首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We introduce a hybrid technique that combines the robustness of frequency-resolved coherent anti-Stokes Raman scattering (CARS) with the advantages of time-resolved CARS spectroscopy. Instantaneous coherent broadband excitation of several characteristic molecular vibrations and the subsequent probing of these vibrations by an optimally shaped time-delayed narrowband laser pulse help to suppress the nonresonant background and to retrieve the species-specific signal. We used this technique for coherent Raman spectroscopy of sodium dipicolinate powder, which is similar to calcium dipicolinate (a marker molecule for bacterial endospores, such as Bacillus subtilis and Bacillus anthracis), and we demonstrated a rapid and highly specific detection scheme that works even in the presence of multiple scattering.  相似文献   

2.
Inelastic electron tunneling spectroscopy at low temperatures was used to investigate vibrations of Au(111) and Cu(111). The low-energy peaks at 9 millielectron volts (meV) on Au(111) and 21 meV on Cu(111) are attributed to phonons at surfaces. On Au(111), the phonon energy is not influenced by the different stacking of the surface atoms, but it is considerably influenced by different atomic distances within the surface layer. The spatial variation of the phonon excitation is measured in inelastic electron tunneling maps on Au(111), which display atomic resolution. This atomic resolution is explained in terms of site-specific phonon excitation probabilities.  相似文献   

3.
We introduce a spectroscopic method that determines nonlinear quantum mechanical response functions beyond the optical diffraction limit and allows direct imaging of nanoscale coherence. In established coherent two-dimensional (2D) spectroscopy, four-wave-mixing responses are measured using three ingoing waves and one outgoing wave; thus, the method is diffraction-limited in spatial resolution. In coherent 2D nanoscopy, we use four ingoing waves and detect the final state via photoemission electron microscopy, which has 50-nanometer spatial resolution. We recorded local nanospectra from a corrugated silver surface and observed subwavelength 2D line shape variations. Plasmonic phase coherence of localized excitations persisted for about 100 femtoseconds and exhibited coherent beats. The observations are best explained by a model in which coupled oscillators lead to Fano-like resonances in the hybridized dark- and bright-mode response.  相似文献   

4.
Manipulation of electron dynamics calls for electromagnetic forces that can be confined to and controlled over sub-femtosecond time intervals. Tailored transients of light fields can provide these forces. We report on the generation of subcycle field transients spanning the infrared, visible, and ultraviolet frequency regimes with a 1.5-octave three-channel optical field synthesizer and their attosecond sampling. To demonstrate applicability, we field-ionized krypton atoms within a single wave crest and launched a valence-shell electron wavepacket with a well-defined initial phase. Half-cycle field excitation and attosecond probing revealed fine details of atomic-scale electron motion, such as the instantaneous rate of tunneling, the initial charge distribution of a valence-shell wavepacket, the attosecond dynamic shift (instantaneous ac Stark shift) of its energy levels, and its few-femtosecond coherent oscillations.  相似文献   

5.
Most schemes for quantum information processing require fast single-qubit operations. For spin-based qubits, this involves performing arbitrary coherent rotations of the spin state on time scales much faster than the spin coherence time. By applying off-resonant, picosecond-scale optical pulses, we demonstrated the coherent rotation of a single electron spin through arbitrary angles up to pi radians. We directly observed this spin manipulation using time-resolved Kerr rotation spectroscopy and found that the results are well described by a model that includes the electronnuclear spin interaction. Measurements of the spin rotation as a function of laser detuning and intensity confirmed that the optical Stark effect is the operative mechanism.  相似文献   

6.
We combined coherent nonlinear optical spectroscopy with nano-electron volt energy resolution and low-temperature near-field microscopy with subwavelength resolution (相似文献   

7.
Modern laser technology has revolutionized the sensitivity and precision of spectroscopy by providing coherent light in a spectrum spanning the infrared, visible, and ultraviolet wavelength regimes. However, the generation of shorter-wavelength coherent pulses in the x-ray region has proven much more challenging. The recent emergence of high harmonic generation techniques opens the door to this possibility. Here we review the new science that is enabled by an ability to manipulate and control electrons on attosecond time scales, ranging from new tabletop sources of coherent x-rays to an ability to follow complex electron dynamics in molecules and materials. We also explore the implications of these advances for the future of molecular structural characterization schemes that currently rely so heavily on scattering from incoherent x-ray sources.  相似文献   

8.
对多壁碳纳米管进行酸化处理,并采用原位聚合法制备了碳纳米管/聚氨酯复合材料。利用X射线光电子能谱分析(XPS)、电子扫描显微镜(SEM)、动态力学分析(DMA)研究了碳纳米管酸化与否对复合材料性能的影响。结果表明,碳纳米管经酸化处理后产生了羧基,碳纳米管的原位加入使得复合材料的储存模量和玻璃化转变温度都有所提高,而且经过酸化的碳纳米管对聚氨酯材料的改性要比未酸化碳纳米管对聚氨酯材料的改性效果更为显著。  相似文献   

9.
Multiple exciton generation (MEG) refers to the creation of two or more electron-hole pairs from the absorption of one photon. Although MEG holds great promise, it has proven challenging to implement, and questions remain about the underlying photo-physical dynamics in nanocrystalline as well as molecular media. Using the model system of pentacene/fullerene bilayers and femtosecond nonlinear spectroscopies, we directly observed the multiexciton (ME) state ensuing from singlet fission (a molecular manifestation of MEG) in pentacene. The data suggest that the state exists in coherent superposition with the singlet populated by optical excitation. We also found that multiple electron transfer from the ME state to the fullerene occurs on a subpicosecond time scale, which is one order of magnitude faster than that from the triplet exciton state.  相似文献   

10.
Electron solvation dynamics in photoexcited anion clusters of I-(D2O)n=4-6 and I-(H2O)4-6 were probed by using femtosecond photoelectron spectroscopy (FPES). An ultrafast pump pulse excited the anion to the cluster analog of the charge-transfer-to-solvent state seen for I- in aqueous solution. Evolution of this state was monitored by time-resolved photoelectron spectroscopy using an ultrafast probe pulse. The excited n = 4 clusters showed simple population decay, but in the n = 5 and 6 clusters the solvent molecules rearranged to stabilize and localize the excess electron, showing characteristics associated with electron solvation dynamics in bulk water. Comparison of the FPES of I-(D2O)n with I-(H2O)n indicates more rapid solvation in the H2O clusters.  相似文献   

11.
The dynamics of cesium atom motion above the copper(111) surface following electronic excitation with light was studied with femtosecond (10(-15) seconds) time resolution. Unusual changes in the surface electronic structure within 160 femtoseconds after excitation, observed by time-resolved two-photon photoemission spectroscopy, are attributed to atomic motion in a copper-cesium bond-breaking process. Describing the change in energy of the cesium antibonding state with a simple classical model provides information on the mechanical forces acting on cesium atoms that are "turned on" by photoexcitation. Within 160 femtoseconds, the copper-cesium bond extends by 0.35 angstrom from its equilibrium value.  相似文献   

12.
Highest-resolution laser spectroscopy has generally been limited to single trapped ion systems because of the rapid decoherence that plagues neutral atom ensembles. Precision spectroscopy of ultracold neutral atoms confined in a trapping potential now shows superior optical coherence without any deleterious effects from motional degrees of freedom, revealing optical resonance linewidths at the hertz level with a good signal-to-noise ratio. The resonance quality factor of 2.4 x 10(14) is the highest ever recovered in any form of coherent spectroscopy. The spectral resolution permits direct observation of the breaking of nuclear spin degeneracy for the 1S0 and 3P0 optical clock states of 87Sr under a small magnetic bias field. This optical approach for excitation of nuclear spin states allows an accurate measurement of the differential Landé g factor between 1S0 and 3P0. The optical atomic coherence demonstrated for collective excitation of a large number of atoms will have a strong impact on quantum measurement and precision frequency metrology.  相似文献   

13.
分析紫外光照射下木荷产生自由基的规律和表面化学组成及结构的变化。利用电子自旋共振波谱(ESR)和X射线光电子能谱(XPS)技术分别测量紫外光辐照后木荷颗粒的自由基波谱和X射线光电子能谱。结果表明,木荷自由基的光谱分裂因子g=2.003 3,自由基的强度随着辐照时间按Y=1-e-biPt规律增加,紫外光辐照60 min后,木荷表面氧、碳原子比稍有增加,C—C、C—H和C—O含量增加,C=O含量减少,—O—C=O含量增加为原来的2倍左右,说明木荷表面生成了一些含氧官能团或碳的氧化态增高。  相似文献   

14.
利用化学镀方法在桦木单板表面沉积Ni—Cu—P三元合金,考查施镀温度对镀后单板表面电阻率和电磁屏蔽效能的影响,采用扫描电镜(SEM)观察镀后单板的表面形貌,利用EDS和XPS分析镀层成分,利用X射线衍射(XRD)分析镀层的组织结构,采用直拉法测定镀层与木材表面的结合强度。结果表明:当温度从80℃升高到90℃时,镀层平均表面电阻率从0.451Ω/cm2降低至0.301Ω/cm2;继续升高温度,表面电阻率小幅升高;在90℃时,施镀单板的电磁屏蔽效能在9 k Hz~1.5 GHz频段达到55~60 d B。SEM观察发现镀层连续、致密且具有金属光泽;EDS分析可知镀层中存在Ni、Cu和P元素,XPS分析可知镀层组成为Ni、Cu、P,其质量分数分别为79.84%、11.82%和8.34%;XRD分析表明镀层为微晶态结构;镀层与木材表面结合牢固。  相似文献   

15.
The dynamics of two-dimensional small-polaron formation at ultrathin alkane layers on a silver(111) surface have been studied with femtosecond time- and angle-resolved two-photon photoemission spectroscopy. Optical excitation creates interfacial electrons in quasi-free states for motion parallel to the interface. These initially delocalized electrons self-trap as small polarons in a localized state within a few hundred femtoseconds. The localized electrons then decay back to the metal within picoseconds by tunneling through the adlayer potential barrier. The energy dependence of the self-trapping rate has been measured and modeled with a theory analogous to electron transfer theory. This analysis determines the inter- and intramolecular vibrational modes of the overlayer responsible for self-trapping as well as the relaxation energy of the overlayer molecular lattice. These results for a model interface contribute to the fundamental picture of electron behavior in weakly bonded solids and can lead to better understanding of carrier dynamics in many different systems, including organic light-emitting diodes.  相似文献   

16.
We report that the organic salt (EDO-TTF)2PF6 with 3/4-filled-band (1/4-filled in terms of holes), which forms an organic metal with strong electron and lattice correlation, shows a highly sensitive response to photoexcitation. An ultrafast, photoinduced phase transition from the insulator phase to the metal phase can be induced with very weak excitation intensity at near room temperature. This response makes the material attractive for applications in switching devices with room-temperature operation. The observed photo-induced spectroscopic change shows that this photoinduced phase transition process is caused by the cooperative melting of charge ordering assisted by coherent phonon generation.  相似文献   

17.
Compact solid-state sources of terahertz (THz) radiation are being sought for sensing, imaging, and spectroscopy applications across the physical and biological sciences. We demonstrate that coherent continuous-wave THz radiation of sizable power can be extracted from intrinsic Josephson junctions in the layered high-temperature superconductor Bi2Sr2CaCu2O8. In analogy to a laser cavity, the excitation of an electromagnetic cavity resonance inside the sample generates a macroscopic coherent state in which a large number of junctions are synchronized to oscillate in phase. The emission power is found to increase as the square of the number of junctions reaching values of 0.5 microwatt at frequencies up to 0.85 THz, and persists up to approximately 50 kelvin. These results should stimulate the development of superconducting compact sources of THz radiation.  相似文献   

18.
采用模压成型方法制备竹原纤维增强不饱和聚酯(UPE)复合材料,以1%、3%和5%Na OH溶液处理竹原纤维,以改善纤维与UPE树脂间的界面相容性。结果表明:碱处理竹原纤维显著提高了复合材料的拉伸强度、弯曲强度和弯曲模量;1%Na OH溶液处理竹原纤维得到的复合材料力学性能最佳。碱处理后纤维的傅里叶红外光谱(FT-IR)与X-射线光电子能谱(XPS)分析表明:碱处理可移除纤维表面木素、半纤维素以及杂质等,使竹原纤维的纤维素相对含量增加,纤维表面变得粗糙。复合材料拉伸断面扫描电镜(SEM)分析表明:碱处理纤维改善了竹原纤维与UPE树脂的界面粘结。  相似文献   

19.
It has been suggested that enhanced anion concentrations at the liquid/vapor interface of airborne saline droplets are important to aerosol reactions in the atmosphere. We report ionic concentrations in the surface of such solutions. Using x-ray photoelectron spectroscopy operating at near ambient pressure, we have measured the composition of the liquid/vapor interface for deliquesced samples of potassium bromide and potassium iodide. In both cases, the surface composition of the saturated solution is enhanced in the halide anion compared with the bulk of the solution. The enhancement of anion concentration is more dramatic for the larger, more polarizable iodide anion. By varying photoelectron kinetic energies, we have obtained depth profiles of the liquid/vapor interface. Our results are in good qualitative agreement with classical molecular dynamics simulations. Quantitative comparison between the experiments and the simulations indicates that the experimental results exhibit more interface enhancement than predicted theoretically.  相似文献   

20.
Polycrystalline samples of the chalcopyrites CulnS(2), CulnSe(2), and CulnSSe were Prepared from stoichiometric mixtures of the pure elements by microwave irradiation. The reactions were performed in sealed quartz tubes in as few as 3 minutes. The products were analyzed by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray analysis, and x-ray photoelectron spectroscopy. The surface morphology and shape of the particles produced by this method suggest that the products are formed from liquid melts. This method could be applied to the production of bulk chalcopyrite as sources for thin film growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号