首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1990: annus mirabilis of potassium channels   总被引:17,自引:0,他引:17  
C Miller 《Science (New York, N.Y.)》1991,252(5010):1092-1096
Voltage-gated potassium channels make up a large molecular family of integral membrane proteins that are fundamentally involved in the generation of bioelectric signals such as nerve impulses. These proteins span the cell membrane, forming potassium-selective pores that are rapidly switched open or closed by changes in membrane voltage. After the cloning of the first potassium channel over 3 years ago, recombinant DNA manipulation of potassium channel genes is now leading to a molecular understanding of potassium channel behavior. During the past year, functional domains responsible for channel gating and potassium selectivity have been identified, and detailed structural pictures underlying these functions are beginning to emerge.  相似文献   

2.
Malfolded proteins in the endoplasmic reticulum (ER) induce cellular stress and activate c-Jun amino-terminal kinases (JNKs or SAPKs). Mammalian homologs of yeast IRE1, which activate chaperone genes in response to ER stress, also activated JNK, and IRE1alpha-/- fibroblasts were impaired in JNK activation by ER stress. The cytoplasmic part of IRE1 bound TRAF2, an adaptor protein that couples plasma membrane receptors to JNK activation. Dominant-negative TRAF2 inhibited activation of JNK by IRE1. Activation of JNK by endogenous signals initiated in the ER proceeds by a pathway similar to that initiated by cell surface receptors in response to extracellular signals.  相似文献   

3.
Ion channels on the mitochondrial inner membrane influence cell function in specific ways that can be detrimental or beneficial to cell survival. At least one type of potassium (K+) channel, the mitochondrial adenosine triphosphate-sensitive K+ channel (mitoKATP), is an important effector of protection against necrotic and apoptotic cell injury after ischemia. Here another channel with properties similar to the surface membrane calcium-activated K+ channel was found on the mitochondrial inner membrane (mitoKCa) of guinea pig ventricular cells. MitoKCa significantly contributed to mitochondrial K+ uptake of the myocyte, and an opener of mitoKCa protected hearts against infarction.  相似文献   

4.
The effects of calcium removal on the voltage-dependent potassium channels of isolated squid neurons were studied with whole cell patch-clamp techniques. When the calcium ion concentration was lowered from 10 to 0 millimolar (that is, no added calcium), potassium channel activity, identified from its characteristic time course, disappeared within a few seconds and there was a parallel increase in resting membrane conductance and in the holding current. The close temporal correlation of the changes in the three parameters suggests that potassium channels lose their ability to close in the absence of calcium and simultaneously lose their selectivity. If potassium channels were blocked by barium ion before calcium ion was removed, the increases in membrane conductance and holding current were delayed or prevented. Thus calcium is an essential cofactor in the gating of potassium channels in squid neurons.  相似文献   

5.
Walter P  Ron D 《Science (New York, N.Y.)》2011,334(6059):1081-1086
The vast majority of proteins that a cell secretes or displays on its surface first enter the endoplasmic reticulum (ER), where they fold and assemble. Only properly assembled proteins advance from the ER to the cell surface. To ascertain fidelity in protein folding, cells regulate the protein-folding capacity in the ER according to need. The ER responds to the burden of unfolded proteins in its lumen (ER stress) by activating intracellular signal transduction pathways, collectively termed the unfolded protein response (UPR). Together, at least three mechanistically distinct branches of the UPR regulate the expression of numerous genes that maintain homeostasis in the ER or induce apoptosis if ER stress remains unmitigated. Recent advances shed light on mechanistic complexities and on the role of the UPR in numerous diseases.  相似文献   

6.
Expression of a cloned rat brain potassium channel in Xenopus oocytes   总被引:21,自引:0,他引:21  
Potassium channels are ubiquitous membrane proteins with essential roles in nervous tissue, but little is known about the relation between their function and their molecular structure. A complementary DNA library was made from rat hippocampus, and a complementary DNA clone (RBK-1) was isolated. The predicted sequence of the 495-amino acid protein is homologous to potassium channel proteins encoded by the Shaker locus of Drosophila and differs by only three amino acids from the expected product of a mouse clone MBK-1. Messenger RNA transcribed from RBK-1 in vitro directed the expression of potassium channels when it was injected into Xenopus oocytes. The potassium current through the expressed channels resembles both the transient (or A) and the delayed rectifier currents reported in mammalian neurons and is sensitive to both 4-aminopyridine and tetraethylammonium.  相似文献   

7.
A G protein directly regulates mammalian cardiac calcium channels   总被引:45,自引:0,他引:45  
A possible direct effect of guanine nucleotide binding (G) proteins on calcium channels was examined in membrane patches excised from guinea pig cardiac myocytes and bovine cardiac sarcolemmal vesicles incorporated into planar lipid bilayers. The guanosine triphosphate analog, GTP gamma S, prolonged the survival of excised calcium channels independently of the presence of adenosine 3',5'-monophosphate (cAMP), adenosine triphosphate, cAMP-activated protein kinase, and the protein kinase C activator tetradecanoyl phorbol acetate. A specific G protein, activated Gs, or its alpha subunit, purified from the plasma membranes of human erythrocytes, prolonged the survival of excised channels and stimulated the activity of incorporated channels. Thus, in addition to regulating calcium channels indirectly through activation of cytoplasmic kinases, G proteins can regulate calcium channels directly. Since they also directly regulate a subset of potassium channels, G proteins are now known to directly gate two classes of membrane ion channels.  相似文献   

8.
Potassium channels in neurons are linked by guanine nucleotide binding (G) proteins to numerous neurotransmitter receptors. The ability of Go, the predominant G protein in the brain, to stimulate potassium channels was tested in cell-free membrane patches of hippocampal pyramidal neurons. Four distinct types of potassium channels, which were otherwise quiescent, were activated by both isolated brain G0 and recombinant Go alpha. Hence brain Go can couple diverse brain potassium channels to neurotransmitter receptors.  相似文献   

9.
Calcium signals, pivotal in controlling cell function, can be generated by calcium entry channels activated by plasma membrane depolarization or depletion of internal calcium stores. We reveal a regulatory link between these two channel subtypes mediated by the ubiquitous calcium-sensing STIM proteins. STIM1 activation by store depletion or mutational modification strongly suppresses voltage-operated calcium (Ca(V)1.2) channels while activating store-operated Orai channels. Both actions are mediated by the short STIM-Orai activating region (SOAR) of STIM1. STIM1 interacts with Ca(V)1.2 channels and localizes within discrete endoplasmic reticulum/plasma membrane junctions containing both Ca(V)1.2 and Orai1 channels. Hence, STIM1 interacts with and reciprocally controls two major calcium channels hitherto thought to operate independently. Such coordinated control of the widely expressed Ca(V)1.2 and Orai channels has major implications for Ca(2+) signal generation in excitable and nonexcitable cells.  相似文献   

10.
盐胁迫是影响植物生长发育的重要非生物胁迫之一,严重制约农业生产和经济发展,盐渍化农田的利用已成为一个世界性问题。研究植物耐盐机理、培育耐盐植物新品种对充分利用盐渍化农田具有重要的理论意义和应用价值。目前,越来越多参与盐胁迫应答的基因被发现和揭示。 当植物处于高盐环境时,细胞中的多种蛋白参与盐胁迫响应。细胞壁上的类受体激酶和细胞壁的组分对盐胁迫产生应答,细胞膜上的 GIPC 鞘脂作为 Na+ 受体与 Na+ 结合后引起细胞表面电势变化,产生钙信号以激活下游调控通路,细胞膜上的钾离子通道蛋白和 Na+/H+ 逆转运蛋白介导 Na+ 流入和外排。液泡膜上的 Na+/H+ 逆转运蛋白将细胞质中过多的 Na+ 区隔化至液泡内。此外,转录因子也参与植物适应盐胁迫的转录调控,在植物耐盐调控中起重要作用。本文基于耐盐调控因子的亚细胞定位,综述近几年已报道的植物耐盐分子机制,总结耐盐基因在提高植物耐盐性中的作用,并对其应用前景进行展望,旨在为植物耐盐分子育种提供参考、为盐渍化农田改良提供科学依据。  相似文献   

11.
The KirBac1.1 channel belongs to the inward-rectifier family of potassium channels. Here we report the structure of the entire prokaryotic Kir channel assembly, in the closed state, refined to a resolution of 3.65 angstroms. We identify the main activation gate and structural elements involved in gating. On the basis of structural evidence presented here, we suggest that gating involves coupling between the intracellular and membrane domains. This further suggests that initiation of gating by membrane or intracellular signals represents different entry points to a common mechanistic pathway.  相似文献   

12.
The signals that direct membrane proteins to the apical or basolateral plasma membrane domains of polarized epithelial cells are not known. Several of the class of proteins anchored in the membrane by glycosyl-phosphatidylinositol (GPI) are expressed on the apical surface of such cells. However, it is not known whether the mechanism of membrane anchorage or the polypeptide sequence provides the sorting information. The conversion of the normally basolateral vesicular stomatitis virus glycoprotein (VSV G) to a GPI-anchored protein led to its apical expression. Conversely, replacement of the GPI anchor of placental alkaline phosphatase with the transmembrane and cytoplasmic domains of VSV G shifted its expression from the apical to the basolateral surface. Thus, the mechanism of membrane anchorage can determine the sorting of proteins to the apical or basolateral surface, and the GPI anchor itself may provide an apical transport signal.  相似文献   

13.
TRAAK channels, members of the two-pore domain K(+) (potassium ion) channel family K2P, are expressed almost exclusively in the nervous system and control the resting membrane potential. Their gating is sensitive to polyunsaturated fatty acids, mechanical deformation of the membrane, and temperature changes. Physiologically, these channels appear to control the noxious input threshold for temperature and pressure sensitivity in dorsal root ganglia neurons. We present the crystal structure of human TRAAK at a resolution of 3.8 angstroms. The channel comprises two protomers, each containing two distinct pore domains, which create a two-fold symmetric K(+) channel. The extracellular surface features a helical cap, 35 angstroms tall, that creates a bifurcated pore entryway and accounts for the insensitivity of two-pore domain K(+) channels to inhibitory toxins. Two diagonally opposed gate-forming inner helices form membrane-interacting structures that may underlie this channel's sensitivity to chemical and mechanical properties of the cell membrane.  相似文献   

14.
To establish infection in the host, malaria parasites export remodeling and virulence proteins into the erythrocyte. These proteins can traverse a series of membranes, including the parasite membrane, the parasitophorous vacuole membrane, and the erythrocyte membrane. We show that a conserved pentameric sequence plays a central role in protein export into the host cell and predict the exported proteome in Plasmodium falciparum. We identified 400 putative erythrocyte-targeted proteins corresponding to approximately 8% of all predicted genes, with 225 virulence proteins and a further 160 proteins likely to be involved in remodeling of the host erythrocyte. The conservation of this signal across Plasmodium species has implications for the development of new antimalarials.  相似文献   

15.
The heart of Boltenia ovifera (the sea potato) is a tubular structure formed by a single layer of myocardial cells. Electron microscopic studies show that each cell contains a single myofibril located adjacent to the luminal surface of the cell. Electrical and mechanical measurement of a cannulated perfused heart demonstrate that only the luminal membrane is excitabble and elicits contraction on depolarization. Calcium and magnesium exert antagonistic effects on tension, and potassium depolarizes the myocardium and produces contractures when the luminal membrane is exposed to various concentrations of these ions. The extraluminl membrane does not respond electrically or mechanically to calcium magnesium or potassium, and its potential seems to be effectively "clamped" by the luminal membrane. Functionaly, therefore, this heart consists of a single active membrane with the adjacent contractile apparatus.  相似文献   

16.
Voltage-dependent ion channels contain voltage sensors that allow them to switch between nonconductive and conductive states over the narrow range of a few hundredths of a volt. We investigated the mechanism by which these channels sense cell membrane voltage by determining the x-ray crystal structure of a mammalian Shaker family potassium ion (K+) channel. The voltage-dependent K+ channel Kv1.2 grew three-dimensional crystals, with an internal arrangement that left the voltage sensors in an apparently native conformation, allowing us to reach three important conclusions. First, the voltage sensors are essentially independent domains inside the membrane. Second, they perform mechanical work on the pore through the S4-S5 linker helices, which are positioned to constrict or dilate the S6 inner helices of the pore. Third, in the open conformation, two of the four conserved Arg residues on S4 are on a lipid-facing surface and two are buried in the voltage sensor. The structure offers a simple picture of how membrane voltage influences the open probability of the channel.  相似文献   

17.
Inward movement of calcium through voltage-dependent channels in muscle is thought to initiate the action potential and trigger contraction. Calcium-activated potassium channels carry large outward potassium currents that may be responsible for membrane repolarization. Calcium and calcium-activated potassium currents were identified in enzymatically isolated mammalian gastric myocytes. These currents were blocked by cadmium and nifedipine but were not substantially affected by diltiazem or D600. No evidence for a tetrodotoxin-sensitive sodium current or an inwardly rectifying potassium current was found.  相似文献   

18.
Guanine nucleotide binding (G) proteins (subunit composition alpha beta gamma) dissociate on activation with guanosine triphosphate (GTP) analogs and magnesium to give alpha-guanine nucleotide complexes and free beta gamma subunits. Whether the opening of potassium channels by the recently described Gk in isolated membrane patches from mammalian atrial myocytes was mediated by the alpha k subunit or beta gamma dimer was tested. The alpha k subunit was found to be active, while the beta gamma dimer was inactive in stimulating potassium channel activity. Thus, Gk resembles Gs, the stimulatory regulatory component of adenylyl cyclase, and transducin, the regulatory component of the visual system, in that it regulates its effector function--the activity of the ligand-gated potassium channel--through its guanine nucleotide binding subunit.  相似文献   

19.
When bound by extracellular ligands, receptor tyrosine kinases (RTKs) on the cell surface transmit critical signals to the cell interior. Although signal termination is less well understood, protein tyrosine phosphatase-1B (PTP1B) is implicated in the dephosphorylation and inactivation of several RTKs. However, PTP1B resides on the cytoplasmic surface of the endoplasmic reticulum (ER), so how and when it accesses RTKs has been unclear. Using fluorescence resonance energy transfer (FRET) methods, we monitored interactions between the epidermal- and platelet-derived growth factor receptors and PTP1B. PTP1B-catalyzed dephosphorylation required endocytosis of the receptors and occurred at specific sites on the surface of the ER. Most of the RTKs activated at the cell surface showed interaction with PTP1B after internalization, establishing that RTK activation and inactivation are spatially and temporally partitioned within cells.  相似文献   

20.
Stretch-activated ion channels of animal, plant, bacterial, and fungal cells are implicated in mechanotransduction and osmoregulation. A new class of channel has now been described that is stretch-inactivated. These channels occur in neurons, where they coexist with stretch-activated channels. Both channels are potassium selective. The differing stretch sensitivities of the two channels minimize potassium conductance over an intermediate range of tension, with the consequence that, over this same range, voltage-gated calcium channels are most readily opened. Thus, by setting the relation between membrane tension and transmembrane calcium fluxes, stretch-sensitive potassium channels may participate in the control of calcium-dependent motility in differentiating, regenerating, or migrating neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号