首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two qualitative results concerning threshold criteria and asymptotic behaviour in plant disease epidemics are derived from Vanderplank's differential-difference equation. Analysis shows the dependence of these results on initial disease and clarifies some confusion in the literature. Results from the deterministic theory of medical epidemics, based on linked differential equations describing the dynamics of different categories of diseased individuals, are compared with the results derived from the differential-difference equation. Generally, the results correspond although the effects of initial disease need clarification. The need for a strict operational definition of the progeny-parent ratio limits its present use in plant disease epidemiology. In particular the numerical value of the ratio is not a sufficient basis for distinguishing between endemic and epidemic disease. There is a need to link theory in plant disease epidemiology with similar theory in other areas of population biology. The use of linked differential equations, rather than the differential-difference equation, provides a more flexible analytical tool.  相似文献   

2.
Vegetable crops are frequently infected by fungal pathogens, which can include seedborne fungi. In such cases, the pathogen is already present within or on the seed surface, and can thus cause seed rot and seedling damping‐off. Treatment of vegetable seeds has been shown to prevent plant disease epidemics caused by seedborne fungal pathogens. Furthermore, seed treatments can be useful in reducing the amounts of pesticides required to manage a disease, because effective seed treatments can eliminate the need for foliar application of fungicides later in the season. Although the application of fungicides is almost always effective, their non‐target environmental impact and the development of pathogen resistance have led to the search for alternative methods, especially in the past few years. Physical treatments that have already been used in the past and treatments with biopesticides, such as plant extracts, natural compounds and biocontrol agents, have proved to be effective in controlling seedborne pathogens. These have been applied alone or in combination, and they are widely used owing to their broad spectrum in terms of disease control and production yield. In this review, the effectiveness of different seed treatments against the main seedborne pathogens of some important vegetable crops is critically discussed. © 2013 Society of Chemical Industry  相似文献   

3.
V. Rossi  S. Giosu 《EPPO Bulletin》2003,33(3):389-396
A system dynamic model for epidemics of Blumeria graminis (powdery mildew) on wheat was elaborated, based on the interaction between stages of the disease cycle, weather conditions and host characteristics. The model simulates the progress of disease severity, expressed as a percentage of powdered leaf area, on individual leaves, with a time step of one day, as a result of two processes: the growth of fungal colonies already present on the leaves and the appearance of new colonies. By means of mathematical equations, air temperature, vapour pressure deficit, rainfall and wind are used to calculate incubation, latency and sporulation periods, the growth of pathogen colonies, infection and spore survival. Effects of host susceptibility to infection, and of leaf position within the plant canopy, are also included. Model validation was carried out by comparing model outputs with the dynamics of epidemics observed on winter wheat grown at several locations in northern Italy (1991–98). Simulations were performed using meteorological data measured in standard meteorological stations. As there was good agreement between model outputs and actual disease severity, the model can be considered a satisfactory simulator of the effect of environmental conditions on the progress of powdery mildew epidemics.  相似文献   

4.
Groundnut diseases were surveyed in the various traditional cropping regions of Ivory Coast during 1982, 1983 and 1984. The methods used during the survey are described. A preliminary analysis of the results aimed at a characterization of a complex, multiple pathosystem is presented. The analysis especially focuses upon some foliar diseases, and particularly on rust, caused byPuccinia arachidis. The results show the great variability of the climates and of the agricultural techniques which are associated to groundnut cropping. The list of the fungal pathogens which affect groundnut is long: 16 have been identified during the survey, of which 6 are omnipresent in the various regions. A correspondence analysis was performed, allowing to describe the average development of the multiple pathosystem: groundnut-rust-leafsport-wilting fungi. Endemicity in tropical pathosystems is also analyzed in the case of the main foliar diseases (rust and Cercospora leafspots). More specifically, the epidemiology of groundnut rust in southern Ivory Coast is interpreted as regular, explosive epidemics developping on an endemic background. Every year epidemics develop in the northern and central areas too, most of their primary inoculum supposedly originating from the infested southern crops. Probably, intensification of agriculture will strongly favour rust disease.  相似文献   

5.
传染病暴发在植物、动物和人群中很常见。除了少数已发展为流行病和大流行病外,在很大程度上大多数传染病暴发的原因仍未知,植物真菌和卵菌病暴发尤其如此。所有流行病和大流行病都是从局部暴发开始,然后蔓延到更广泛的地理区域,因此了解其初始暴发的原因对于有效预防和控制植物病害流行病和大流行病至关重要。该文首先描述疾病暴发的定义和检测,随后简要描述导致植物传染病暴发的主要原因,包括寄主植物、病原体及其相关的环境因素,以一种真菌和一种卵菌病原体为例简要概述宿主病原体系统,并强调分子工具在帮助揭示病原体的起源和传播及其暴发及大流行方面的作用。由于人为活动及气候的加速变化,植物病害暴发的可能性越来越大,最后提出应该如何应对其暴发。  相似文献   

6.
European Journal of Plant Pathology - The Pyrenophora genus involves an extremely important group of fungal plant pathogens, causing some of the most devastating disease epidemics of cereal plants...  相似文献   

7.
Makowski D  Bancal R  Vicent A 《Phytopathology》2011,101(11):1346-1354
Wetness of the host surface is a critical environmental factor for the development of foliar fungal diseases, but it is difficult to estimate the wetness durations required by pathogens for infection when only few experimental data are available. In this paper, we propose a method to estimate wetness duration requirements of foliar fungal pathogens when precise experimental data are not available. The proposed method is based on approximate Bayesian computation. It only requires lower and upper bounds of wetness duration requirements for one or fewer temperatures. We describe the method, show how to apply it to an infection model, and then present a case study on Mycosphaerella nawae, the causal agent of circular leaf spot of persimmon. In this example, the parameters of a simple infection model were estimated using experimental data found in the literature for the pathogen, and the model was applied to assess the risk in a Spanish area recently affected by the disease. The results showed that the probability of successful infection was higher than 0.5 for 32% of the on-site wetness durations recorded in the affected area. Results obtained with simulated data showed that our method was able to improve the estimation of wetness duration requirement. Given the flexibility of the proposed method, we expect it to become adopted for assessing the risk of introduction of exotic fungal plant pathogens.  相似文献   

8.
9.
Xu 《Plant pathology》1999,48(4):462-471
A model developed to simulate epidemics of powdery mildew on vegetative shoots of apple generates two types of output. Firstly, it forecasts disease severity (percentage of host tissue infected) by incorporating effects on disease development of the amount of healthy susceptible tissue and current infectious (sporulating) disease, the level of initial inoculum (overwintered 'primary' mildew) and weather conditions. The effects of weather variables are considered on only two aspects of the fungal life cycle: initial spore germination and the subsequent development during the incubation period. Secondly, the model generates indices of the relative favourability of weather conditions on disease development by incorporating effects of weather on conidial production/dispersal and germination. On each day, forecasts of the (relative) severity of new infection and total current infectious disease are given for both types of output. The model was evaluated by comparing its predictions with the mildew epidemics observed in two unsprayed orchards over four years. In all the years, the temporal patterns of the predicted and the observed disease were generally similar. The pattern of the disease severity forecasts was marginally closer to the observed than that derived from two weather indices. Potential roles of the model in practical management of apple powdery mildew are discussed.  相似文献   

10.
植物病害时空流行动态模拟模型的构建   总被引:4,自引:0,他引:4  
 一个描述在二维空间中单一种植或混合种植的植物群体内病害时、空流行动态的计算机随机模拟模型构建完成。模型由寄主、病原2个组分和病斑产孢、孢子传播、孢子着落、孢子侵染、病斑潜育、寄主生长、病害控制等一系列代表病害流行生物学过程的子模型构成。模型采用了面向对象的程序设计方法,用C++语言编写,能以病害流行曲线图、空间分布图、数据列表等方式显示模拟结果。测试结果表明:模型能反映植物病害流行过程的本质规律,既可作为植物病害流行学教学工具,帮助学生理解病害流行的时、空动态规律和不同因子对病害流行的影响,也可以作为研究工具,对流行学的某些理论问题进行模拟研究  相似文献   

11.
Most mathematical models of plant disease epidemics ignore the growth and phenology of the host crop. Unfortunately, reports of disease development are often not accompanied by a simultaneous and commensurate evaluation of crop development. However, the time scale for increases in the leaf area of field crops is comparable to the time scale of epidemics. This simultaneous development of host and pathogen has many ramifications on the resulting plant disease epidemic. First, there is a simple dilution effect resulting from the introduction of new healthy leaf area with time. Often, measurements of disease levels are made pro rata (per unit of host leaf area or total root length or mass). Thus, host growth will reduce the apparent infection rate. A second, related effect, has to do with the so-called "correction factor," which accounts for inoculum falling on already infected tissue. This factor accounts for multiple infection and is given by the fraction of the host tissue that is susceptible to disease. As an epidemic develops, less and less tissue is open to infection and the initial exponential growth slows. Crop growth delays the impact of this limiting effect and, therefore, tends to increase the rate of disease progress. A third and often neglected effect arises when an increase in the density of susceptible host tissue results in a corresponding increase in the basic reproduction ratio, R(0), defined as the ratio of the total number of daughter lesions produced to the number of original mother lesions. This occurs when the transport efficiency of inoculum from infected to susceptible host is strongly dependent on the spatial density of plant tissue. Thus, crop growth may have a major impact on the development of plant disease epidemics occurring during the vegetative phase of crop growth. The effects that these crop growth-related factors have on plant disease epidemics spread by airborne spores are evaluated using mathematical models and their importance is discussed. In particular, plant disease epidemics initiated by the introduction of inoculum during this stage of development are shown to be relatively insensitive to the time at which inoculum is introduced.  相似文献   

12.
ABSTRACT A continuous-time and deterministic model was used to characterize plant virus disease epidemics in relation to virus transmission mechanism and population dynamics of the insect vectors. The model can be written as a set of linked differential equations for healthy (virus-free), latently infected, infectious, and removed (postinfectious) plant categories, and virus-free, latent, and infective insects, with parameters based on the transmission classes, vector population dynamics, immigration/emigration rates, and virus-plant interactions. The rate of change in diseased plants is a function of the density of infective insects, the number of plants visited per time, and the probability of transmitting the virus per plant visit. The rate of change in infective insects is a function of the density of infectious plants, the number of plants visited per time by an insect, and the probability of acquiring the virus per plant visit. Numerical solutions of the differential equations were used to determine transitional and steady-state levels of disease incidence (d*); d* was also determined directly from the model parameters. Clear differences were found in disease development among the four transmission classes: nonpersistently transmitted (stylet-borne [NP]); semipersistently transmitted (foregut-borne [SP]); circulative, persistently transmitted (CP); and propagative, persistently transmitted (PP), with the highest disease incidence (d) for the SP and CP classes relative to the others, especially at low insect density when there was no insect migration or when the vector status of emigrating insects was the same as that of immigrating ones. The PP and CP viruses were most affected by changes in vector longevity, rates of acquisition, and inoculation of the virus by vectors, whereas the PP viruses were least affected by changes in insect mobility. When vector migration was explicitly considered, results depended on the fraction of infective insects in the immigration pool and the fraction of dying and emigrating vectors replaced by immigrants. The PP and CP viruses were most sensitive to changes in these factors. Based on model parameters, the basic reproductive number (R(0))-number of new infected plants resulting, from an infected plant introduced into a susceptible plant population-was derived for some circumstances and used to determine the steady-state level of disease incidence and an approximate exponential rate of disease increase early in the epidemic. Results can be used to evaluate disease management strategies.  相似文献   

13.
ABSTRACT An epidemiological model integrating three organizational scales of host plant populations (e.g., sites, leaves, and plants) is presented. At the lowest (site) scale, the model simulates the dynamics of vacant, latent, infectious, and removed sites. Three types of vacant sites are distinguished, depending on presence of infections at higher scales (leaf or plant). The rate of infection of each type of vacant site is computed according to ratios of autodeposition, allo-leaf-deposition, and allo-plantdeposition. At the leaf and plant scales, the rate of victimization is a function of the rate of infection of vacant sites. Sensitivity analyses showed that deposition patterns (the relative proportions of auto-, allo-leaf-, and allo-plant-depositions) and host structure (leaf size and number of leaves per plant) affected the speed of epidemics at the different scales. Model outputs conformed with results from other approaches in the case of random distribution of the disease. The model hypotheses concerning infection from autodeposited propagules, and their implications for disease epidemics, are discussed. The model can be used to derive relationships between allo-deposition ratios and disease incidences at the three scales. These relationships become simple when disease intensity is low. These relationships may be useful, e.g., to assess the potential efficiency of cultivar mixture to control epidemics. Integration of different organization scales and allo-deposition parameters enables the model to capture important features of epidemics developing in space without using explicitly spatialized variables. Such an approach could be useful to analyze other ecological processes that involve a variety of scales.  相似文献   

14.
Network models of human epidemics can often be improved by including the effects of behaviour modification in response to information about the approach of epidemics. Similarly, there are opportunities to incorporate the flow of information and its effects in plant disease epidemics in network models at multiple scales. (1) In the case of human management networks for plant disease, each node of a network has four main components: plant communities, microbial communities, human information (among researchers, extension agents, farmers, and other stakeholders), and environmental conditions, along with their interactions. The links between nodes, representing the rate of movement between them, have three parts: the rates for plant materials, the rates for microbes, and the rates for information. Network resilience for information flow is an important goal for such systems. Game theory can provide insights into how human agents decide how to invest their efforts in strengthening information networks, and how policies can support more resilient networks. (2) For the case of within-plant signalling networks, each node has a comparable set of four main components: plant signals (often in the form of phytohormones) and development status, microbial communities and plant disease status, microbial signals (often in the form of quorum sensing molecules), and micro-environmental conditions, along with their interactions. In effect, human information is replaced by plant signals and microbial signals in this second model. The links between nodes have three parts: the rates for microbes, the rates for microbial signals (which may move separately from the microbes, themselves), and the rates for plant signals. Understanding how to enhance adaptive plant signalling networks and microbial signalling networks that support plant productivity, and disrupt microbial signalling networks that contribute to pathogenicity, will be an important step for improved disease management.  相似文献   

15.
模拟植物病害流行时间动态的通用模型——Richards函数   总被引:3,自引:0,他引:3  
 本文介绍了Richards生长函数及其在植物病害流行时间动态模拟中的应用。该函数的微分形式为(dx)/(dt)=rx((1/x)1-m-1)/(1-m),式中r为病害发展的速率,x表t日期的病情值率(0 < x < 1),m为流行曲线的形状参数。当m=0,m→1,m=2和m→∞时,从理论上证明Richards函数成为单分子、Compertz、Logistic和指数函数模型。以水稻纹枯病和马铃薯晚疫病的田间进展曲线进行摸拟分析发现,当m取值适当时还可获得较Gompertz或Logistic更逼真的Richards病害曲线拟合模型,而适当m取值的Richards模型比小分子模型对玉米粗缩病的拟合性也更好。因此认为,Richards函数是植病流行时间动态的通用模型。  相似文献   

16.
 小麦条锈病是典型的冷凉生态区气传真菌病害,病原菌在越夏易变区(即秋季菌源基地)的越夏情况决定了冬季繁殖区条锈菌的初侵染菌源。小麦条锈病的发生流行极易受到温湿度关键气象因子的影响。近年来的调查研究发现,我国小麦条锈菌越夏海拔下限逐年下降,且越夏区范围进一步扩大,说明条锈菌耐高温胁迫能力增强,给未来小麦条锈病流行规律研究及制定防治策略带来了全新挑战。真菌特有的Velvet转录因子家族中VosA基因参与了真菌生长发育和次生代谢的调控,但关于该转录因子在条锈菌耐高温性中的作用却知之甚少。实时荧光定量PCR分析发现,温度敏感菌系蓬9和耐高温菌系A4在侵染寄主过程中PstVosA1基因均受高温胁迫诱导表达,但耐高温菌系PstVosA1相对表达水平明显高于温度敏感菌系蓬9。利用寄主诱导的基因沉默技术(HIGS)沉默小麦条锈菌耐高温菌系A4中的PstVosA1基因能显著降低在高温(21℃)接种条件下的平均发病严重度、孢子堆密度和生物量。研究结果说明PstVosA1基因正调控小麦条锈菌耐高温胁迫反应过程,增加该基因的表达水平,有利于增强小麦条锈菌耐高温性。  相似文献   

17.
This review describes environmental factors that influence severity of crop disease epidemics, especially in the UK and north-west Europe, in order to assess the effects of climate change on crop growth and yield and severity of disease epidemics. While work on some diseases, such as phoma stem canker of oilseed rape and fusarium ear blight of wheat, that combine crop growth, disease development and climate change models is described in detail, climate-change projections and predictions of the resulting biotic responses to them are complex to predict and detailed models linking climate, crop growth and disease development are not available for many crop-pathogen systems. This review uses a novel approach of comparing pathogen biology according to ‘ecotype’ (a categorization based on aspects such as epidemic type, dissemination method and infection biology), guided by detailed disease progress models where available to identify potential future research priorities for disease control. Consequences of projected climate change are assessed for factors driving elements of disease cycles of fungal pathogens (nine important pathogens are assessed in detail), viruses, bacteria and phytoplasmas. Other diseases classified according to ‘ecotypes’ were reviewed and likely changes in their severity used to guide comparable diseases about which less information is available. Both direct and indirect effects of climate change are discussed, with an emphasis on examples from the UK, and considered in the context of other factors that influence diseases and particularly emergence of new diseases, such as changes to farm practices and introductions of exotic material and effects of other environment changes such as elevated CO2. Good crop disease control will contribute to climate change mitigation by decreasing greenhouse gas emissions from agriculture while sustaining production. Strategies for adaptation to climate change are needed to maintain disease control and crop yields in north-west Europe.  相似文献   

18.
Sudden death syndrome (SDS) of soybean is a fungal disease caused by at least four distinct Fusarium species: F. tucumaniae, F. virguliforme, F. brasiliense, and F. crassistipitatum. All four species are present in Argentina. These fungi are soilborne pathogens that only colonize roots and cause root necrosis. However, damage also reaches the aboveground part of the plant, and foliar chlorosis and necrosis, followed by premature defoliation, can be observed. Although the pathogenicity and phytotoxicity of F. virguliforme has been well characterized, knowledge regarding disease development by other fungal species is scarce. In this study, two plant species, soybean (Glycine max) and Arabidopsis thaliana, and isolates from two fungal species, F. tucumaniae and F. crassistipitatum, were used to comparatively analyse the fungal pathogenicity and the phytotoxicity of volatile organic compounds (VOCs) and cell-free culture filtrates. Fungal inoculation had a significant effect on plant growth, regardless of the plant species. In addition, infected soybean plants showed disease incidence and foliar and root symptoms. Inhibition of A. thaliana growth was not due to VOCs emitted by fungi. Instead, both pathogens were shown to produce toxins that caused typical SDS foliar symptoms in soybean and root length reduction in A. thaliana. As far as we know, this is the first report that demonstrates that F. tucumaniae and F. crassistipitatum affect A. thaliana growth and emit VOCs, and that F. crassistipitatum produces toxins.  相似文献   

19.
Accurate identification of fungal phytopathogens is essential for virtually all aspects of plant pathology, from fundamental research on the biology of pathogens to the control of the diseases they cause. Although molecular methods, such as polymerase chain reaction (PCR), are routinely used in the diagnosis of human diseases, they are not yet widely used to detect and identify plant pathogens. Here we review some of the diagnostic tools currently used for fungal plant pathogens and describe some novel applications. Technological advances in PCR-based methods, such as real-time PCR, allow fast, accurate detection and quantification of plant pathogens and are now being applied to practical problems. Molecular methods have been used to detect several pathogens simultaneously in wheat, and to study the development of fungicide resistance in wheat pathogens. Information resulting from such work could be used to improve disease control by allowing more rational decisions to be made about the choice and use of fungicides and resistant cultivars. Molecular methods have also been applied to the study of variation in plant pathogen populations, for example detection of different mating types or virulence types. PCR-based methods can provide new tools to monitor the exposure of a crop to pathogen inoculum that are more reliable and faster than conventional methods. This information can be used to improve disease control decision making. The development and application of molecular diagnostic methods in the future is discussed and we expect that new developments will increase the adoption of these new technologies for the diagnosis and study of plant disease.  相似文献   

20.
A technique for relating the progress of plant diseases caused by airborne fungal pathogens to cumulative numbers of trapped spores is proposed. The relationship involves two epidemiological parameters—a disease asymptote and the infection efficiency (disease units/spore) of inoculum. The technique was evaluated using data on apple powdery mildew and scab epidemics in sprayed and unsprayed apple orchard plots. For powdery mildew, the observed relationships were close to those proposed in the unsprayed plot, but changed after or during the period of fungicide application in sprayed plots. Parameter estimates gave useful comparative information on the epidemics. The technique was not useful for scab because of the discontinuous patterns of infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号