共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimates of genetic parameters for live animal ultrasound, actual carcass data, and growth traits in beef cattle 总被引:2,自引:0,他引:2
Growth and carcass measurements were made on 2,411 Hereford steers slaughtered at a constant weight from a designed reference sire program involving 137 sires. A second data set consisted of ultrasound measures of backfat (USFAT) and longissimus muscle area (USREA) from 3,482 yearling Hereford cattle representing 441 sires. Restricted maximum likelihood procedures were used to estimate genetic parameters among carcass traits and live animal weight traits from these two separate data sets. Heritability estimates for the slaughter weight constant steer carcass backfat (FAT) and longissimus muscle area (REA) were .49 and .46, respectively. In addition, FAT had a negative genetic correlation with REA (-.37), weaning weight (-.28), and yearling weight (-.13) but positive with marbling (.19) and carcass weight (.36). Marbling was moderately heritable (.35) and highly correlated with total postweaning average daily gain (.54) and feedlot relative growth rate (.62). Heritability estimates for weight constant USFAT and USREA were .26 and .25, respectively. The genetic correlation between weight constant USFAT and USREA was positive (.39), indicating that in these young animals USFAT does not seem to be an indication of maturity. Mean USFAT measures and variability were small (.48 +/- .17 cm, n = 3,482). Results indicate that carcass fat on slaughter steers and ultrasound measures of backfat on young breeding animals may have different relationships with growth and muscling. These relationships need to be explored before wide scale selection based on ultrasound is implemented. 相似文献
2.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny. 相似文献
3.
The first objective of this study was to test the ability of systems of weighing and classifying bovine carcasses used in commercial abattoirs in Ireland to provide information that can be used for the purposes of genetic evaluation of carcass weight, carcass fatness class, and carcass conformation class. Secondly, the study aimed to test whether genetic and phenotypic variances differed by breed of sire. Variance components for carcass traits were estimated for crosses between dairy cows and 8 breeds of sire commonly found in the Irish cattle population. These 8 breeds were Aberdeen Angus, Belgian Blue, Charolais, Friesian, Hereford, Holstein, Limousin, and Simmental. A multivariate animal model was used to estimate genetic parameters within the Holstein sire breed group. Univariate analyses were used to estimate variance components for the remaining 7 sire breed groups. Multivariate sire models were used to formally test differences in genetic variances in sire breed groups. Field data on 64,443 animals, which were slaughtered in commercial abattoirs between the ages of 300 and 875 d, were analyzed in 8 analyses. Carcass fat class and carcass conformation class were measured using the European Union beef carcass classification system (EUROP) scale. For all 3 traits, the sire breed group with the greatest genetic variance had a value of more than 8 times the sire breed group with least genetic variance. Heritabilities ranged from zero to moderate for carcass fatness class (0.00 to 0.40), from low to moderate for carcass conformation class (0.04 to 0.36), and from low to high for carcass weight (0.06 to 0.65). Carcass weight was the most heritable (0.26) of the 3 traits. Carcass conformation class and carcass fatness class were equally heritable (0.17). Genetic and phenotypic correlations were all positive in the Holstein sire breed group. The genetic correlations varied from 0.11 for the relationship between carcass weight and carcass fatness class to 0.44 for the relationship between carcass conformation class and carcass fatness class. Carcass weight and classification data collected in Irish abattoirs are useful for the purposes of genetic evaluation for beef traits of Irish cattle. There were significantly different variance components across the sire breed groups. 相似文献
4.
M.A. Hoque K. Suzuki H. Kadowaki T. Shibata & T. Oikawa 《Zeitschrift für Tierzüchtung und Züchtungsbiologie》2007,124(3):108-116
Genetic parameters for feed efficiency traits of 380 boars and growth and carcass traits of 1642 pigs (380 boars, 868 gilts and 394 barrows) in seven generations of Duroc population were estimated. Feed efficiency traits included the feed conversion ratio (FCR), and nutritional (RFI(nut)), phenotypic (RFI(phe)) and genetic (RFI(gen)) residual feed intake. Growth and carcass traits were the age to reach 105-kg body weight (A105), loin eye muscle area (EMA), backfat (BF), intra-muscular fat (IMF) and meat tenderness. The mean values for RFI(phe) and RFI(gen) were close to zero and for RFI(nut) was negative. All the measures of feed efficiency were moderately heritable (h(2) = 0.31, 0.38, 0.40 and 0.27 for RFI(nut), RFI(phe), RFI(gen) and FCR respectively). The heritabilities for all growth and carcass traits were moderate (ranged from 0.37 to 0.45), except for BF, which was high (0.72). The genetic correlations of RFI(phe) and RFI(gen) with A105 were positive and high. Measures of RFI were correlated negatively with EMA. BF was more strongly correlated with measures of RFI (r(g) > or = 0.73) than with FCR (r(g) = 0.52). Selection for daily gain, EMA, BF and IMF caused favourable genetic changes in feed efficiency traits. Results of this study indicate that selection against either RFI(phe) or RFI(gen) would give a similar correlated response in carcass traits. 相似文献
5.
Riley DG Chase CC Hammond AC West RL Johnson DD Olson TA Coleman SW 《Journal of animal science》2002,80(4):955-962
Heritabilities and genetic and phenotypic correlations were estimated from feedlot and carcass data collected from Brahman calves (n = 504) in central Florida from 1996 to 2000. Data were analyzed using animal models in MTDFREML. Models included contemporary group (n = 44; groups of calves of the same sex, fed in the same pen, slaughtered on the same day) as a fixed effect and calf age in days at slaughter as a continuous variable. Estimated feedlot trait heritabilities were 0.64, 0.67, 0.47, and 0.26 for ADG, hip height at slaughter, slaughter weight, and shrink. The USDA yield grade estimated heritability was 0.71; heritabilities for component traits of yield grade, including hot carcass weight, adjusted 12th rib backfat thickness, loin muscle area, and percentage kidney, pelvic, and heart fat were 0.55, 0.63, 0.44, and 0.46, respectively. Heritability estimates for dressing percentage, marbling score, USDA quality grade, cutability, retail yield, and carcass hump height were 0.77, 0.44, 0.47, 0.71, 0.5, and 0.54, respectively. Estimated genetic correlations of adjusted 12th rib backfat thickness with ADG, slaughter weight, marbling score, percentage kidney, pelvic, and heart fat, and yield grade (0.49, 0.46, 0.56, 0.63, and 0.93, respectively) were generally larger than most literature estimates. Estimated genetic correlations of marbling score with ADG, percentage shrink, loin muscle area, percentage kidney, pelvic, and heart fat, USDA yield grade, cutability, retail yield, and carcass hump height were 0.28, 0.49, 0.44, 0.27, 0.45, -0.43, 0.27, and 0.43, respectively. Results indicate that sufficient genetic variation exists within the Brahman breed for design and implementation of effective selection programs for important carcass quality and yield traits. 相似文献
6.
Carcass measurements for weight, longissimus muscle area, 12-13th-rib fat thickness, and marbling score, as well as for live animal measurements of weight at the time of ultrasound, ultrasound longissimus muscle area, ultrasound 12-13th-rib fat thickness, and ultrasound-predicted percentage ether extract were taken on 2,855 Angus steers. The average ages for steers at the time of ultrasound and at slaughter were 391 and 443 d, respectively. Genetic and environmental parameters were estimated for all eight traits in a multivariate animal model. In addition to a random animal effect, the model included a fixed effect for contemporary group and a covariate for measurement age. Heritabilities for carcass weight, carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound weight, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.48, 0.45, 0.35, 0.42, 0.55, 0.29, 0.39, and 0.51, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, carcass marbling score and ultrasound-predicted percentage ether extract, and carcass and ultrasound weight were 0.69, 0.82, 0.90, and 0.96, respectively. Additional estimates were derived from a six-trait multivariate animal model, which included all traits except those pertaining to weight. This model included a random animal effect, a fixed effect for contemporary group, as well as covariates for both measurement age and weight. Heritabilities for carcass longissimus muscle area, carcass fat thickness, carcass marbling score, ultrasound longissimus muscle area, ultrasound fat thickness, and ultrasound-predicted percentage ether extract were 0.36, 0.39, 0.40, 0.17, 0.38, and 0.49, respectively. Genetic correlations between carcass and ultrasound longissimus muscle area, carcass and ultrasound fat thickness, and carcass marbling and ultrasound-predicted percentage ether extract were 0.58, 0.86, and 0.94, respectively. The high, positive genetic correlations between carcass and the corresponding real-time ultrasound traits indicate that real-time ultrasound imaging is an alternative to carcass data collection in carcass progeny testing programs. 相似文献
7.
Smith T Domingue JD Paschal JC Franke DE Bidner TD Whipple G 《Journal of animal science》2007,85(6):1377-1384
Spring-born purebred Brahman bull calves (n = 467) with known pedigrees, sired by 68 bulls in 17 private herds in Louisiana, were purchased at weaning from 1996 through 2000 to study variation in growth, carcass, and tenderness traits. After purchase, calves were processed for stocker grazing on ryegrass, fed in a south Texas feedlot, and processed in a commercial facility. Carcass data were recorded 24 h postmortem. Muscle samples and primal ribs were taken to measure calpastatin activity and shear force. An animal model was used to estimate heritability, genetic correlations, and sire EPD. Relatively high heritability estimates were found for BW at slaughter (0.59 +/- 0.16), HCW (0.57 +/- 0.15), LM area (0.50 +/- 0.16), yield grade (0.46 +/- 0.17), calpastatin enzyme activity (0.45 +/- 0.17), and carcass quality grade (0.42 +/- 0.16); moderate heritability estimates were found for hump height (0.38 +/- 0.16), marbling score (0.37 +/- 0.16), backfat thickness (0.36 +/- 0.17), feedlot ADG (0.33 +/- 0.14), 7-d shear force (0.29 +/- 0.14), and 14-d shear force (0.20 +/- 0.11); relatively low heritability estimates were found for skeletal maturity (0.10 +/- 0.10), lean maturity (0.00 +/- 0.07), and percent KPH (0.00 +/- 0.07). Most genetic correlations were between -0.50 and +0.50. Other genetic correlations were 0.74 +/- 0.27 between calpastatin activity and 7-d shear force, 0.72 +/- 0.25 between calpastatin activity and 14-d shear force, (0.90 +/- 0.30 between yield grade and 7-d shear force, and -0.82 +/- 0.27 between backfat thickness and 7-d shear force. Heritability estimates and genetic correlations for most traits were similar to estimates reported in the literature. Sire EPD ranges for carcass traits approached those reported for sires in other breeds. The magnitude of heritability estimates suggests that improvement in carcass yield, carcass quality, and consumer acceptance traits can be made within the Brahman population. 相似文献
8.
This study was conducted to compare carcass EPD predicted using yearling live animal data and/or progeny carcass data, and to quantify the association between the carcass phenotype of progeny and the sire EPD. The live data model (L) included scan weight, ultrasound fat thickness, longissimus muscle area, and percentage of intramuscular fat from yearling (369 d of age) Simmental bulls and heifers. The carcass data model (C) included hot carcass weight, fat thickness, longissimus muscle area, and marbling score from Simmental-sired steers and cull heifers (453 d of age). The combined data model (F) included live animal and carcass data as separate but correlated traits. All data and pedigree information on 39,566 animals were obtained from the American Simmental Association, and all EPD were predicted using animal model procedures. The genetic model included fixed effects of contemporary group and a linear covariate for age at measurement, and a random animal genetic effect. The EPD from L had smaller variance and range than those from either C or F. Further, EPD from F had highest average accuracy. Correlations indicated that evaluations from C and F were most similar, and L would significantly (P < 0.05) re-rank sires compared with models including carcass data. Progeny (n = 824) with carcass data collected subsequent to evaluation were used to quantify the association between progeny phenotype and sire EPD using a model including contemporary group, and linear regressions for age at slaughter and the appropriate sire EPD. The regression coefficient was generally improved for sire EPD from L when genetic regression was used to scale EPD to the appropriate carcass trait basis. The EPD from C and F had similar linear associations with progeny phenotype, although EPD from F may be considered optimal because of increased accuracy. These data suggest that carcass EPD based on a combination of live and carcass data predict differences in progeny phenotype at or near theoretical expectation. 相似文献
9.
Records on 514 bulls from the sire population born from 1978 to 2004, and on 22,099 of their field progeny born from 1997 to 2003 with available pedigree information (total number = 124,458) were used to estimate genetic parameters for feed intake and energy efficiency traits of bulls and their relationships with carcass traits of field progeny. Feed intake and energetic efficiency traits were daily feed intake, TDN intake, feed conversion ratio (FCR), TDN conversion ratio (TDNCR), residual feed intake (RFI), partial efficiency of growth, relative growth rate, and Kleiber ratio. Progeny carcass traits were carcass weight (CWT), yield estimate, ribeye area, rib thickness, subcutaneous fat thickness (SFT), marbling score (MSR), meat color standard (MCS), fat color standard (FCS), and meat quality grade. All measures of feed intake and energetic efficiency were moderately heritable (ranged from 0.24 to 0.49), except for partial efficiency of growth and relative growth rate, which were high (0.58) and low (0.14), respectively. The phenotypic and genetic correlations between FCR and TDNCR were >or=0.93. Selection for Kleiber ratio will improve all of the energetic efficiency traits with no effect on feed intake measures (daily feed intake and TDN intake). The genetic correlations of FCR, TDNCR, and RFI of bulls with most of the carcass traits of their field progeny were favorable (ranged from -0.24 to -0.72), except with fat color standard (no correlation), MCS, and SFT. Positive (unfavorable) genetic correlations of MCS with FCR, TDNCR, and RFI (0.79, 0.70, and 0.51, respectively) were found. The SFT was negatively genetically correlated with FCR and TDNCR (-0.32 and -0.20, respectively); however, the genetic correlation between RFI and SFT was not significantly different from zero (r(g) = -0.08 +/- 0.12). Favorable correlated responses in CWT, yield estimate, ribeye area, rib thickness, MSR, and meat quality grade would be predicted for selection against any measure of energetic efficiency. The correlated responses in CWT and MSR of progeny were greater for selection against RFI than for selection against any other energetic efficiency trait. Results of this study indicate that RFI should be preferred over other measures of energetic efficiency to include in selection programs. 相似文献
10.
M.A. Hoque M. Hosono & K. Suzuki 《Zeitschrift für Tierzüchtung und Züchtungsbiologie》2009,126(1):14-21
Genetic parameters for feed intake and performance traits of 514 bulls and carcass traits of 22 099 of their progeny, and the relationships of measures of feed intake with performance and carcass traits were estimated. Feed intake traits were dry matter intake (DMI), concentrate intake (CONI), roughage intake, ratio of roughage intake to DMI, metabolizable energy intake (MEI) and digestible crude protein intake (DCPI). Performance traits included daily gain, metabolic weight, live weight at the end of test, dry matter conversion ratio and residual feed intake. Progeny carcass traits were carcass weight, percentage of meat yield, rib eye area (REA), subcutaneous fat, marbling score, meat colour (MCS), fat colour (FCS) and meat quality grade. All the feed intake and performance traits were moderately heritable. The heritabilities for REA and MCS were moderate, and that for FCS was low, while those for the other carcass traits were high. Selection against DMI, CONI and DCPI would reduce excessive intake of feed, but would have undesirable effects on growth and most of the carcass traits. Selection against MEI would lead to improvements in feed efficiency and growth traits. Selection against DCPI would also improve feed efficiency; however, responses in growth traits would decrease. Results indicate that selection against MEI might be better than any other measures of feed intake to improve feed efficiency with simultaneous improvement in growth and most of the carcass traits. 相似文献
11.
The objectives of this study were to estimate genetic parameters for gestation length (GL), including estimation of maternal effects, and to investigate the genetic relationships of GL with birth weight and carcass traits in a Japanese Black cattle population. The original data comprised 34 775 records of animals born from October 1999 to August 2003. Two different models were used to analyze the data for GL. The first model (M1) included direct genetic effect of the calf and maternal genetic effect as random effects. The second model (M2) treated GL as a trait of the dam and included direct genetic effects only. M1 was used in bi-variate analysis. The direct and maternal heritabilities for GL estimated from M1 were 0.53 and 0.14, respectively. This result shows that GL is moderately inherited and can be controlled genetically. The direct × maternal genetic correlation for GL was −0.73. Direct genetic correlations of GL with carcass traits were close to zero. However, genetic correlation of maternal GL with carcass weight was moderate (0.25). 相似文献
12.
Jussi Peura Ismo Strandén Esa A. Mäntysaari 《Acta Agriculturae Scandinavica, Section A - Animal Sciences》2013,63(4):137-144
Abstract Finnish blue fox farmers breed for increased litter size and pelt size, and improved fur quality. Some farmers select pelt size and fur quality indirectly using live animal evaluations (grading traits). In order to be able to define breeding goals properly, heritabilities and genetic correlations were estimated for size traits and fur quality traits. There were four pelt character traits (pelt size, pelt colour darkness, pelt colour clarity and pelt quality) measured on dried skins, and six grading traits (animal size, grading colour darkness, grading colour clarity, underfur density, guard hair coverage and grading quality). The data included 54,680 animals born during the years 1987–2002, originating from seven farms. The heritabilities were high for pelt colour darkness and grading colour darkness, moderate for pelt size and low for other traits. In general, heritability of a pelt character trait was higher than its corresponding grading trait. Genetic correlations within the pelt character traits were low (~0.11) and within the grading traits mainly moderate or high (~0.44). There was high genetic correlation between pelt darkness and grading darkness, pelt quality and grading density, pelt size and animal size; between pelt quality and grading quality and between pelt colour darkness and grading guard hair coverage. This suggests that selection of pelt character traits via grading traits in most cases is relatively effective. 相似文献
13.
Juan Carlos Martínez-González Francisco Javier García-Esquivel Gaspar Manuel Parra-Bracamonte Héctor Castillo-Juárez Eugenia Guadalupe Cienfuegos-Rivas 《Tropical animal health and production》2010,42(5):887-892
The aim of this study was to estimate genetic parameters for growth traits in Mexican Nellore cattle. A univariate animal
model was used to estimate (co)variance components and genetic parameters. The traits evaluated were birth weight (BW), weaning
weight (WW), and yearling weight (YW). Models used included the fixed effects of contemporary groups (herd, sex, year, and
season of birth) and age of dam (linear and quadratic) as a covariate. They also included the animal, dam, and residual as
random effects. Phenotypic means (SD) for BW, WW, and YW were 31.4 (1.6), 175 (32), and 333 (70) kg, respectively. Direct
heritability, maternal heritability, and the genetic correlation between additive direct and maternal effects were 0.59, 0.17,
and −0.90 for BW; 0.29, 0.17, and −0.90 for WW; and 0.24, 0.15, and −0.86 for YW, respectively. The results showed moderate
direct and maternal heritabilities for the studied traits. The genetic correlations between direct and maternal effects were
negative and high for all the traits indicating important tradeoffs between direct and maternal effects. There are significant
possibilities for genetic progress for the growth traits studied if they are included in a breeding program considering these
associations. 相似文献
14.
15.
16.
Genetic relationships between calving and carcass traits for Charolais and Hereford cattle in Sweden 总被引:1,自引:0,他引:1
The objective of this study was to estimate genetic correlations between calving difficulty score and carcass traits in Charolais and Hereford cattle, treating first and later parity calvings as different traits. Genetic correlations between birth weight and carcass traits were also estimated. Field data on 59,182 Charolais and 27,051 Hereford calvings, and carcass traits of 5,260 Charolais and 1,232 Hereford bulls, were used in bivariate linear animal model analyses. Estimated heritabilities were moderate to high (0.22 to 0.50) for direct effects on birth weight, carcass weight, and (S)EUROP (European Community scale for carcass classification) grades for carcass fleshiness and fatness. Heritabilities of 0.07 to 0.18 were estimated for maternal effect on birth weight, and for direct and maternal effects on calving difficulty score at first parity. Lower heritabilities (0.01 to 0.05) were estimated for calving difficulty score at later parities. Carcass weight was positively genetically correlated (0.11 to 0.53) with both direct and maternal effects on birth weight and with direct effects on calving difficulty score. Carcass weight was, however, weakly or negatively (-0.70 to 0.07) correlated with maternal calving difficulty score. Higher carcass fatness grade was genetically associated with lower birth weight, and in most cases, also with less difficult calving. Genetic correlations with carcass fleshiness grade were highly variable. Moderately unfavorable correlations between carcass fleshiness grade and maternal calving difficulty score at first parity were estimated for both Charolais (0.42) and Hereford (0.54). This study found certain antagonistic genetic relationships between calving performance and carcass traits for both Charolais and Hereford cattle. Both direct and maternal calving performance, as well as carcass traits, should be included in the breeding goal and selected for in beef breeds. 相似文献
17.
18.
Heritabilities of and genetic correlations between additive direct and maternal genetic effects for calf market weight, and additive direct genetic effects for carcass traits, were estimated for Japanese Black cattle by REML procedures under 2-trait animal models. Data were collected from calf and carcass markets in Hyogo and Tottori prefectures and analyzed separately by prefecture. Calf market weight was measured on 42,745 and 23,566 calves in Hyogo and Tottori, respectively. Only the fattening animals with calf market weight were extracted from the carcass database and used for estimation. The carcass traits analyzed were carcass weight, ribeye area, rib thickness, subcutaneous fat thickness, yield estimate, beef marbling score, and 4 meat characters (color, brightness, firmness, and texture). Direct and maternal heritabilities for calf market weight were estimated to be 0.22 and 0.07 in Hyogo, and 0.37 and 0.15 in Tottori, respectively. The estimates of heritabilities for carcass traits were moderate to high in both prefectures. The estimates of direct-maternal genetic correlations for calf market weight were positive (0.17) in Hyogo and negative (-0.63) in Tottori. The direct effect for calf market weight was positively correlated with the direct effect for carcass weight (0.87 and 0.56 in Hyogo and Tottori, respectively) but negatively correlated with the direct effect for beef marbling score (-0.10 in both prefectures). The estimates of genetic correlations between the maternal effect for calf market weight and the direct effects for carcass traits varied from -0.13 to 0.34 in Hyogo and from -0.14 to 0.15 in Tottori. Because direct and maternal genetic effects for early growth traits can be evaluated from calf market weight data in the production system of Japanese Black cattle, this information should be incorporated into selection and mating schemes of the breed. 相似文献
19.
Genetic relationship of feed efficiency traits of bulls with growth and carcass traits of their progeny for Japanese Black (Wagyu) cattle 总被引:1,自引:0,他引:1
Genetic parameters for feed efficiency traits of 740 Wagyu bulls and growth and carcass traits of 591 of their progeny, and the genetic relationship between the traits of bulls and their progeny were estimated with the residual maximum likelihood procedure. The estimations were made for the test periods of 140 days (77 bulls), 112 days (663 bulls) and 364 days (591 steer progeny). Feed efficiency traits of bulls included feed conversion ratio (FCR), phenotypic residual feed intake (RFIphe) and genetic residual feed intake (RFIgen). Progeny traits were bodyweight at the start of the test (BWS), bodyweight at finish (BWF), average daily gain (ADG), rib eye area (REA), marbling score (MSR), dressing percentage (DRS) and subcutaneous fat thickness (SFT). The estimated heritability for MSR (0.52) was high and for BWS (0.35), BWF (0.40) and ADG (0.30) were moderate, whereas REA, DRS and SFT were low. Positive genetic correlations among BWS, BWF, ADG and SFT and negative genetic correlations between MSR and DRS and between REA and SFT were found. The genetic correlations between residual feed intake (RFIphe and RFIgen) of bulls and bodyweights (BWS and BWF) of their progeny ranged from ?0.27 to ?0.61. Residual feed intake was positively correlated with REA and DRS and negatively correlated with MSR and SFT. No responses in ADG and weakly correlated responses in REA and DRS of progeny were found to select against feed efficiency traits of bulls. The present experiment provides evidence that selection against lower RFI (higher feed efficiency) would be better than selection against lower FCR for getting better correlated responses in bodyweights. 相似文献
20.
Divergent selection for serum insulin-like growth factor-I (IGF-I) concentration began at the Eastern Ohio Resource Development Center (EORDC) in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d postweaning period. At the conclusion of the postweaning test, bulls not selected for breeding were slaughtered and carcass data were collected at a commercial abbatoir. At the time of this analysis, IGF-I measurements were available for 1,283 bull and heifer calves, and carcass data were available for 452 bulls. A set of multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML) computer programs were used for data analysis. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were .32, .59, .31, and .42, respectively. Direct heritabilities for carcass traits ranged from .27 to 1.0, .26 to 1.0, and .23 to 1.0 when the age-, fat-, and weight-constant end points, respectively, were used, with marbling score having the smallest heritability and longissimus muscle area having the highest heritability in each case. Maternal heritability and the proportion of phenotypic variance due to permanent environmental effect of dam generally were < or = .21 for IGF-I concentrations and for carcass traits other than longissimus muscle area. Additive genetic correlations of IGF-I concentrations with backfat thickness, longissimus muscle area, hot carcass weight, marbling score, quality grade, and yield grade averaged -.26, .19, -.04, -.53, -.45, and -.27, respectively, when carcass data were adjusted to an age-constant end point. Bulls with lower IGF-I concentrations had higher marbling scores and quality grades, but also had higher backfat thickness and yield grades regardless of the slaughter end point. Serum IGF-I concentration may be a useful selection criterion when efforts are directed toward improvement of marbling scores and quality grades of beef cattle. 相似文献