首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.  相似文献   

2.
We found that repeated slow slip events observed on the deeper interface of the northern Cascadia subduction zone, which were at first thought to be silent, have unique nonearthquake seismic signatures. Tremorlike seismic signals were found to correlate temporally and spatially with slip events identified from crustal motion data spanning the past 6 years. During the period between slips, tremor activity is minor or nonexistent. We call this associated tremor and slip phenomenon episodic tremor and slip (ETS) and propose that ETS activity can be used as a real-time indicator of stress loading of the Cascadia megathrust earthquake zone.  相似文献   

3.
The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.  相似文献   

4.
Large earthquakes occur episodically in the Cascadia subduction zone. A numerical model has been used to simulate and assess the hazards of a tsunami generated by a hypothetical earthquake of magnitude 8.5 associated with rupture of the northern sections of the subduction zone. Wave amplitudes on the outer coast are closely related to the magnitude of sea-bottom displacement (5.0 meters). Some amplification, up to a factor of 3, may occur in some coastal embayments. Wave amplitudes in the protected waters of Puget Sound and the Strait of Georgia are predicted to be only about one fifth of those estmated on the outer coast.  相似文献   

5.
We identified seven locations on or near the transform plate boundary in California where nonvolcanic tremor was triggered by the 2002 Denali earthquake. This result implies that the conditions essential for nonvolcanic tremor exist in a range of tectonic environments. Models explaining tremor typically require conditions endemic to subduction zones, that is, high temperatures and fluid pressures, because previously tremor was nearly exclusively documented in subduction zones. The absence of tremor in geothermal areas is inconsistent with such models. Additionally, we found no correlation between creeping or locked faults and tremor, contrary to predictions of frictional models of tremor.  相似文献   

6.
A silent slip event on the deeper Cascadia subduction interface   总被引:1,自引:0,他引:1  
Continuous Global Positioning System sites in southwestern British Columbia, Canada, and northwestern Washington state, USA, have been moving landward as a result of the locked state of the Cascadia subduction fault offshore. In the summer of 1999, a cluster of seven sites briefly reversed their direction of motion. No seismicity was associated with this event. The sudden displacements are best explained by approximately 2 centimeters of aseismic slip over a 50-kilometer-by-300-kilometer area on the subduction interface downdip from the seismogenic zone, a rupture equivalent to an earthquake of moment magnitude 6.7. This provides evidence that slip of the hotter, plastic part of the subduction interface, and hence stress loading of the megathrust earthquake zone, can occur in discrete pulses.  相似文献   

7.
Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.  相似文献   

8.
Geodetic measurements of deformation in northwestern Washington indicate that strain is accumulating at a rate close to that predicted by a model of the Cascadia subduction zone in which the plate interface underlying the continental slope and outer continental shelf is currently locked but the remainder of the interface slips continuously. Presumably this locked segment will eventually rupture in a great thrust earthquake with a down-dip extent greater than 100 kilometers.  相似文献   

9.
In an extending terrane basaltic magma supplied at a pressure greater than the least principal stress (overpressure) may be capable of suppressing normal faulting and the earthquakes and topographic relief that commonly accompany normal faulting. As vertical dikes intrude, they press against their walls in the direction opposite the least principal stress and increase its magnitude. The emplacement of tabular intrusions causes the internal magma pressure to act selectively in opposition to tectonic stresses. This process tends to equalize the stresses and thus diminishes the deviatoric stress (difference between maximum and minimum stresses) that creates faults and causes earthquakes. Observations of the pattern of seismicity and magmatism worldwide indicate that magmatism commonly supplants large earthquakes as the primary mechanism for accommodating tectonic extension. Recognizing the extent of magmatic stress accommodation is important in assessing seismic and volcanic risks.  相似文献   

10.
Spatiotemporal patterns in the energy release of great earthquakes   总被引:1,自引:0,他引:1  
For the past 80 years, the energy released in great strike-slip and thrust earthquakes has occurred in alternating cycles of 20 to 30 years. This pattern suggests that a global transfer mechanism from poloidal to toroidal components of tectonic plate motions is operating on time scales of several decades. The increase in seismic activity in California in recent years may be related to an acceleration of global strike-slip moment release, as regions of shear deformation mature after being reached by stresses that have propagated away from regions of great subduction decoupling earthquakes in the 1960s.  相似文献   

11.
Intraslab earthquakes: dehydration of the Cascadia slab   总被引:3,自引:0,他引:3  
We simultaneously invert travel times of refracted and wide-angle reflected waves for three-dimensional compressional-wave velocity structure, earthquake locations, and reflector geometry in northwest Washington state. The reflector, interpreted to be the crust-mantle boundary (Moho) of the subducting Juan de Fuca plate, separates intraslab earthquakes into two groups, permitting a new understanding of the origins of intraslab earthquakes in Cascadia. Earthquakes up-dip of the Moho's 45-kilometer depth contour occur below the reflector, in the subducted oceanic mantle, consistent with serpentinite dehydration; earthquakes located down-dip occur primarily within the subducted crust, consistent with the basalt-to-eclogite transformation.  相似文献   

12.
Seismic profiling data indicate that the thickness of an accreted oceanic terrane of Paleocene and early Eocene age, which forms the basement of much of the forearc beneath western Oregon and Washington, varies by approximately a factor of 4 along the strike of the Cascadia subduction zone. Beneath the Oregon Coast Range, the accreted terrane is 25 to 35 kilometers thick, whereas offshore Vancouver Island it is about 6 kilometers thick. These variations are correlated with variations in arc magmatism, forearc seismicity, and long-term forearc deformation. It is suggested that the strength of the forearc crust increases as the thickness of the accreted terrane increases and that the geometry of the seaward edge of this terrane influences deformation within the subduction complex and controls the amount of sediment that is deeply subducted.  相似文献   

13.
Seismic velocity changes and nonvolcanic tremor activity in the Parkfield area in California reveal that large earthquakes induce long-term perturbations of crustal properties in the San Andreas fault zone. The 2003 San Simeon and 2004 Parkfield earthquakes both reduced seismic velocities that were measured from correlations of the ambient seismic noise and induced an increased nonvolcanic tremor activity along the San Andreas fault. After the Parkfield earthquake, velocity reduction and nonvolcanic tremor activity remained elevated for more than 3 years and decayed over time, similarly to afterslip derived from GPS (Global Positioning System) measurements. These observations suggest that the seismic velocity changes are related to co-seismic damage in the shallow layers and to deep co-seismic stress change and postseismic stress relaxation within the San Andreas fault zone.  相似文献   

14.
The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.  相似文献   

15.
Ryall A  Ryall F 《Science (New York, N.Y.)》1983,219(4591):1432-1433
Intensive microearthquake swarms with the appearance of volcanic tremor have been observed in the southwest part of Long Valley caldera, southeastern California. This activity, possibly associated with magma injection, began 6 weeks after several strong (magnitude 6+) earthquakes in an area south of the caldera and has continued sporadically to the present time. The earthquake sequence and magmatic activity are part of a broad increase in tectonic activity in a 15,000-square-kilometer region surrounding the "White Mountains seismic gap," an area with high potential for the next major earthquake in the western Great Basin.  相似文献   

16.
Earth tides can trigger shallow thrust fault earthquakes   总被引:6,自引:0,他引:6  
We show a correlation between the occurrence of shallow thrust earthquakes and the occurrence of the strongest tides. The rate of earthquakes varies from the background rate by a factor of 3 with the tidal stress. The highest correlation is found when we assume a coefficient of friction of mu = 0.4 for the crust, although we see good correlation for mu between 0.2 and 0.6. Our results quantify the effect of applied stress on earthquake triggering, a key factor in understanding earthquake nucleation and cascades whereby one earthquake triggers others.  相似文献   

17.
The way in which a frictional interface fails is critical to our fundamental understanding of failure processes in fields ranging from engineering to the study of earthquakes. Frictional motion is initiated by rupture fronts that propagate within the thin interface that separates two sheared bodies. By measuring the shear and normal stresses along the interface, together with the subsequent rapid real-contact-area dynamics, we find that the ratio of shear stress to normal stress can locally far exceed the static-friction coefficient without precipitating slip. Moreover, different modes of rupture selected by the system correspond to distinct regimes of the local stress ratio. These results indicate the key role of nonuniformity to frictional stability and dynamics with implications for the prediction, selection, and arrest of different modes of earthquakes.  相似文献   

18.
The Nankai Trough is a vigorous subduction zone where large earthquakes have been recorded since the seventh century, with a recurrence time of 100 to 200 years. The 1946 Nankaido earthquake was unusual, with a rupture zone estimated from long-period geodetic data that was more than twice as large as that derived from shorter period seismic data. In the center of this earthquake rupture zone, we used densely deployed ocean bottom seismographs to detect a subducted seamount 13 kilometers thick by 50 kilometers wide at a depth of 10 kilometers. We propose that this seamount might work as a barrier inhibiting brittle seismogenic rupture.  相似文献   

19.
Strain accumulation during the 1980-85 interval has been measured by means of trilateration surveys in the Shumagin and Yakataga seismic gaps, which are the two regions identified as the most likely sites for the next great thrust earthquakes along the Alaska-Aleutian arc. No significant strain accumulation was detected in the Shumagin gap, but experience at similar subduction zones and simple models of the subduction process suggest that a measurable amount of strain should have accumulated. The most likely explanation of the observation is that subduction there is either aseismic or episodic. The strain accumulation measured in the Yakataga gap is consistent with that expected for the plate convergence rate, although the direction of maximum compression may suggest a somewhat more oblique convergence than expected.  相似文献   

20.
Some large earthquakes display low-frequency seismic anomalies that are best explained by episodes of slow, smooth deformation immediately before their high-frequency origin times. Analysis of the low-frequency spectra of 107 shallow-focus earthquakes revealed 20 events that had slow precursors (95 percent confidence level); 19 were slow earthquakes associated with the ocean ridge-transform system, and 1 was a slow earthquake on an intracontinental transform fault in the East African Rift system. These anomalous earthquakes appear to be compound events, each comprising one or more ordinary (fast) ruptures in the shallow seismogenic zone initiated by a precursory slow event in the adjacent or subjacent lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号