首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine is an endogenous nucleoside that regulates many physiological processes by activating one or more adenosine receptor subtypes, namely A1, A2A, A2B and A3. The results of previous studies indicate that adenosine analogues inhibit lipopolysaccharide (LPS)-induced production of reactive oxygen species (ROS) by equine neutrophils primarily through activation of A2A receptors. Because peripheral blood monocytes produce cytokines that are responsible for many of the deleterious effects of LPS, the current study was performed to evaluate the effects of an array of novel adenosine receptor agonists on LPS-induced production of tumor necrosis factor-alpha (TNF-alpha), and to assess the selectively of these agonists for equine adenosine A2A over the A1 receptor. Radioligand binding studies performed with equine tissues expressing adenosine A1 and A2A receptor subtypes yielded a rank order of affinity for the equine A2A receptor of ATL307>ATL309 approximately ATL310 approximately ATL313>ATL202 approximately ATL361 approximately ATL376>ATL372>CGS21680>NECA. Co-incubation of equine peripheral blood monocytes with LPS and these agonists resulted in inhibition of TNF-alpha production with a rank order of potency that strongly correlated with their binding affinities for equine adenosine A2A receptors. Results of experiments performed with one of the adenosine receptor agonists (ATL313) and selective adenosine receptor antagonists confirmed that inhibition of LPS-induced production of TNF-alpha occurred via stimulation of A2A receptors. Although incubation of monocytes with IB-MECA, a compound purported to act as an adenosine A3 receptor agonist, reduced LPS-induced TNF-alpha production, this effect of IB-MECA was inhibited by the A2A selective antagonist ZM241385 but not by the A3 receptor antagonist MRS1220. These results indicate that the adenosine receptor subtype responsible for regulation of LPS-induced cytokine production by equine monocytes is the A2A receptor. To address the signal transduction mechanism responsible for the anti-inflammatory effects of ATL313 in equine monocytes, production of cAMP was compared in the presence and absence of either the adenosine A2A receptor antagonist ZM241385 or the adenosine A2B receptor antagonist MRS1706. In the absence of the antagonists, ATL313 increased production of cAMP; ZM241385 inhibited this effect of ATL313, whereas MRS1706 did not. Furthermore, incubation of monocytes with either the stable analogue of cAMP, dibutyryl cAMP, or forskolin, an activator of adenylyl cyclase, also inhibited LPS-induced production of TNF-alpha production by equine monocytes. Collectively, the results of the current study indicate that adenosine analogues inhibit LPS-induced production of TNF-alpha by equine monocytes primarily via activation of adenosine A2A receptors and do so in a cAMP-dependent manner. The results of this study indicate that stable adenosine analogues that are selective for adenosine A2A receptors may be suitable for development as anti-inflammatory drugs in horses.  相似文献   

2.
OBJECTIVE: To assess the anti-inflammatory effects of an adenosine analogue on lipopolysaccharide (LPS)-stimulated equine neutrophils. SAMPLE POPULATION: Neutrophils obtained from 10 healthy horses. PROCEDURES: An adenosine analogue (5'-N-ethylcarboxamidoadenosine [NECA]) was tested for its ability to inhibit production of reactive oxygen species (ROS) in LPS-stimulated equine neutrophils. Selective adenosine receptor antagonists were used to identify the receptor subtype responsible for effects. To assess the mechanism of action of NECA, cAMP concentrations were measured, and effects of dibutyryl cAMP (a stable analogue of cAMP) and rolipram (a type 4 phosphodiesterase inhibitor) were investigated. RESULTS: NECA elicited concentration-dependent inhibition of ROS production that was inhibited by ZM241385, a selective adenosine A(2A) receptor antagonist; this effect of NECA was not affected by the adenosine A(2B) receptor antagonist MRS1706. Also, ZM241385 blocked NECA-induced increases in cAMP concentrations, whereas MRS1706 did not alter this effect of NECA. Rolipram potentiated NECA-induced inhibition of ROS production, and dibutyryl cAMP also inhibited ROS production. CONCLUSIONS AND CLINICAL RELEVANCE: Activation of adenosine A(2A) receptors inhibited ROS production by LPS-stimulated equine neutrophils in a cAMP-dependent manner. These results suggest that stable adenosine A(2A) receptor agonists may be developed as suitable anti-inflammatory drugs in horses.  相似文献   

3.
OBJECTIVE: To determine the presence of adenosine receptor subtypes A1 and A2a in equine forebrain tissues and to characterize the interactions of caffeine and its metabolites with adenosine receptors in the CNS of horses. SAMPLE POPULATION: Brain tissue specimens obtained during necropsy from 5 adult male research horses. PROCEDURE: Membrane-enriched homogenates from cerebral cortex and striatum were evaluated by radioligand binding assays with the A1-selective ligand [3H]DPCPX and the A2a-selective ligand [3H]ZM241385. Functional responses to adenosine receptor agonists and antagonists were determined by a nucleotide exchange assay using [35S]-guanosine 5'-(gamma-thio) triphosphate ([35S]GTPgammaS). RESULTS: Saturable high affinity [3H]DPCPX binding (A1) sites were detected in cerebral cortex and striatum, whereas high-affinity [3H]ZM241385 binding (A2a) sites were detected only in striatum. Caffeine and related methylxanthines had similar binding affinities at A1 and A2a sites with rank orders of drug binding affinities (theophylline > paraxanthine > or = caffeine > theobromine) similar to other species. [35S]GTPgammaS exchange revealed that caffeine and its metabolites act as pure adenosine receptor antagonists at concentrations that correspond to A1 and A2a receptor binding affinities. CONCLUSIONS AND CLINICAL RELEVANCE: Results of our study affirm the presence of guanine nucleotide binding protein linked adenosine receptors (ie, high-affinity A1 and A2a adenosine receptors) in equine forebrain tissues and reveal the antagonistic actions by caffeine and several biologically active caffeine metabolites. Antagonism of adenosine actions in the equine CNS by these stimulants may be responsible for some central actions of methylxanthine drugs, including motor stimulation and enhanced racing performance.  相似文献   

4.
The aim of the current study was to clone the equine adenosine A(2A) receptor gene and to establish a heterologous expression system to ascertain its pharmacologic profile via radioligand binding and functional assays. An eA(2A)-R expression construct was generated by ligation of the eA(2A) cDNA into the pcDNA3.1 expression vector, and stably transfected into human embryonic kidney cells (HEK). Binding assays identified those clones expressing the eA(2A)-R, and equilibrium saturation isotherm experiments were utilized to determine dissociation constants (K(D)), and receptor densities (B(max)) of selected clones. Equilibrium competition binding revealed a rank order of agonist potency of ATL > CV-1808 > NECA > 2-CADO > CGS21680, and a rank order of antagonist potency as ZM241385 > 8-phenyltheophylline > p-sulfophenyltheophylline > caffeine. Furthermore, adenylate cyclase assays using selective A(2A)-R agonists revealed that the eA(2A)-R functionally coupled to Galpha(s) as indicated by an increase in intracellular [(3)H]cAMP upon receptor activation. Finally, NF-kappaB reporter gene assays revealed a CGS21680 concentration-dependent inhibition of NF-kappaB activity. These results indicate that the heterologously expressed eA(2A)-R has a pharmacological profile similar to that of other mammalian A(2A) receptors and thus can be utilized for further characterization of the eA(2A)-R to ascertain whether it can serve as a suitable pharmacological target for equine inflammatory disease.  相似文献   

5.
Neutrophils play an important role in the exacerbation and maintenance of severe equine asthma; persistent neutrophil activity and delayed apoptosis can be harmful to surrounding tissues. Tamoxifen (TX) is a nonsteroidal estrogen receptor modulator with immunomodulatory effects and induces early apoptosis of blood and bronchoalveolar lavage neutrophils from horses with acute lung inflammation. This study investigated if the in vitro effects of tamoxifen are produced by its action on nuclear (α and β) and membrane (GPR30) estrogen receptors in healthy equine neutrophils. Results showed that TX inhibits neutrophil respiratory burst induced by opsonized zymosan in a dose‐dependent manner. Nuclear (17‐β‐Estradiol) and GPR30 cell membrane (G1) estrogen receptor agonists and their antagonists (ICI 182,780 and G15, respectively) do not block or reproduce the effect of TX. Therefore, TX does not inhibit respiratory burst through estrogen receptors. TX (8.5 μM) also increased phosphatidylserine translocation, a marker of early apoptosis, which did not occur with any of the estrogen receptor agonists or antagonists . Thus, tamoxifen generates dose‐dependent inhibition of respiratory burst and increased early apoptosis in healthy equine neutrophils, independently of nuclear or membrane estrogen receptors. Further studies are necessary to explore the signaling pathways of tamoxifen‐induced ROS inhibition and phosphatidylserine translocation.  相似文献   

6.
Isolated equine digital veins (EDVs) which had been denuded of their endothelium were used to study adenosine receptors causing vasodilation. When the blood vessel wall tension was raised with the thromboxanemimetic, U44069 (30 n m ), the order of vasodilator potency of adenosine receptor agonists was: 5'-N-ethylcarboxamidoadenosine (NECA) > 2- p -(2-carboxyethyl)phenyl amino-5'-N-ethylcarboxamido-adenosine (CGS 21680) > 5'-N-methylcarboxamido-adenosine (MECA) > > N6-cyclohexyladenosine (CHA) > N6-cyclopentyladenosine (CPA) > N6–2-(4-Aminophenyl)ethyladenosine (APNEA) > adenosine. Removal of the endothelium had no significant effect on the responses to NECA. The adenosine receptor antagonists, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A1-selective) and xanthine amine cogener (XAC; non-selective antagonist) inhibited responses to NECA and CHA in a competitive manner and XAC proved to be 8–25 times more potent than DPCPX against both agonists. These data support the presence of A2 adenosine receptors in EDVs, located on the vascular smooth muscle cells, which are most likely to be of the A2A-adenosine receptor subtype. A direct comparison between the potency and efficacy of NECA and adenosine as vasodilators of EDV and equine digital arteries was made and both agonists proved to be significantly more potent and efficacious as vasodilators of EDVs. These data suggest that adenosine may be an important local mediator regulating blood flow through the digital circulation and that its generation under hypoxic conditions would lead to selective venodilation.  相似文献   

7.
Toxic products such as reactive oxygen intermediates released by activated polymorphonuclear neutrophil (PMN) have an important role in the pathophysiology of diseases associated with the deposition of immune complexes (IC) in tissues. IC-induced activation of PMN requires adhesion mediated by integrin adhesion receptors. Of the integrins expressed on PMN, the beta(2) family has been found to be of particular importance for activation of PMN by IC. beta(2) Integrin ligand binding must be activated to enable adhesion to IC. Both activating and inhibitory signals regulate beta(2) integrin ligand avidity and adhesion. The second messenger cyclic adenosine monophosphate (cAMP) has been demonstrated to inhibit the activation of PMN in response to a variety of stimuli. The purpose of this study is to test the hypothesis that cAMP-dependent signals inhibit beta(2) integrin-dependent adhesion of equine PMN to immobilized IC and subsequent adhesion-dependent activation of respiratory burst activity. Treatment of equine PMN with beta(2) adrenergic agonists isoproterenol or clenbuterol, which trigger an increase in intracellular cAMP concentration, inhibited adhesion of equine PMN to IC in a dose dependent manner. Similarly, inhibition of cAMP hydrolysis by the non-specific phosphodiesterase (PDE) inhibitor pentoxifylline and the PDE 4-specific inhibitor rolipram inhibited adhesion of equine PMN to IC. Elevation of intracellular cAMP levels with pentoxifylline, clenbuterol and rolipram also inhibited IC-induced activation of respiratory burst activity in equine PMN. Importantly, co-treatment of equine PMN with rolipram and either beta(2) adrenergic agonist synergistically inhibited both the adhesion of equine PMN to IC as well as the subsequent respiratory burst activity.  相似文献   

8.
OBJECTIVE: To identify and characterize motilin receptors in equine duodenum, jejunum, cecum, and large colon and to determine whether erythromycin lactobionate competes with porcine motilin for binding to these receptors. SAMPLE POPULATION: Specimens of various segments of the intestinal tracts of 4 adult horses euthanatized for reasons unrelated to gastrointestinal tract disease. PROCEDURE: Cellular membranes were prepared from smooth muscle tissues of the duodenum, jejunum, pelvic flexure, and cecum. Affinity and distribution of motilin binding on membrane preparations were determined by use of 125I-labeled synthetic porcine motilin. Displacement studies were used to investigate competition between 125I-labeled synthetic porcine motilin and erythromycin lactobionate for binding to motilin receptors in various segments of bowel. RESULTS: Affinity of 125I-labeled synthetic porcine motilin for the equine motilin receptor was estimated to be 6.1nM. A significantly higher number of motilin receptors was found in the duodenum than in the pelvic flexure and cecum. The jejunum had a significantly higher number of motilin receptors than the cecum. Erythromycin lactobionate displacement of 125I-labeled porcine motilin from the equine motilin receptor did not differ significantly among various segments of bowel. CONCLUSIONS AND CLINICAL RELEVANCE: Motilin receptors were found in the duodenum, jejunum, pelvic flexure, and cecum of horses. The highest number of motilin receptors was in the duodenum, and it decreased in more distal segments of bowel. Erythromycin lactobionate competed with motilin binding in the equine gastrointestinal tract. This suggests that 1 of the prokinetic actions of erythromycin in horses is likely to be secondary to binding on motilin receptors.  相似文献   

9.
The aim of this study was to establish a heterologous expression system for the equine adenosine A(3) receptor (eA(3)-R) in an effort to ascertain its pharmacologic profile. Initially, radioligand binding assays identified clones expressing the eA(3)-R in human embryonic kidney cells (HEK) based on the specific binding of [(125)I]AB-MECA. Subsequently, adenylate cyclase assays were utilized to demonstrate functional coupling of the eA(3)-R to the G-protein/adenylate cyclase system. Equilibrium competition binding assays were then performed using selective and non-selective A(3) agonists and antagonists. Results from these experiments revealed a rank order of agonist potency to be IB-MECA > NECA > CGS21680, and an antagonist potency of MRS1220 > ZM241385 > 8-p-sulphophenyltheophylline; these rank orders were in agreement with that of other mammalian A(3)-R's. Lastly, NF-kappaB reporter gene assays revealed an IB-MECA concentration-dependent inhibition of TNFalpha-stimulated NF-kappaB activity. These results indicate that the heterologously expressed eA(3)-R is functional, has a pharmacological profile similar to that of other mammalian A(3) receptors, and its activation has an inhibitory effect on a key regulatory pathway in the inflammatory response. Thus, the eA(3)-R may serve as a pharmacological target in the treatment of equine inflammatory disease.  相似文献   

10.
Neutrophils are recruited to the lungs of horses with chronic obstructive pulmonary disease (COPD) and exhibit increased activity after antigen challenge. Phosphodiesterase type4 (PDE4) inhibitors have been shown to attenuate human neutrophil activation. The aim of this study was to establish the PDE isoenzyme profile of equine neutrophils using isoenzyme selective inhibitors to determine if these compounds should be evaluated in horses with COPD. Total cAMP and cGMP dependent PDE activity was no different in neutrophils from normal (156.2+/-7.1 and 6.8+/-0.6 pmol/min/mg for cAMP and cGMP, respectively) and COPD susceptible horses (146.0+/-10.2 and 5.5+/-0.6 pmol/min/mg for cAMP and cGMP, respectively). The PDE4 inhibitors, CDP840 and rolipram, caused significant, concentration related and almost complete inhibition of PDE activity (IC(50) values=8.8+/-0.1 x 10(-9) and 7.3+/-0.2 x 10(-9)M for CDP840; 1.2+/-0.1 x 10(-6) and 1.1+/-0.1 x 10(-6)M for rolipram in normal and COPD susceptible horses, respectively). The inhibitory effects of the mixed PDE3/ PDE4 inhibitor, zardaverine were of similar magnitude and potency to rolipram. However, the limited inhibitory effects of the PDE3 inhibitor, siguazodan, suggest that zardaverine is acting primarily via PDE4 inhibition. These results indicate that PDE4 is the predominant isoenzyme present in the equine neutrophil and inhibition of PDE activity using selective PDE4 inhibitors may, therefore, modulate equine neutrophil activation in horses with COPD.  相似文献   

11.
This study evaluated the effect of dexamethasone on endotoxin-induced production of tumor necrosis factor (TNF) activity in vitro by equine peritoneal macrophages. Peritoneal macrophages from adult horses were cultured in the presence of dexamethasone (1-100 microM) for various time periods (2 hour, 0.5 hour, 0 hour) prior to the addition of endotoxin (5 ng/ml), then the secretion of TNF activity was evaluated. Macrophage supernatant concentrations of TNF activity were estimated by a modified in vitro cytotoxicity bioassay using the murine fibrosarcoma cell line, WEHI 164 clone 13. An experiment was performed to determine whether dexamethasone interfered with the cytolytic bioassay's ability to detect TNF activity. The endotoxin-induced TNF activity production by equine peritoneal macrophages was significantly reduced by co-incubation with 100 microM dexamethasone, but not by tested concentrations of dexamethasone less than 100 microM. This concentration of dexamethasone greatly exceeds those generally attained by therapeutic use of dexamethasone in horses. Preincubation time did not affect the ability of 100 microM dexamethasone to reduce TNF production by equine macrophages. The quantitation of equine TNF activity by its cytolytic bioassay was not altered by dexamethasone.  相似文献   

12.
Epidermal growth factor (EGF) receptors were detected in plasma membrane preparations of equine hoof wall laminar tissue at concentrations comparable to that of equine liver. Scatchard analysis of the equilibrium binding data suggested the presence of two classes of EGF binding sites in most of the controls (plasma membranes from clinically normal horses); a high-affinity class and a more numerous low-affinity class. The dissociation constant of the low-affinity class of EGF-specific receptors (KD = 1 x 10(-9)M) is in reasonable agreement with other values established for the EGF receptor. The variability between individual estimates for the KD of the high-affinity receptor class precluded an accurate estimate for those sites. A possible explanation is discussed. The high-affinity binding sites were uniformly absent in plasma membranes prepared from horses affected by chronic laminitis. Autoradiographic analysis localised the EGF receptors primarily to the secondary epidermal laminae, with an apparent greater density over the proliferative basal keratinocytes. Little label was associated with the dermal or the keratinised primary epidermal laminae. Tissue from horses with chronic laminitis had EGF receptors located uniformly over the hyperplastic epidermal keratinocytes. These data suggest that an EGF-mediated response may be involved in the hyperproliferative response that is characteristic of chronic laminitis.  相似文献   

13.
OBJECTIVE: To evaluate lipopolysaccharide (LPS)-induced activation of equine neutrophils in blood. SAMPLE POPULATION: Blood samples from 5 healthy adult Thoroughbreds. PROCEDURES: Neutrophil integrin (CD11/CD18) expression, size variation, degranulation, and deformability were measured with and without incubation with LPS. Time and concentration studies were done. The mechanism of endotoxin-induced neutrophil activation was investigated by inactivating complement or preincubating neutrophils with inhibitors of tumor necrosis factor-alpha (TNF-alpha) synthesis, prostaglandin-leukotriene synthesis, or platelet-activating factor. RESULTS: Incubation of equine neutrophils with LPS increased cell surface expression of CD11/CD18, decreased neutrophil deformability, increased and decreased neutrophil size, and induced neutrophil degranulation. The LPS-induced neutrophil activation was attenuated by addition of inhibitors of TNF-alpha and prostaglandin-leukotriene synthesis. CONCLUSIONS AND CLINICAL RELEVANCE: Equine neutrophils are readily activated in vitro by LPS, resulting in increased expression of integrin adhesion molecules, decreased deformability, variation in neutrophil size, and degranulation. The tests used to detect activated neutrophils in this study may be useful in detecting in vivo neutrophil activation in horses with sepsis and endotoxemia.  相似文献   

14.
Tachykinins, of which substance P (SP) is the prototype, are neuropeptides which are widely distributed in the nervous systems. In the equine gut, SP is present in enteric nerves and is a powerful constrictor of enteric muscle; in other species, SP is also known to have potent vasodilatory and pro-inflammatory effects. The specific effects of SP are determined by the subtype of receptor present in the target tissue. There are 3 known subtypes of tachykinin receptors, distinguished by their relative affinities for SP and other tachykinins. The distribution of SP binding sites in the equine pelvic flexure was determined using 125I-Bolton Hunter SP (I-BHSP) autoradiography. Most I-BHSP binding sites were determined to be saturable and specific, therefore presumably representing tachykinin receptors. The greatest degree of I-BHSP binding occurred over very small vessels, and over the muscularis mucosae; I-BHSP binding was also intense over the circular muscle of the muscularis externa and mucosa, and present, although less intense, over the longitudinal muscle of the muscularis externa. Competition of I-BHSP with specific receptor agonists for binding sites in the equine pelvic flexure were used to determine the subtypes of tachykinin receptors present. The neurokinin-1 receptor subtype predominated in the equine pelvic flexure, followed by the neurokinin-3 receptor subtype.  相似文献   

15.
Heaves, a condition associated with airway neutrophilia, is believed to result from an allergic response to environmental dust particles. However, the contribution of neutrophils to the allergic response is poorly understood. It has been hypothesized that Th2-type cytokines can directly activate neutrophils to produce pro-inflammatory mediators. The present study focused on the presence of receptors for the Th2-type cytokines interleukin (IL)-5 and IL-9 on peripheral blood neutrophils of horses with heaves. Neutrophils were isolated from peripheral blood of horses with heaves (n=7), and normal control (n=5) before (pasture) and 3 weeks following a continuous natural allergen challenge (stabling). Horses with heaves had significantly increased numbers of neutrophils expressing IL-5 and IL-9 receptors compared to control while in pasture, and further increased during stabling in heaves affected horses but not in control animals. These results provide a possible mechanism by which Th2-type cytokines may activate neutrophils in equine heaves.  相似文献   

16.
An experiment was designed to determine whether a change in the ability of macrophages to respond to lipopolysaccharides (LPS) of gram-negative bacteria was involved in the development of cross-reactive immunity to endotoxemia. The endotoxin-induced production of thromboxane A2(TxA2) and prostacyclin (PGI2) by peritoneal macrophages from horses which were hyperimmunized against the common core region of LPS were compared to those in unimmunized horses. Bacterins used for induction of core LPS immunity were prepared from the J-5 mutant of Escherichia coli 0111:B4, and the R 595 mutant of Salmonella minnesota. Serum antibody titers to core LPS were determined by an indirect enzyme-linked immunosorbent assay. Immunized horses had a marked increase in titer to core LPS (p less than 0.05), while there was no change in titer in unimmunized control horses. The only significant difference in the in vitro LPS-induced production of TxA2 and PGI2 by peritoneal macrophages between immunized and control horses was a greater production of TxA2 by macrophages from immunized horses in response to 10 ng/ml LPS (p less than 0.05). Results of this experiment do not support the concept that cross-reactive immunity to LPS is attended by reduced production of TxA2 and PGI2 by equine peritoneal macrophages.  相似文献   

17.
The chemokine, CXCL8, is a potent chemoattractant but it has also been shown to attenuate the migratory response of human neutrophils to the bacterial peptide, FMLP; this could lead to retention of cells in infected tissue and, potentially, to enhanced clearance of bacteria. This study has examined the effect of CXCL8 on equine neutrophil migration and adherence in response to PAF and LTB(4), chemoattractants that may play a role in non-infectious inflammatory conditions of the horse associated with neutrophil recruitment to the target tissue. The effects of CXCL8 on PAF- and LTB(4)-induced responses were determined using a ChemoTx plate migration assay and by measuring adhesion to protein-coated plastic. The CXCR1/2 antagonist, SB225002, was used to investigate whether the observed effects were receptor mediated and the role of cAMP was examined by measuring intracellular cAMP following exposure to agonists alone and in combination and by establishing the effect of dibutyryl cAMP on neutrophil migration. CXCL8, LTB(4) and PAF each induced migration and adhesion. Exposure of neutrophils to a combination of CXCL8 and PAF reduced the magnitude of the responses to that of unstimulated cells. In contrast, although the effect was less than additive, the response to co-stimulation with CXCL8 and LTB(4) were not nearly as pronounced. CXCL8 acted in a receptor mediated manner, the attenuation of PAF-induced responses being reversed by SB225002 at a concentration that blocks CXCR2. CXCL8, PAF and LTB(4) alone increased intracellular cAMP. In co-incubation studies, combination of CXCL8 with PAF led to an additive increase in cAMP whereas no increase above that obtained in response to LTB(4) alone was seen. Dibutyryl cAMP significantly reduced neutrophil migration in response to either CXCL8 or PAF alone. These results demonstrate that CXCL8, in addition to being a potent chemoattractant and pro-adhesive molecule for equine neutrophils, is able to attenuate responses to PAF and, to a much lesser extent, LTB(4). This effect, which appears to be CXCR2-mediated and cAMP dependent, could lead in vivo to trapping of cells at sites of inflammation resulting potentially in either enhanced clearance of injurious stimuli or increased local tissue damage by activated cells.  相似文献   

18.
OBJECTIVE: To evaluate host cell permissiveness and cytotoxic effects of recombinant and modified adenoviral vectors in equine chondrocytes, synovial cells, and bone marrow-derived mesenchymal stem cells (BMD-MSCs). SAMPLE POPULATION: Articular cartilage, synovium, and bone marrow from 15 adult horses. PROCEDURES: Equine chondrocytes, synovial cells, and BMD-MSCs and human carcinoma (HeLa) cells were cultured and infected with an E-1-deficient adenovirus vector encoding the beta-galactosidase gene or the green fluorescent protein gene (Ad-GFP) and with a modified E-1-deficient vector with the arg-gly-asp capsid peptide insertion and containing the GFP gene (Ad-RGD-GFP). Percentages of transduced cells, total and transduced cell counts, and cell viability were assessed 2 and 7 days after infection. RESULTS: -Permissiveness to adenoviral vector infection was significantly different among cell types and was ranked in decreasing order as follows: HeLa cells > BMD-MSCs > chondrocytes > synovial cells. Morphologic signs of cytotoxicity were evident in HeLa cells but not in equine cells. Numbers of transduced cells decreased by day 7 in all cell types except equine BMD-MSCs. Transduction efficiency was not significantly different between the Ad-GFP and Ad-RGD-GFP vectors. CONCLUSION AND CLINICAL RELEVANCE: Sufficient gene transfer may be achieved by use of an adenovirus vector in equine cells. High vector doses can be used in equine cells because of relative resistance to cytotoxic effects in those cells. Greater permissiveness and sustained expression of transgenes in BMD-MSCs make them a preferential cell target for gene therapy in horses.  相似文献   

19.
OBJECTIVE: To evaluate mu-opioid receptors in synovial membranes of horses and determine whether these receptors are up-regulated in nerve endings during inflammation. SAMPLE POPULATION: Synovial tissue obtained from 39 client-owned horses during arthroscopy and 14 research horses during necropsy; brain and synovial tissues were obtained during necropsy from 1 horse, and control tissues were obtained from a mouse. PROCEDURE: Horses were classified into 7 groups on the basis of histologically determined degree of inflammation. Binding of primary rabbit antibody developed against mu-opioid receptors in equine synovial tissue was studied, using western blot analysis. Synovial membranes were tested for mu-opioid receptors by immunohistochemical staining, using a diaminobenzidine-cobalt chloride chromogen. Homogenates of synovial membranes were evaluated by use of radioligand binding. RESULTS: Examination of western blots of equine thalamus revealed that rabbit antibody developed against mu-opioid receptors yielded a band (molecular weight, 55 kd) that corresponded with that of other opioid receptors. Use of immunohistochemical staining of synovial tissue revealed considerable staining in the proliferative lining layer and in regions surrounding vascular structures. Specific radioligand binding of tissue homogenates was found in all groups. We did not detect significant differences in binding between horses with inflammation and horses without inflammation. CONCLUSIONS AND CLINICAL RELEVANCE: Results of immunohistochemical analysis and radioligand binding of tissue homogenates suggest that there are opioid receptors in synovial membranes of horses. Our results support the practice of intra-articular administration of opioids to relieve pain after arthroscopic surgery in horses.  相似文献   

20.
OBJECTIVE: To determine whether adenosine influences the in vitro release of nitric oxide (NO) from differentiated primary equine articular chondrocytes. SAMPLE POPULATION: Articular cartilage harvested from the metacarpophalangeal and metatarsophalangeal joints of 11 horses (3 to 11 years old) without history or clinical signs of joint disease. PROCEDURE: Chondrocytes were isolated, plated at a high density (10(5) cells/well), and treated with adenosine, the adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA), bradykinin, or other agents that modify secondary messenger pathways alone or in combination with bacterial lipopolysaccharide (LPS) or recombinant human interleukin-1alpha (rhIL-1alpha). Nitric oxide release was measured indirectly by use of the Griess reaction and was expressed as micromol of nitrite in the supernatant/microg of protein in the cell layer. Inducible nitric oxide synthase (iNOS) activity was determined by measuring the conversion of radiolabeled arginine to radiolabeled citrulline. RESULTS: Treatment of chondrocytes with adenosine alone had no significant effect on NO release. However, adenosine and NECA inhibited LPS- and rhIL-1alpha-induced NO release. This response was mimicked by forskolin, which acts to increase adenylate cyclase activity, but not by the calcium ionophore A23187 Treatment of chondrocytes with phorbol myristate acetate, which acts to increase protein kinase C activity, potentiated LPS-induced NO release. Adenosine treatment also significantly inhibited the LPS-induced increase in iNOS activity. CONCLUSIONS AND CLINICAL RELEVANCE: Adenosine and the nonspecific adenosine receptor agonist NECA inhibited inflammatory mediator-induced release of NO from equine articular chondrocytes. Modulation of adenosine receptor-mediated pathways may offer novel methods for treatment of inflammation in horses with joint disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号