首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
Carbon stock estimation was conducted in tree species of Sem Mukhem sacred forest in district Tehri of Garhwal Himalaya, Uttarakhand, India. This forest is dedicated to Nagraj Devta and is dominated by tree species, including Quercus floribunda, Quercus semecarpifolia and Rhododendron arboreum. The highest values of below ground biomass density, total biomass density and total carbon density were (34.81±1.68) Mg·ha?1, (168.26±9.04) Mg·ha?1 and (84.13±4.18) Mg·ha?1 for Pinus wallichiana. Overall values of total biomass density and total carbon density calculated were 1549.704 Mg·ha?1 and 774.77 Mg·ha?1 respectively. Total value of growing stock volume density for all species was 732.56 m3·ha?1 and ranged from (144.97±11.98) m3·ha?1 for Pinus wallichiana to (7.78±1.78) m3·ha?1 for Benthamidia capitata.  相似文献   

2.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

3.
Replantation of degraded forest using rapidgrowth trees can play a significant role in global carbon budget by storing large quantities of carbon in live biomass,forest floor,and soil organic matter.We assessed the potential of 20-year old stands of three rapid-growth tree species,including Alnus subcordata,Populus deltoides and Taxodium distichum,for carbon(C) storage at ecosystem level.In September 2013,48 replicate plots(16 m × 16 m) in 8 stands of three plantations were established.36 trees were felled down and fresh biomass of different components was weighed in the field.Biomass equations were fitted using data based on the 36 felled trees.The biomass of understory vegetation and litter were measured by harvesting all the components.The C fraction of understory,litter,and soil were measured.The ecosystem C storage was as follows: A.subcordata(626.5 Mg ha~(-1)) [ P.deltoides(542.9Mg ha~(-1)) [ T.distichum(486.8 Mg ha~(-1))(P \ 0.001),of which78.1–87.4% was in the soil.P.deltoides plantation reached the highest tree biomass(206.6 Mg ha~(-1)),followed by A.subcordata(134.5 Mg ha~(-1)) and T.distichum(123.3 Mg ha~(-1)).The highest soil C was stored in theplantation of A.subcordata(555.5 Mg ha~(-1)).The C storage and sequestration of the plantations after 20 years were considerable(25–30 Mg ha~(-1) year~(-1)) and broadleaves species had higher potential.Native species had a higher soil C storage while the potential of introduced species for live biomass production was higher.  相似文献   

4.
A study was conducted to assess carbon stocks in various forms and land-use types and reliably estimate the impact of land use on C stocks in the Nam Yao sub-watershed (19°05'10"N, 100°37'02"E), Thailand. The carbon stocks of aboveground, soil organic and fine root within primary forest, reforestation and agricultural land were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (357.62 ± 28.51 Mg·ha-1, simplified expression of Mg (carbon)·ha-1) was significantly greater (P< 0.05) than the reforestation (195.25 ±14.38 Mg·ha-1) and the agricultural land (103.10±18.24 Mg·ha-1). Soil organic carbon in the forests (196.24 ±22.81 Mg·ha-1) was also significantly greater (P< 0.05) than the reforestation (146.83± 7.22 Mg·ha-1) and the agricultural land (95.09 ± 14.18 Mg·ha-1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 40-cm layer and decreased with soil depth. The aboveground carbon(soil organic carbon: fine root carbon ratios (ABGC: SOC: FRC), was 5:8:1, 2:8:1, and 3:50:1 for the forest, reforestation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land. However, the C can be effectively recaptured through reforestation where high levels of C are stored in biomass as carbon sinks, facilitating carbon dioxide mitigation.  相似文献   

5.
The effect of forest conservation on the organic carbon (C) stock of temperate forest soils is hardly investigated. Coarse woody debris (CWD) represents an important C reservoir in unmanaged forests and potential source of C input to soils. Here, we compared aboveground CWD and soil C stocks at the stand level of three unmanaged and three adjacent managed forests in different geological and climatic regions of Bavaria, Germany. CWD accumulated over 40–100 years and yielded C stocks of 11 Mg C ha?1 in the unmanaged spruce forest and 23 and 30 Mg C ha?1 in the two unmanaged beech–oak forests. C stocks of the organic layer were smaller in the beech–oak forests (8 and 19 Mg C ha?1) and greater in the spruce forest (36 Mg C ha?1) than the C stock of CWD. Elevated aboveground CWD stocks did not coincide with greater C stocks in the organic layers and the mineral soils of the unmanaged forests. However, radiocarbon signatures of the O e and O a horizons differed among unmanaged and managed beech–oak forests. We attributed these differences to partly faster turnover of organic C, stimulated by greater CWD input in the unmanaged forest. Alternatively, the slower turnover of organic C in the managed forests resulted from lower litter quality following thinning or different tree species composition. Radiocarbon signatures of water-extractable dissolved organic carbon (DOC) from the top mineral soils point to CWD as potent DOC source. Our results suggest that 40–100 years of forest protection is too short to generate significant changes in C stocks and radiocarbon signatures of forest soils at the stand level.  相似文献   

6.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

7.
Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha~(-1),481.47 to 565.40 Mg ha~(-1) C,1240 to 1320 stem ha~(-1) and79.43 to 90.64 m~2 ha~(-1),respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.  相似文献   

8.
Four forest stands each of twenty major forest types in sub-tropical to temperate zones (350 m asl–3100 m asl) of Garhwal Himalaya were studied. The aim of the study was to assess the stem density, tree diversity, biomass and carbon stocks in these forests and make recommendations for forest management based on priorities for biodiversity protection and carbon sequestration. Stem density ranged between 295 and 850 N ha−1, while total biomass ranged from 129 to 533 Mg ha−1. Total carbon storage ranged between 59 and 245 Mg ha−1. The range of Shannon–Wiener diversity index was between 0.28 and 1.75. Most of the conifer-dominated forest types had higher carbon storage than broadleaf-dominated forest types. Protecting conifer-dominated stands, especially those dominated by Abies pindrow and Cedrus deodara, would have the largest impact, per unit area, on reducing carbon emissions from deforestation.  相似文献   

9.
Grewia optiva Drummond is one of important agroforestry tree species grown by the farmers in the lower and mid-hills of western Himalaya. Different models viz., monomolicular, logistic, gompetz, allometric, rechards, chapman and linear were fitted to the relationship between total biomass and diameter at breast height (DBH) as independent variable. The adjusted R2 values were more than 0.924 for all the seven models implying that all models are apparently equally efficient. Out of the six non-linear models, allometric model (Y = a × DBH b ) fulfils the validation criterion to the best possible extent and is thus considered as best performing. Biomass in different tree components was fitted to allometric models using DBH as explanatory variable, the adjusted R2 for fitted functions varied from 0.872 to 0.965 for different biomass components. The t values for all the components were found non-significant (p > 0.05), thereby indicating that model is valid. Using the developed model, the estimated total biomass varied from 6.62 Mg ha?1 in 4 year to 46.64 Mg ha?1 in 23 year old plantation. MAI in biomass varied from 1.66–2.05 Mg ha?1 yr?1. The total biomass carbon stocks varied from 1.99 Mg ha?1 in 4 year to 15.27 Mg ha?1 in 23 year old plantation. Rate of carbon sequestration varied from 0.63–0.81 Mg ha?1 yr?1. Carbon storage in the soil up to 30 cm soil depth varied from 25.4 to 33.6 Mg ha?1.  相似文献   

10.
Terrestrial ecosystems represent a major sink for atmospheric carbon (C) and temperate forests play an important role in global C cycling, contributing to lower atmospheric carbon dioxide (CO2) concentration through photosynthesis. The Intergovernmental Panel of Climate Change highlights that the forestry sector has great potential to decrease atmospheric CO2 concentration compared to other sectoral mitigation activities. The aim of this study was to evaluate CO2 sequestration (CO2S) capability of Fagus sylvatica (beech) growing in the Orfento Valley within Majella National Park (Abruzzo, Italy). We compared F. sylvatica areas subjected to thinning (one high-forest and one coppice) and no-management areas (two high-forests and two coppices). The results show a mean CO2S of 44.3 ± 2.6 Mg CO2 ha?1 a?1, corresponding to 12.1 ± 0.7 Mg C ha?1 a?1 the no-managed areas having a 28% higher value than the managed areas. The results highlight that thinning that allows seed regeneration can support traditional management practices such as civic use in some areas while no management should be carried out in the reserve in order to give priority to the objective of conservation and naturalistic improvement of the forest heritage.  相似文献   

11.
Macro- (C, N, P, K, Ca and Mg) and micronutrient (Fe, Mn, Cu and Zn) reservoirs were estimated in the O (Oi+Oe+Oa) and in the A (0–10 cm depth) soil horizons of four stands of Nothofagus pumilio (lenga) from Tierra del Fuego which differ in their forestry characteristics. The type of soil layer (O and A) and the forest structure, as related to above-ground biomass storage, were assessed as a factor of variation in the nutrient reservoirs of both soils layers. Nutrient reservoirs showed similar ranges in both soil layers for total organic C (34–65 Mg ha?1), total N (1.5–3.5 Mg ha?1), rapidly available Ca (1.3–2.7 Mg ha?1) and Mg (0.18–0.36 Mg ha?1). Rapidly available K, available P, and medium-term available Fe and Cu were accumulated preferentially in A the horizons, whereas medium-term available Mn and Zn were mainly stored in the O horizons. The forest structure was not a statistically significant factor of variation on the nutrient reservoirs in the O horizons, although a legacy effect of the accumulated above-ground biomass on nutrient reservoirs in this soil layer can not be discarded. On the contrary, the pools of total organic C, total N, rapidly available K and medium-term available Cu and Zn in the A horizons varied significantly with the different forest structure. In terms of lenga forests sustainability, uppermost soils layers should be preserved as they accumulate most of the soil fertility which is essential for lenga regeneration after logging. The inclusion of the assessment of soil fertility in the management plans of the lenga forests in the ecotone of the Argentinean Tierra del Fuego is strongly recommended, as it will contribute to ensure a successful regeneration of lenga in logged areas.  相似文献   

12.
The study was conducted in the Solan Forest Division with an area of 57,158 ha in Himachal Pradesh to study spatial distribution of plant biodiversity. The forest division has an altitudinal gradient from 600–2,260 m amsl. The contours on the Forest Survey of India (FSI) topo sheets (1:25000 scale) for this division were digitized to generate its Digital Elevation Model (DEM). It was stratified into five elevation classes (600–900, 900–1,200, 1,200–1,500, 1,500–1,800, 1800 m and above). A stock map of the division was digitized and superimposed on stratified DEM to know the distribution of vegetation at different elevations. Eight types of land use covers recorded in this division are: (a) chir pine (Pinus roxburghii) forests, (b) bamboo (Dendrocalamus strictus) forests, (c) khair (Acacia catechu) forests, (d) ban oak (Quercus leucotricophora) forests, (e) deodar (Cedrus deodara) forests, (f) broad leaved forests, (g) cultivation, and (h) culturable blank. Around 16.50% of the division's area was estimated to be under different land uses. Total biomass of vegetation in different land uses of the division is estimated as 63.80?×?104 tons. Total carbon stock of the division was 11.71?×?105 tons. Biomass density and carbon density were found to increase with elevation.  相似文献   

13.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

14.
The Indo-gangetic plains (IGP) in India occupies 13 % of the total geographical area and produces 50 % of total food grain to feed 40 % population of the country. Dynamic CO2FIX model v3.1 has been used to assess the baseline (2011) carbon and to estimate the carbon sequestration potential (CSP) of agroforestry systems (AFS) for a simulation period of 30 years in three districts viz. Ludhiana (upper IGP in Punjab), Sultanpur (middle IGP in Uttar Pradesh) and Uttar Dinajpur (lower IGP in West Bengal) respectively. The estimated numbers of trees existing in farmer’s field on per hectare basis in these districts were 37.95, 6.14 and 6.20, respectively. The baseline standing biomass in the tree components varied from 2.45 to 2.88 Mg DM ha?1 and the total biomass (tree + crop) from 11.14 to 25.97 Mg DM ha?1 in the three districts. The soil organic carbon in the baseline ranged from 8.13 to 9.12 Mg C ha?1 and is expected to increase from 8.63 to 24.51 Mg C ha?1. The CSP of existing AFS (for 30 years simulation) has been estimated to the tune of 0.111, 0.126 and 0.551 Mg C ha?1 year?1 for Sultanpur, Dinajpur and Ludhiana districts, respectively. CSP of AFS increases with increasing tree density per hectare. Site specific climatic parameters like monthly temperature, annual precipitation and evapotranspiration also moderates the CSP of AFS. The preliminary estimates of the area under AFS’s were 2.06 % (3,256 ha), 2.08 % (6,440 ha) and 12.69 % (38,860 ha) in Sultanpur, Dinajpur and Ludhiana respectively.  相似文献   

15.
ABSTRACT

Plantation forests play a critical role in forest management due to their high productivity and large contribution to carbon sequestration (CSE). The purpose of this study was to assess the CSE of plantations containing four important conifer species distributed across Taiwan, namely, the China fir (Cunninghamia lanceolata), Japanese cedar (Cryptomeria japonica), Taiwania (Taiwania cryptomerioides) and Taiwan red cypress (Chamaecyparis formosensis). Data regarding the plantations were obtained from a survey of permanent sample plots (PSPs). We used these data to calculate the CSE in each PSP and adopted CSEmean and CSEperiod as indicators to assess the CSE of the four conifers. According to the CSEmean obtained from analysis of variance and the least significant difference method, two groups were identified among these four conifers: the Japanese cedar (4.03 Mg ha?1 yr?1) and Taiwania (3.52 Mg ha?1 yr?1) yielded higher CSEmean values and the China fir (1.79 Mg ha?1 yr?1) and Taiwan red cypress (2.36 Mg ha?1 yr?1) yielded lower CSEmean values. The same patterns were observed in the CSEperiod values; however, no significant difference in CSEperiod was observed between Taiwan red cypress and either of the two groups. Therefore, Japanese cedar and Taiwania have high CSE potential among conifers.  相似文献   

16.

? Context

Coarse woody debris (CWD, ≥10 cm in diameter) is an important structural and functional component of forests. There are few studies that have estimated the mass and carbon (C) and nitrogen (N) stocks of CWD in subtropical forests. Evergreen broad-leaved forests are distributed widely in subtropical zones in China.

? Aims

This study aimed to evaluate the pools of mass, C and N in CWD in five natural forests of Altingia gracilipes Hemsl., Tsoongiodendron odorum Chun, Castanopsis carlesii (Hemsl.) Hayata, Cinnamomum chekiangense Nakai and Castanopsis fabri Hance in southern China.

? Methods

The mass of CWD was determined using the fixed-area plot method. All types of CWD (logs, snags, stumps and large branches) within the plot were measured. The species, length, diameter and decay class of each piece of CWD were recorded. The C and N pools of CWD were calculated by multiplying the concentrations of C and N by the estimated mass in each forest and decay category.

? Results

Total mass of CWD varied from 16.75 Mg ha?1 in the C. fabri forest to 40.60 Mg ha?1 in the A. gracilipes forest; of this CWD, the log contribution ranged from 54.75 to 94.86 %. The largest CWD (≥60 cm diameter) was found only in the A. gracilipes forest. CWD in the 40–60 cm size class represented above 65 % of total mass, while most of CWD accumulations in the C. carlesii, C. chekiangense and C. fabri forests were composed of pieces with diameter less than 40 cm. The A. gracilipes, T. odorum, C. carlesii and C. chekiangense forests contained the full decay classes (from 1 to 5 classes) of CWD. In the C. fabri forest, the CWD in decay classes 2–3 accounted for about 90 % of the total CWD mass. Increasing N concentrations and decreasing densities, C concentrations, and C:N ratios were found with stage of decay. Linear regression showed a strong correlation between the density and C:N ratio (R 2?=?0.821). CWD C-stock ranged from 7.62 to 17.74 Mg ha?1, while the N stock varied from 85.05 to 204.49 kg ha?1. The highest overall pools of C and N in CWD were noted in the A. gracilipes forest.

? Conclusion

Differences among five forests can be attributed mainly to characteristics of the tree species. It is very important to preserve the current natural evergreen broad-leaved forest and maintain the structural and functional integrity of CWD.  相似文献   

17.
Abstract

Quercus semecarpifolia, Smith. (brown oak) forests dominate the high altitudes of central Himalaya between 2400 and 2750 m and the timber line areas. The species is viviparous with short seed viability and coincides its germination with monsoon rains in July–August. These forests have large reserves of carbon in their biomass (above and below ground parts) and soil. We monitored the carbon stock and carbon sequestration rates of this oak on two sites subjected to varying level of disturbance between 2004 and 2009. These forests had carbon ranging between 210.26 and 258.02 t ha?1 in their biomass in 2009 and mean carbon sequestration rates between 3.7 and 4.8 t ha?1 yr?1. The litter production in both the sites ranged from 5.63 to 7.25 t ha?1 yr?1. The leaf litter decomposition of species took more than 720 days for approximately 90% decomposition. Even at 1 m soil depth soil organic carbon was close to 1.0%.  相似文献   

18.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

19.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

20.
The present study was an effort to understand the amount of litter fall and its subsequent decomposition and quantify the release of available nutrients and soil physicochemical characteristics in plantations of four forest tree species(Lagerstroemia parviflora, Tectona grandis, Shorea robusta and Michelia champaca) in the Chilapatta Reserve Forest of the Cooch Behar Wildlife Division in the Terai zone of West Bengal, India. The most litter(5.61 Mg ha~(-1))was produced by T. grandis plantation and the least(4.72 Mg ha~(-1)) by L. parviflora. The material turnover rate to the soil through decomposition from total litter was fastest during the first quarter of the year and subsequently decreased during the next two quarters. The material turnover rate was only 1 year, which indicates that more than90% of the total litter produced decomposed within a year.The available primary nutrient content in litter varied across the four plantations over the year. The plantations generally did not significantly influence the soil physical characteristics but did significantly influence the availability of primary nutrients and organic carbon at two depths(1–15 and16–30 cm) over the year. The availability of soil primary nutrients in the four plantations also increased gradually from the first quarter of the year to the third quarter and then decreased during the last quarter to the same level as in the first quarter of the year at both depths. The availability for soil organic carbon in the plantations followed a similar trend. The amount of litter produced and the material turnover in the soil in the different plantations differed, influencing the nutrient availability and organic carbon at the plantations. The amount of soil organic carbon was highest for T. grandis(2.52 Mg ha~(-1)) and lowest for L. parviflora(2.12 Mg ha~(-1)). Litter is the source of soil organic matter,and more the litter that is produced by the plantations, the higher will be the content and amount of soil organic carbon in the plantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号