首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
The presence of trees in fields may help overcome the physiological stress that happens to late sown wheat (Triticum aestivum L.) in subtropical India. Wheat was planted in an agroforestry system with Eucalyptus tereticornis trees on 7 January 1998 in a fan design that provided different combinations of tree row spacing and orientations. Crop profile microclimatic conditions and the resulting growth responses of the intercropped wheat were studied to explore the potential of agroforestry systems to influence late sown wheat yields under different tree row spacing and orientations. Agroforestry treatments exhibited a potential to optimize the microclimatic conditions for seedling emergence, tillering and earhead emergence at some tree row orientations and distances from the crop. The net radiation distribution at three stages of crop growth indicated that the radiation availability was lower in all the agroforestry treatments than for the sole crop. The tree row orientation and distance influence the growth behavior of the crop but the effect of sun angle (which changes with season) can change their influence over time. The deterioration or amelioration of microclimatic conditions in agroforestry with the passage of time should be expected because of altered interaction patterns between sunrays and tree canopy resulting from changing solar elevation and angle of sunrays. Statistically similar harvest indices in all the treatments despite lower total biological yields in agroforestry treatments revealed that microclimatic conditions under agroforestry were more favorable for wheat growth attributed to reduction in heat load during the post anthesis period. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
A number of agroforestry models have been developed to simulate growth outcomes based on the interactions between components of agroforestry systems. A major component of this interaction is the impact of shade from trees on crop growth and yield. Capability in the agricultural production systems simulator (APSIM) model to simulate the impacts of shading on crop performance could be particularly useful, as the model is already widely used to simulate agricultural crop production. To quantify and simulate the impacts of shading on maize performance without trees, a field experiment was conducted at Melkassa Agricultural Research Centre, Ethiopia. The treatments contained three levels of shading intensity that reduced incident radiation by 0 (control), 50 and 75% using shade cloth. Data from a similar field experiment at Machakos Research Station, Kenya, with 0, 25 and 50% shading were also used for simulation. APSIM adequately simulated maize grain yield (r2 = 0.97) and total above-ground biomass (r2 = 0.95) in the control and in the 50% treatments at Melkassa, and likewise in the control (r2 = 0.99), 25% (r2 = 0.90) and 50% (r2 = 0.98) treatments at Machakos. Similarly, APSIM effectively predicted Leaf Area Index attained at the flowering (r2 = 0.90) and maturity (r2 = 0.94) stages. However, APSIM under-estimated maize biomass and yield at 75% shading. In conclusion, the model can be reliably employed to simulate maize productivity in agroforestry systems with up to 50% shading, but caution is required at higher levels of shading.  相似文献   

3.
Uptake and management of agroforestry technologies differs among farms in Rwanda and needs to be documented as a basis for shaping future research and development programs. The objective of this study was to investigate current agroforestry practices, farmers’ preferences, tree management and perspectives for agroforestry technologies. The study consisted of a combination of a formal survey, a participatory tree testing, farmer evaluation and focus group discussions in the Central Plateau (moderate altitude) and the Buberuka (high altitude) agro-ecological zones. A survey and a tree testing exercise with a range of species: (timber species—Eucalyptus urophyla, Grevillea robusta; legume shrubs - Calliandra calothyrsus, Tephrosia vogelii; and fruit species—Persea americana and Citrus sinensis) were carried out in Simbi (Central Plateau) and Kageyo (Buberuka) with farmers from different wealth status who received tree seedlings for planting, managing, and evaluating. Simbi had more tree species farm?1 (4.5) than Kageyo (2.9). Fruit trees occurred most frequently in Simbi. Grevillea robusta, Calliandra calothyrsus and Tephrosia vogelii were mostly established along contours, fruit trees in homefields and Eucalyptus urophyla trees in woodlots. Survival was better on contours for Grevillea robusta (58–100 %) and Calliandra calothyrsus (50–72 %). Tree growth was strongly correlated with the total tree lop biomass in Eucalyptus urophyla (R 2 = 0.69). Grevillea robusta was most preferred in Simbi and Eucalyptus urophyla and Calliandra calothyrsus in Kageyo. The study provided information useful for revising the national agroforestry research and extension agenda and has important implications for other countries in the highlands of Africa.  相似文献   

4.
We analyzed the growth and photosynthetic behavior of Gallesia integrifolia (‘pau-d’alho’) and Schinus terebinthifolius (‘aroeirinha’) under shade, seeking to obtain ecophysiological information for introducing seedlings of those species in previously established cacao agroforestry systems. Considering that light intensity under the shade of cacao trees varied between 5 and 10% daylight, 5 months old seedlings were exposed to four irradiance levels (25, 17, 10 and 5% daylight) for 92 days. With shade increase both species displayed trends of decrease leaf mass per unit leaf area, leaf area per plant (LA), relative growth rate (RGR) and net assimilation rate (NAR), and increase leaf area ratio (LAR). The mean values of light-saturated net photosynthetic rate (P nmax) in 25 and 5% daylight were 12.8 and 8.0 μmol CO2 m−2 s−1 for G. integrifolia and 17.9 and 7.4 μmol CO2 m−2 s−1, respectively, for S. terebinthifolius. Based on the measurements of photosynthetic photon flux density and estimated values of photosynthetic saturated irradiance (Is) we concluded that, in all shaded conditions, the leaves of both species were under sub optimal light conditions to reach P nmax. In spite of the lowest P nmax values, RGR and NAR were significantly higher for G. integrifolia in all irradiance levels. Differences in growth rates can be explained by the higher values of LA, LAR and leaf mass ratio (LMR), as well as by the lower values of Is, photosynthetic compensation irradiance and dark respiration rates observed for G. integrifolia. Even though seedlings of G. integrifolia presented higher capacity to adapt under conditions of dense shade, we concluded that both species were under stress conditions induced by shade in light environments below 25% daylight. On a practical point of view it is possible to conclude that seedlings of both species should be introduced in light gaps, formed after the fall of big trees, or in places in which cacao trees are cultivated using large plant spacing.  相似文献   

5.
Shade cloth is commonly used in agroforestry research. It produces a continuous, uniform reduced light environment. Shade cloth and a slatted structure were compared in relation to the inability to represent the light regime and plant responses of an agroforestry system. The split-split-plot randomised block experiment had main plots as covering status (with or without radiata pine trees), subplots as artificial shade (none, shade cloth or wooden slats) and sub-subplots as growth rotation, over sown alfalfa, in three replicates. The quantity of light transmittance was 49% under trees, 41% under cloth and 44% under slats. Temporal changes and spectral composition under trees were more accurately reproduced under the slats than shade cloth. The red to far red ratio was 0.64 under tree shade and 0.74 during the shaded period under slats. This compared with 1.31 in open pasture, 1.28 under shade cloth in open and 1.26 under slats during sunny periods. To compensate for low light quantity and quality, alfalfa had elongated stems and internodes. In open pasture and under cloth in the open, it produced short stems. The mean dry matter yield under trees was 68% of the 30.3 t ha−1 in open pasture, 56% under cloth and 57% under slats. The slats induced similar morphological responses in alfalfa to those in the agroforestry system. The magnitude of changes had little effect on growth and yield responses. The artificial slatted structure approximated the intermittent light environment and consequent plant responses observed in an agroforestry system.  相似文献   

6.
Allometric models for dominant shade tree species and coffee plants (Coffea arabica) were developed for coffee agroforestry systems in Matagalpa, Nicaragua. The studied shade tree species were Cordia alliodora, Juglans olanchana, Inga tonduzzi and I. punctata. The models predict aboveground biomass based on diameter at breast height (for trees), and the stem diameter at a height of 15 cm and plant height (for coffee plants). In addition, the specific gravity of the studied species was determined.The total aboveground biomass of the shade trees varied between 3.5 and 386 kg per tree, and between 0.005 and 2.8 kg per plant for coffee. The aboveground biomass components (foliage, branch, and stem) are closely related with diameter at breast height (r > 0.75). The best-fit models for aboveground biomass of the shade trees were logarithmic, with adjusted R 2 between 0.71 and 0.97. In coffee plants, a high correlation was found (r = 0.84) with the stem diameter at 15 cm height, and the best-fit model was logarithmic, as well. The mean specific gravity was 0.52 (± 0.11) for trees and 0.82 (± 0.06) for coffee plants.  相似文献   

7.
8.
Abstract

Intraspecific variability in responses to temperature and shade was studied at Champenoux, north-eastern France, with seedlings from five Polish provenances of silver fir (Abies alba Mill.). Acclimation of photosynthesis to temperature was investigated in seedlings exposed to 10, 25 and 35°C in a climate chamber for 1 week. During two growth seasons, a population of seedlings was grown in the nursery under four different irradiance regimens: 100, 48, 18 and 8% of natural irradiance. Maximum carboxylation rate (V cmax), maximum light driven electron flow (J max) and maximum net carbon dioxide assimilation rate (A max) measured at 25°C increased with population altitude. One week of exposure to 35°C caused discoloration and massive needle shedding. After 2 years’ acclimation to different levels of irradiance, a significant interprovenance variability was evidenced in growth, total biomass, biomass allocation and photosynthetic performance. This study provided evidence for the existence of functional variation among the examined provenances.  相似文献   

9.
Adequate evaluation of competition interfaces of tree growth on intercrops is an important consideration in the assessment of agroforestry systems. Spatial methods wherein positional effect of an observation with respect to trees or columns of trees can be accounted for were examined. Yield ofbhabbar grass (Eulaliopsis binata Ritz) planted under paired and staggered columns of Eucalyptus (Eucalyptus tereticornis Smith) was analysed for four years. Grass production at 7 positions recorded across staggered and paired tree columns was significantly different. Spatial correlations among contiguous observations across paired tree columns were significant. Cyclicity corresponding to seven columns of grass of 3.5 m distance between paired tree columns explained variation in grass production significantly during the first observation year. Additional competition interfaces at 1.75 m and 1.17 m appeared in the subsequent years. These competition interfaces were attributed to pairing of trees and staggering. Error distributions of fitting of cyclic patterns were more acceptable as compared to ANOVA. Possibilities of the use of this methodology in many other agroforestry situations are discussed.  相似文献   

10.
Abstract

The agroforestry program of the AMISCONDE Initiative was implemented in 13 buffer zone communities of La Amistad Biosphere Reserve. This program introduced citrus (Citrus spp.) and promoted the widespread inclusion of poró (Erythrina poeppigiana) shade trees, ground story vegetation, and soil conservation techniques to the local cultivation of coffee (Coffea arabica var caturra). This program sought long-term socioeconomic and ecological health in these buffer zone communities through conservation and development projects such as coffee agroforestry systems. This paper examines the ecological and socioeconomic benefits of two introduced coffee agroforestry systems: coffee-poró and coffee-citrus. The project has decreased agrochemical inputs, integrated multi-strata vegetation, and implemented soil conservation techniques such as vetiver grass, cover crops, terraces, water channeling, and shade trees in an effort to sustainably manage coffee production on the steep buffer zone slopes. The agroforestry project of the AMISCONDE Initiative has likely improved the production of coffee ecologically and economically. However, new specialty markets should be explored to increase economic and ecological gains. Organic and fair trade coffee niche markets are suggested as alternatives for meeting the long-term AMISCONDE objectives of community development and conservation.  相似文献   

11.
The advantages of associating shade trees in coffee agroforestry systems (AFS) are generally thought to be restricted mostly to poor soil and sub-optimal ecological conditions for coffee cultivation whereas their role in optimal conditions remains controversial. Thus, the objective of this study was to investigate, under the optimal coffee cultivation conditions of the Central Valley of Costa Rica, the impact of Inga densiflora, a very common shade tree in Central America, on the microclimate, yield and vegetative development of shaded coffee in comparison to coffee monoculture (MC). Maximum temperature of shaded coffee leaves was reduced by up to 5°C relative to coffee leaf temperature in MC. The minimum air temperature at night was 0.5°C higher in AFS than air temperature in MC demonstrating the buffering effects of shade trees. As judged by the lower relative extractable water (REW) in the deep soil layers during the dry season, water use in AFS was higher than in MC. Nevertheless, competition for water between coffee and associated trees was assumed to be limited as REW in the 0–150 cm soil layer was always higher than 0.3 in shaded coffee compared to 0.4 in monoculture. Coffee production was quite similar in both systems during the establishment of shade trees, however a yield decrease of 30% was observed in AFS compared to MC with a decrease in radiation transmittance to less than 40% during the latter years in the absence of an adequate shade tree pruning. As a result of the high contribution (60%) of shade trees to overall biomass, permanent aerial biomass accumulation in AFS amounted to two times the biomass accumulated in MC after 7 years. Thus provided an adequate pruning, Inga-shaded plantations appeared more advantageous than MC in optimal conditions, especially considering the fact that coffee AFS provides high quality coffee, farmers’ revenue diversification and environmental benefits.  相似文献   

12.
On-farm experiments were conducted in Khammam district of Andhra Pradesh from 2001 to 2006 to evaluate the biomass productivity, intercrop yields and profitability of Eucalyptus tereticornis clonal and Leucaena leucocephala variety K-636 based systems. Trees were planted at a spacing of 3 × 2 m and evaluated at three locations. Height growth was significantly higher in leucaena during the 4 year where as difference in diameter growth was not significant. Biomass partitioning to the bole was high in case of leucaena, ranged from 83% in 2.5–5 cm diameter at breast height (DBH) trees to 89% in 12.5–15 cm DBH trees and in eucalyptus clones the corresponding values were 71% in 2.5–5 cm DBH trees and 83% in 12.5–15 cm DBH trees. Marketable biomass productivity was higher with leucaena (95 Mg ha−1) in comparison to eucalyptus (87 Mg ha−1). Competition effects of trees on intercrops were observed from the 2 year (2002 post-rainy season). Intercrop yields were 45% of the sole crop in eucalyptus system and 36% in leucaena system during the 2 year. Sole eucalyptus and leucaena plantations and intercropping systems recorded higher gross and net returns over arable cropping. Therefore, it can be concluded that leucaena variety K636 and eucalyptus clonal based agroforestry systems are profitable alternatives to arable cropping under rainfed conditions.  相似文献   

13.
Growing concern for economic and environmental issues emphasizes the potential value of intercropping systems in temperate regions. However, the selection of relevant tree species to be associated with crops has been little documented. The growth and the nitrogen nutrition of two economically valuable species, wild cherry (Prunus avium L.) and hybrid walnut (Juglans nigra L.×Juglans regia L.), were compared over six years after plantation. These two species were associated with non-irrigated cereal crops in the agroforestry treatment or grown separately (weeded control and fallow). Intercropping increased diameter growth as soon as year 2 in the two species. Leaf biomass assessment using allometric models showed an earlier and greater leaf biomass increase in hybrid walnut than in wild cherry tree. After six years, the relative growth increase of the agroforestry trees with respect to the control trees varied with the parameter considered (diameter at breast height from +26 to +65%, leaf biomass from +54 to +142%) and with the tree species (higher relative growth for hybrid walnut trees). The beneficial effect on tree growth can be accounted for in terms of enhanced nitrogen nutrition. The tree–crop association in intercropping systems, which improves tree growth, might thus allow the planting of more demanding trees on soils of lower fertility.  相似文献   

14.
Murta (Ugni molinae Turcz.) is an evergreen shrub of the native forest understorey of southern Chile that produces berries which are consumed in the local markets. Because of the natural adaptation of murta to growing under the shade of trees, we propose that an adequate way of domesticating this species would be its cultivation in agroforestry systems. In order to assess the suitability of three murta accessions from different regions in southern Chile for their cultivation in such systems, we established a trial in which these accessions were submitted to six light transmittance levels (20%–100% of full solar irradiance) from planting in spring to the following autumn. Optimum growth, as assessed through dry mass accumulation and emission of branches and metamers, was achieved at moderate light transmittance levels (50%–65%). These growth traits showed stable positive responses to the relative amount of light intercepted by the plants (as estimated from plant structural traits) up to these optimum light transmittance levels and diverged to lower values thereafter. These stable relationships suggest that the differences in plant growth at low and moderate light transmittance levels can be attributed to restrictions of photosynthesis by light availability. The reduction in growth for higher light transmittance levels may be partly attributed to photoinhibition as suggested by reduced chlorophyll content and relatively low increments in carotenoid content in leaves at high light transmittance levels.  相似文献   

15.
Shade trees play an important role within agroforestry systems by influencing radiation and wind regimes as well as nutrient and hydrological cycling. However, there is a lack of quantitative assessments of their functions. One of the reasons is the rare information on structural characteristics of shade tree species. Therefore, the aim of this study is to provide basic information on the structure of frequently used shade tree species for the implementation of models simulating the ecosystem processes in agroforestry systems. The investigation of the shade trees was conducted at two cacao agroforestry sites on Sulawesi, Indonesia. The measurements of the main structural parameters: diameter at breast height, tree height, trunk height, crown length and crown radius were carried out for the shade tree species Aleurites moluccana, Cocos nucifera and Gliricidia sepium. For data collection, the National Forest Inventory Field Manual Template by FAO (2004) was applied. Based on this information allometric functions were derived for the correspondent shade tree species. The best significant relationships were obtained for the height-crown length relationship of the dicotyledonous tree species’ A. moluccana and G. sepium with a coefficient of determination r² = 0.925 and r² = 0.738, respectively, and the height-crown length relationship of the monocotyledonous palm C. nucifera with r² = 0.663. The transferability tests ‘analysis of covariance’ and ‘homogeneity of slopes’ have shown that the obtained allometric functions are also applicable to other cacao agroforestry systems of the region.  相似文献   

16.
Coffee agroforestry is a conservation strategy that has shown promise to support the diversity of bird, bat, and insect communities, but few studies have focused on non-volant mammals in coffee farms. We assessed mammal diversity within coffee agroforestry systems in Kodagu, India and investigated the impacts of the non-native shade tree species, Grevillea robusta, on mammal diversity. Twenty farms, with varying amounts of G. robusta planted within the coffee farm, were sampled throughout three rainfall zones during the 4-month study period. We captured six species of small mammals, with indirect methods yielding an additional five species, totaling 11 mammal species. Contrary to current ecological thought, we found that increased amounts of G. robusta did not have a negative impact on either abundance or richness of mammals. Small mammal abundances were higher at farms with greater amounts of herbaceous ground cover and larger, mature shade trees, while small mammal species richness was found to increase with an increase in tree species richness as well as greater amounts of herbaceous ground cover. Additionally, small mammal abundance was higher at coffee farms closer to forested areas. Based on these findings, we suggest the maintenance or cultivation of shade tree richness, mature shade trees, and herbaceous ground cover within coffee farms and preservation of forested areas within the landscape to enhance coffee agroforestry habitat for non-volant mammals. We hope that these habitat requirements will be incorporated into conservation strategies for the promotion of biodiversity within coffee agroforestry systems.  相似文献   

17.
Pruning of agroforestry trees, while reducing shade of the crops, usually reduces both biomass production and nitrogen fixation. Short pruning cycles are often not sustainable on the long run, because tree production declines over subsequent pruning cycles. We compared biomass and labile carbohydrate dynamics of Erythrina lanceolata Standley (Papilionaceae) shade trees under total and partial pruning regimes in a vanilla (Vanilla planifolia L.) plantation in South-western Costa Rica. The highest biomass production was measured in the unpruned control, followed by trees with 50% of the leaf pruned every three months, while total pruning every six months resulted in the lowest biomass pruduction. In the more productive treatments, a higher proportion of the production was in branches. Because, the N content of woody branches was high, they were important for nitrogen cycling. In the partial pruning treatment more nitrogen was returned to the soil from litter and woody branches than from pruned leaf. Sugar concentrations were not different between treatments and the dynamics of non-structural carbohydrates (sugar and starch) seems to depend more on plant phenology than pruning treatment. However, the starch concentrations in the total pruning were lower than in the other treatments.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Light competition by trees is often regarded as a major limiting factor for crops in alley-cropping agroforestry. Northern latitude farmers are usually reluctant to adopt agroforestry as they fear that light competition will be fiercer in their conditions. We questioned the light availability for crops in alley-cropping at different latitudes from the tropic circle to the polar circle with a process-based 3D model of alley-cropping agroforestry. Two tree densities and two tree line orientations were considered. The effect of the latitude was evaluated with same-sized trees. The relative irradiance of the crops was computed for the whole year or at specific times of the year when crops need more light. The heterogeneity of crop irradiance across the alley was also computed. Surprisingly, crop relative irradiance of summer crops at high latitudes is high, at odds with farmers’ fears. Best designs were highlighted for improving the crop irradiance: North–South tree lines are recommended at high latitudes and East–West tree lines at low latitudes. At medium latitudes, North–South tree lines should be preferred to achieve an homogeneous irradiance of the crop in the alley. If we assume that trees at northern latitudes grow slower when compared to southern latitudes, then alley-cropping agroforestry is highly advisable even at high latitudes with summer crops.  相似文献   

19.
Amomum villosum grown in the traditional way for economic purpose in Xishuangbanna, southwest China, causes some damages to the local tropical seasonal rain forests. It is important to evaluate the effects of irradiance and soil moisture on A. villosum in order to find out ways to maintain the local forest ecosystems on the one hand and to promote its economic cultivation with agroforestry practices on the other hand. Soil moisture was the main determinant of plant growth. Seedling height, leaf number and area, biomass, relative growth rate (RGR) and net assimilation rate decreased significantly with the decrease of soil moisture. There were no interactions between soil moisture and irradiance on all the plant traits evaluated in this study. The effects of soil moisture and irradiance were orthogonal; drought reduced RGR at a similar degree at all irradiance levels. The plant can acclimate to high irradiance combined with low soil moisture. Under this condition, A. villosum modified its biomass allocation in favor to roots rather than to leaves so that whole-plant level water balance could be well maintained. Furthermore, many small-sized slender leaves were formed to facilitate leaf thermal loss, its carotenoid content increased in favor for photoprotection, and contents of chlorophyll and light-harvesting complex of photosystem II decreased so that its irradiance interception was better balanced for plant adaptation. Our results indicated that soil moisture is a more important factor to concern than irradiance when planting A. villosum in agroforestry practices and that A. villosum can be grown in high light habitats such as secondary forests and artificial forests when soil moisture is adequate.  相似文献   

20.
Sap flows of coffee (Coffea arabica L. cv ‘Costa Rica 95’) and associated timber trees (Eucalyptus deglupta or Terminalia ivorensis) or leguminous tree (Erythrina poeppigiana) were measured simultaneously during 12 months in 4-year-old coffee agroforestry systems in sub-optimal ecological conditions of Costa Rica. In the wet period, coffee and shade tree transpiration followed the daily patterns of photosynthetic photon flux density (PPFD) and reference evapotranspiration (ETo) while their transpiration was restricted at higher air VPD values (>1.5 kPa) registered during the dry period. Coffee transpired more per unit leaf area in full sun than under shade, an indication of higher environmental coffee stress in non shaded conditions. Nonetheless, coffee daily water consumption per hectare was generally higher under shade than in full sun due higher vegetative growth of shade-grown coffee plants. Minimum and maximum daily transpiration were 0.74 and 4.08 mm for coffee, 0.35 and 1.06 mm for E. deglupta, 0.70 and 2.10 mm for T. ivorensis and 0.13 and 0.79 mm for E. poeppigiana. Estimation of the annual combined water transpiration by coffee and shade trees was 20–250% higher than that of coffee grown in full sun. Nevertheless, there was no evidence that water use by associated trees decreased soil water availability for coffee and hence limited coffee transpiration in the dry season due to its relatively short length (3 months) and the high annual rainfall (over 3100 mm). In the sub-optimal, low altitude conditions of this experiment, E. deglupta was the optimum shade species as it maintained a more constant shade level throughout the year and ensured a better protection to coffee underneath than T. ivorensis and E. poeppigiana which underwent a complete defoliation during the adverse meteorological conditions of the dry period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号