were synthesized and characterized by infrared and neuclear magnetic resonance spectroscopy. Wood impregnated with these compounds was tested for resistance to decay as well as water leaching. Wood impregnated with para-iodophenyl or para-fluorophenyl para-tolyl sulfonamides resisted decay by brown- and white-rot fungi. For wood impregnated with para-iodophenyl para-tolyl sulfonamide, threshold retention with the brown-rot fungus Gloeophyllum trabeum was 9.1 mmol/ 100 g solution for unleached blocks. For leached blocks, weight loss was very high (24.6%), which indicated that threshold retention will be substantially higher than 9.1 mmol/100 g solution. With the white-rot fungus Coriolus versicolor, threshold retentions were 2.9 and 5.6 mmol/100 g solution, respectively, for unleached and leached blocks. Leaching of the blocks treated with the iodo compound slightly decreased resistance to decay by C. versicolor. For wood impregnated with parafluorophenyl para-tolyl sulfonamide, threshold retentions with both G. trabeum and C. versicolor were very close to 9.0 and 9.2 mmol/100 g solution, respectively, for leached and unleached blocks. Leaching had a little effect on resistance to decay by both fungi. Wood impregnated with parachlorophenyl or bromophenyl para-tolyl sulfonamide was ineffective in resisting decay by both fungi.  相似文献   

8.
In vitro laboratory decay tests on Ailanthus excelsa Roxb. wood revealed that I. hispidus exhibits a combination of both white-rot and soft-rot patterns of wood decay. Early stages of wood decay showed dissolution of the middle lamella as well as defibration and localized delignification of fiber walls; vessels, axial, and ray parenchyma remained unaltered. Delignification commenced from the middle lamellae at the cell corners without any marked effect on the primary and secondary wall layers. In later stages of growth, the species produces typical soft-rot decay pattern by forming erosion channels through the S2 layers of fiber walls, transverse bore holes in the cell walls, and erosion channels alongside/following the orientation of cellulose microfibrils. The rays showed signs of cell wall alterations only after the extensive damage to the fiber walls. After 120 days of incubation, the vessels also showed localized delignification, the erosion of pits, and separation from associated xylem elements. The extensive weight losses under natural and in vitro decayed wood as well as the very soft nature of severely degraded wood indicate that I. hispidus alters wood strength and stiffness.  相似文献   

9.
To further our understanding of wood decay in living light red meranti (Shorea smithiana) trees, microscopic characteristics of the cell and cell wall degradations of S. smithiana wood in the presence of the decay fungi, the identity of the causal fungi, and the decay potential and pattern by an isolated fungus were investigated. Cell wall degradations, including cell wall thinning, bore holes formation, rounded pit erosion, and eroded channel opening were clearly observed under light and scanning electron microscopy. In transverse view, many large voids resulting from a coalition of degraded wood tissue appeared in the decayed canker zone. All these observations suggest the well-known simultaneous decay pattern caused by white-rot fungi. By phylogenetic analysis based on the sequences of internal transcribed spacer region of ribosomal DNA, a basidiomycete fungus isolated from the decayed wood was identified as Schizophyllum commune. The degradation caused by this fungus on sound S. smithiana wood in an in situ laboratory decay test was classified as the early stage of simultaneous decay, and showed a similar pattern to that observed in the wood samples naturally decayed.  相似文献   

10.
The white-rot fungi Trametes versicolor and Bjerkandera spp. are among the most frequent decomposers of angiosperm wood in forest ecosystems and in wood products in service. Wood extractives have a major impact on wood properties and wood utilization. This work evaluated the ability of two white-rot fungal strains (Bjerkandera sp. strain BOS55 and T. versicolor strain LaVec94-6) to degrade the main lipophilic extractive constituents in Scots pine (Pinus sylvestris L.). The time course of wood decay and wood extractive degradation was monitored in stationary batch assays incubated for eight weeks. The strains tested eliminated high levels of total resin, 34 to 51% in two weeks. Wood triglycerides were the most readily degraded extractive components (over 93% elimination in only two weeks). Free fatty acids and resin acids, which are potential fungal inhibitors, were also rapidly decomposed by the fungal strains. Sterols were used more slowly, nonetheless, the fungal degradation of this extractive fraction ranged from 50 to 88% after four weeks. Received 19 March 1999  相似文献   

11.
Optimisation of a two-stage heat treatment process: durability aspects   总被引:1,自引:1,他引:1  
Heat treatment of wood at relatively high temperatures (in the range of 150–280°C) is an effective method to improve biological durability of wood. This study was performed to investigate the effect of heat treatment process optimisation on the resistance against fungal attack, including basidiomycetes, molds and blue stain fungi. An industrially used two-stage heat treatment method under relatively mild conditions (<200°C) was used to treat the boards. Heat treatment of radiata pine sapwood revealed a clear improvement of the resistance against the brown rot fungi Coniophora puteana and Poria placenta. Increasing process temperature and/or effective process time during the first process stage, the hydro thermolysis, appeared to affect the resistance against C. puteana attack, but the effect on the resistance against P. placenta was rather limited. Heat treated radiata pine showed a limited resistance against the white rot fungus Coriolus versicolor and process variations during the hydro thermolysis stage appeared not to affect this resistance. A clear difference between the resistance of heat treated Scots pine sapwood and heartwood against fungal attack is observed. Scots pine heartwood showed a higher resistance against C. puteana and P. placenta but also against the white rot fungus C. versicolor. Similar results were obtained when heat treated birch was exposed to brown and white rot fungi. Heat treatment showed an improved resistance against C. puteana attack, especially at higher temperatures during the hydro thermolysis stage. A clear improvement of the durability was also observed after exposure to the white rot fungus C. versicolor and especially Stereum hirsutum. Increasing the process temperature or process time during the hydro thermolysis stage appeared to have a limited effect on the resistance against C. versicolor attack. Heat treated radiata pine and Norway spruce were still susceptible to mold growth on the wood surface, probably due to the formation of hemicelluloses degradation products (e.g. sugars) during heat treatment. Remarkable is the absence of blue stain fungi on heat treated wood specimen, also because the abandant blue stain fungi were observed on untreated specimen. Molecular reasons for the resistance of heat treated wood against fungal attack are discussed in detail contributing to a better understanding of heat treatment methods.  相似文献   

12.
This study was conducted to investigate the susceptibility of various wood composite panels exposed to wood-deteriorating fungi. Five wood-attacking fungi (three mold fungi, one brown rot fungus, one white rot fungus) were inoculated into four types of commercial wood composite panels (plywood, oriented strand board, particleboard, and medium-density fiberboard). One solid wood sample was included as a control. The attacking patterns of the fungi in each panel was observed by scanning electron microscopy. The weight losses due to the exposure were compared. All wood composites were more or less susceptible to all fungi inoculated. The attacking mode of the fungi was highly dependent on the types of wood composite, which had inherently different shapes of voids owing to different shapes and characteristics of the raw furnish materials used. Plywood and medium-density fiberboard showed a large weight loss after an 8-week exposure to decay fungi. Plywood is the most susceptible to white and brown rot fungi. This study indicates that all wood composite panels should undergo careful consideration to prevent fungal deterioration when they are used for exterior and humid interior applications.  相似文献   

13.
The aim of this study was to determine and quantify the wood‐decay fungi found on logs of forest tree species (beech, oak, hornbeam, Scots pine and fir) stored in log depots located in six different provinces in the Western Black Sea Region of Turkey. Additionally, it was aimed to determine the natural durability of some important wood species against the most commonly detected wood‐decay fungi. Eighteen families, 31 genera and 45 species belonging to the division Basidiomycota were detected; Antrodia crassa was identified for the first time in Turkey. The abundance of Panus neostrigosus, Polyporus meridionalis, Trametes hirsuta, T. versicolor and Stereum hirsutumincreased significantly with the holding time of the logs (r = 0.99, 0.87, 0.53, 0.57 and 0.78, respectively, p < 0.05). The majority of the fungal species were detected on logs stored in depots for 4–6 years (66%). The percentage of fungal species found on the logs with a holding time of three years or less was 29%, whereas the percentage for those detected on logs stored for seven or more years was 31%. Among the wood species, the greatest number of fungal species (29) and highest amount of fungi (2,539) occurred on beech wood. Natural durability tests showed that T. versicolor caused the greatest loss of wood mass, with an average of 23%. Field studies and natural durability tests performed in the laboratory showed that beech wood lost the most mass among the timber species studied.  相似文献   

14.
The decay pattern in bamboo fibers caused by a brown rot fungus, Gloeophyllum trabeum, was examined by microscopy. The inner part of the polylaminate secondary wall was degraded, while the outer part of the secondary wall remained essentially intact. Degradation in bamboo fiber walls without direct contact with the fungal hyphae was similar to wood decay caused by brown rot fungi. Degradation in polylaminate walls was almost confined to the broad layers whereas the narrow layers appeared resistant. The p-hydroxylphenyl unit lignin in middle lamella, particularly in the cell corner regions, was also degraded. The degradation of lignin in bamboo fibers was evidenced by Fourier transform infrared spectra. The present work suggests that the decay of bamboo fiber walls by G. trabeum was influenced by lignin distribution in the fiber walls as well as the polylaminate structures.  相似文献   

15.
Development of decay and/or discoloration was assessed in the functional sapwood of one coniferous and three deciduous trees after wounding and artificial inoculation with six wood decay fungi. Living stems of mature Douglas fir, beech, oak, and sycamore trees were wounded in spring 2002 and immediately inoculated with brown, white, and soft rot fungi. Extent of discoloration and decay, wood weight loss, and total phenols in the reaction zone (zone of active response at a dynamic interface between living sapwood and wood colonized by decay fungi) were assessed 16 and 28 months after inoculation.  相似文献   

16.
Effect of heat treatment on extracellular enzymes involved in wood degradation by Trametes versicolor was investigated. Heat-treated and untreated beech blocks were exposed to T. versicolor on malt-agar medium and extracellular enzymatic activities investigated. A strong ABTS oxidizing activity has been detected during the first stage of colonization in both cases, while cellulase activities are mainly detected in the case of untreated beech wood. Further investigations carried out on holocellulose, isolated using sodium chlorite delignification procedure and subjected to heat treatment or not, indicate that commercially available cellulases and xylanases are able to hydrolyse untreated holocellulose, while heat-treated holocellulose was not affected. All these data suggest that chemical modifications of wood components during heat treatment disturb enzymatic system involved in wood degradation.  相似文献   

17.
Hybrid poplar (Populus deltoides × Populus trichocarpa) and Douglas-fir (Pseudotsuga menziesii) wood specimens were densified with three variations of thermo-hydro-mechanical (THM) treatment. The THM treatments differed in the steam environment, including transient steam (TS), saturated steam (SS), and saturated steam with 1-min post–heat treatment at 200 °C (SS+PHT). The bending properties, FTIR spectra, and colour of the THM wood specimens were studied before and after exposure to two different wood decay fungi, brown rot Gloeophyllum trabeum, and white rot Trametes versicolor. The results showed that the performance of densified hybrid poplar wood was considerably poorer than the performance of Douglas-fir heartwood. The FTIR spectra measurements did not show changes in the densified hybrid poplar wood, while some changes were evident in densified Douglas-fir specimens. After fungal degradation, the most prominent changes were observed on the SS+PHT specimens. Colour is one of the most important parameter predominantly influenced by the wood species and the intensity of the densification process for both wood species, while after fungal exposure, the colour of all densified Douglas-fir specimens obtained more or less the same appearance, and densified hybrid poplar specimens resulted in lighter colour tones, indicating that the pattern of degradation of the densified and non-densified specimens are similar. The 3-point bending test results determined that the THM treatment significantly increased the modulus of rupture (MOR) and modulus of elasticity (MOE) of the densified wood specimens, while fungal exposure decreased the MOE and MOR in hybrid poplar and Douglas-fir specimens.  相似文献   

18.
  • ? Non-destructive detection of fungal decay in living trees is relevant for forest management of valuable species, hazard tree assessment, and research in forest pathology. A variety of tomographic methods, based on stress wave timing, radioactive radiation, or electrical resistivity have been used to detect decay in standing trees non-destructively. But apart from mobile gamma ray computed tomography (Habermehl and Ridder, 1993) which is virtually unavailable, the detection of incipient stages of decay is still not possible.
  • ? Wood moisture and electrolyte content influence the electric resistivity of wood. Both are changed by fungal decay. Therefore electric resistivity tomography (ERT) should detect decay in its early stages. Then it could be used to monitor the spatial and temporal progress of degradation.
  • ? We infected four Fraxinus excelsior trees with Trametes versicolor using wooden dowels and measured two-dimensional electric resistivity tomograms 3, 10, 13 and 21 months after infection. Immediately after the last electric resistivity measurement trees were felled for further analyses of stem cross-sections. Wood moisture content and raw density had significantly increased in infected areas, but dry density had not significantly changed after 21 months. Areas of very low electric resistivity around the infected wounds correlated very well with infected wood in the stem cross-sections. Increasing areas of low electric resistivity around the infected wounds during consecutive measurements indicate increasing areas of infected wood.
  • ? We conclude that the growth of white rot by Trametes versicolor can be monitored with electric resistivity tomography (ERT) beginning from incipient stages, even before wood density decreases. ERT could therefore be a powerful research tool for decay dynamics as well as a method for diagnosing wood decay in forestry and arboriculture.
  •   相似文献   

    19.
    Summary The in vitro decay of Aextoxicon punctatum and Fagus sylvatica wood by the fungi Trametes versicolor, Ganoderma australe, Phlebia chrysocrea and Lentinus cyathiformis was studied by the agar-block method, and then the decayed woods were analyzed by chemical and spectroscopic techniques. The results demonstrated the strong resistance of the A. punctatum wood to the brown-rot fungus L. cyathiformis; the resistance might be related to the low S/G lignin ratio in this Austral hardwood. Wood decay by the Austral white-rot fungi G. australe and P. chrysocrea was rather limited, and preferential degradation of lignin was not produced although all the fungi studied increased wood digestibility. The most characteristic white and brown-rot decay patterns were observed during the in vitro decay with T. versicolor and L. cyathiformis, respectively. Trametes versicolor caused high weight losses and reduced the lignin content of the wood, whereas L. cyathiformis produced a preferential removal of xylan. No important changes in the solid-state 13C NMR spectra were observed after wood degradation by T. versicolor, but this technique evidenced an increase in aromatic carbon by L. cyathiformis. This increase was higher than that found in the Klason lignin content, suggesting the presence of altered lignin fractions in the brown-rotted wood.The authors are indebted to Prof. H. D. Lüdemann for the facilities at the Institut für Biophysik und physikalische Biochemie (Regensburg), to A. Navarrete (INIA, Madrid) for her collaboration, and to C. F. Warren (ICE, Alcalá de Henares) for her linguistic assistance. The computer program for spectra treatment was developed by G. Almendros (Centro de Ciencias Medioambientales, CSIC, Madrid). This investigation has been funded by the Spanish Biotechnology Program (Grant BIO88-0185)  相似文献   

    20.
    Summary Growth and subsequent decay by seven basidiomycetes in birch wood blocks was inhibited by three Scytalidium isolates. Scytalidium initially colonized the surface of the blocks and gradually overgrew the basidiomycetes. In individual wood blocks from 11 Scytalidium-basidiomycete paired treatment combinations, the basidiomycete was not inhibited throughout the entire wood block. These wood blocks demonstrated interspecific interactions and antagonism between the different fungi. The white-rot fungi responded to isolates of Scytalidium by occluding xylem cells with masses of hyphae, forming pseudosclerotial plates in the zone of initial interaction. Scytalidium appeared to gain access into portions of wood colonized by the basidiomycetes only after substantial decay had resulted by the wood decay fungus.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号