首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A metabolism study and two feedlot trials were conducted to evaluate urea supplementation of peanut skin (PS) diets and ammoniation of PS as methods of reducing detrimental effects of tannins in PS on nutrient digestibility and performance of beef cattle. Tannin content of PS was reduced by 42% after ammoniation. Digestibility coefficients for dry matter, crude protein, nitrogen free extract, energy and total digestible nutrients were higher (P less than .05) for the control diet without PS compared with urea-supplemented PS (UPS) and ammoniated PS (APS) diets. Ether extract digestibility was higher (P less than .05) for UPS and APS diets compared with the control diet. Fecal N was higher (P less than .05) and N retention was lower (P less than .05) in steers fed UPS and APS diets compared with controls, which suggested that in UPS and APS diets dietary protein was being complexed with tannins and excreted. Steers fed the APS diet had lower (P less than .05) plasma urea nitrogen compared with control and UPS diets at 2, 4 and 6 h post-feeding. Eighteen heifers were fed control, UPS and APS diets individually for 84 d, resulting in similar (P less than .05) feedlot performance and carcass traits for heifers on all dietary treatments. Rumen fluid propionic acid levels were similar for control and APS heifers and somewhat lower (P greater than .05) for UPS heifers at 3 and 6 h post-feeding on d 62 of the trial. The experimental diets were fed to 54 steers (360 kg initial wt) ad libitum. After 98 d on dietary treatments average daily gains (ADG), final weights, carcass weights and carcass quality grades were not different (P greater than .05) for control and APS steers. Live weight and ADG were lower (P less than .05) for UPS steers on d 98 compared with control and APS steers, and UPS steers continued in the feedlot through d 147. After 98 d on control or APS diets 72.2% of the beef carcasses produced on each diet graded USDA Choice, and 100% of the carcasses of steers fed UPS graded USDA Choice after 147 d. A urea-supplemented PS diet or a diet containing ammoniated PS was ineffective in improving digestibility and N retention of PS diets when limit-fed to steers. However, ad libitum feeding of an ammoniated PS diet was effective in overcoming detrimental effects of tannins on feedlot performance of heifers and steers.  相似文献   

2.
Metabolism and feedlot trials were conducted to evaluate increased dietary urea as a method of reducing detrimental effects of peanut skin (PS) tannins on nutrient digestibility and finishing steer performance. The PS fed in the trials contained 17.8% crude protein and 20.1% tannin. Urea (.7%) was included in a control (C) diet without PS, and with 15% PS in low-urea (.3%; LUPS), moderate-urea (.7%; MUPS) and high-urea (1.1%; HUPS) diets that contained ground corn and 15% peanut hulls. Apparent digestibility coefficients for dry matter, organic matter and crude protein were higher (P less than .05) for the C diet than for PS diets. Fecal N (g/d) was consistently higher (P less than .05) for PS diets than for the C diet. Retained N (g/d) was similar for steers fed C and HUPS diets, but lower (P less than .05) than C for LUPS and MUPS diets. Average daily gain at 91 d was highest (P less than .05) for C steers in the feedlot, intermediate (P less than .05) for MUPS and HUPS steers and lowest (P less than .05) for LUPS steers. Feed:gain ratio was 97% higher (P less than .05) for LUPS steers compared with C steers, but average daily feed intake was similar for all treatments. Rumen fluid propionic acid was lower (P less than .05) on all PS diets compared with the C diet on d 90. Plasma urea nitrogen (d 90) was reduced (P less than .05) by 48.5, 55.5 and 57.6%, respectively, on LUPS, MUPS and HUPS diets compared with the C diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Peanut skins were fed at 15% of steer diets in metabolism and feedlot trials. Elevation of dietary protein using soybean meal or soybean meal plus urea and ammoniation of skins were evaluated as methods of overcoming detrimental performance and digestibility effects of tannins in peanut skins. Digestibility of dry matter, crude protein and energy were not different (P greater than .05) for steers fed a control diet with 11.4% crude protein with no skins compared with high-protein 15% peanut skin diets with soybean meal (15.5% crude protein) or soybean meal plus urea (16% crude protein). Dry matter, crude protein and energy digestibilities of control and of high-protein peanut skin diets were higher (P less than .05) compared with an 11.4% crude protein peanut skin diet and a 12.2% crude protein diet with ammoniated peanut skins. Ether extract digestibility was higher (P less than .05) for all peanut skin diets compared with the control. Nitrogen retention (g/d) was not different (P greater than .05) for control and high-protein peanut skin diets, and nitrogen retention on these diets was higher (P less than .05) compared with the lower protein and ammoniated peanut skin diets. Diets fed in the metabolism trial, except for the ammoniated peanut skin diet, were fed to 96 steers (345 kg initial wt) in a 109-d feedlot trial. Performance was lower (P less than .05) for steers fed the lower-protein peanut skin diet compared with other treatments through d 56; this diet was discontinued as a treatment on d 62.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Six steers (468 kg) with ruminal and duodenal cannulas were fed diets formulated for two levels of energy containing three crude protein (CP) sources in a 6 X 6 Latin square with a 2 X 3 factorial arrangement of treatments. Energy levels were 2.17 and 2.71 Mcal metabolizable energy (ME)/kg dry matter (DM) provided by hay-corn (H) and corn silage-corn (CS) diets, respectively. Soybean mean (SBM), corn gluten meal-urea (CGM) and urea (U) provided 33% of dietary CP in 12% CP diets. Apparent organic matter (OM) digested in the stomach was not affected (P greater than .05) by energy level or CP source, but OM truly digested in the stomach was greater (P less than .05) when steers were fed the CS compared with the H diet. Duodenal flow of non-NH3 N was greater (P less than .05) when steers were fed CS compared with H and when fed SBM or CGM compared with U. Efficiency of bacterial protein synthesis and duodenal bacterial N flow were increased (P less than .05) when steers were fed CS, but non-NH3, nonbacterial N flow to the duodenum was increased (P less than .05) when steers were fed H. When steers were fed CS rather than H, flows (g/d) of bacterial amino acids were greater (P less than .05), but flows of nonbacterial amino acids tended (P less than .08) to be less. Total amino acid flows were not affected (P greater than .05) by energy level. Duodenal flows of total amino acids tended (P less than .06) to be greater when steers were fed CGM compared with SBM or U, due mainly to an increased (P less than .05) flow of nonessential amino acids.  相似文献   

5.
A feedlot growth-performance trial involving 64 yearling steers and a metabolism trial involving four steers with cannulas in the rumen, proximal duodenum, and distal ileum were conducted to evaluate the comparative feeding value of steam-flaked corn (SFC, density = .30 kg/liter) and sorghum (SFS, density = .36 kg/liter) in finishing diets supplemented with or without .75% sodium bicarbonate (BICARB). No interactions between BICARB and grain type proved to be significant. Supplemental BICARB increased ADG 5.9% (P less than .10) and DMI 4.6% (P less than .05) but did not influence (P greater than .10) the NE value of the diet. Supplemental BICARB increased ruminal pH (P less than .01) and total tract fiber digestion (P less than .05). Differences in ruminal and total tract OM, starch, and N digestion were small (P greater than .10). Replacing SFC with SFS decreased (P less than .05) ADG 6.1% and increased (P less than .01) DMI/gain 9.7%. Corresponding diet NEm and NEg were decreased (P less than .01) 7.0 and 9.3%, respectively. Ruminal digestion of OM and starch tended to be lower (11.8 and 7.2%, respectively, P less than .10) for SFS. Ruminal degradation of feed N was 31% lower (P less than .05) for the SFS diets. Total tract digestibility of OM, N, DE, and ME were 3.3, 10.8, 4.4, and 5.5% lower (P less than .05), respectively, for the SFS vs SFC diets. In conclusion, 1) SFS had 92% the NEm of SFC; 2) differences in total tract starch digestibility were small and cannot explain the higher feeding value of SFC; 3) the low ruminal degradation of sorghum N (roughly 20%) should be considered in diet formulation to avoid a deficit in ruminally available N; and 4) .75% BICARB supplementation increased DMI and ADG of cattle fed highly processed grain-based diets.  相似文献   

6.
Two lamb digestion and three steer growth experiments were conducted to study the feeding value of alfalfa harvested as direct-cut silage (DCS) with grain added prior to ensiling or as low-moisture silage (LMS) or hay with grain added at feeding. In all experiments, alfalfa-grain mixtures contained approximately 50% alfalfa and 50% concentrate (dry matter [DM] basis). In Exp. 1, lambs fed DCS alone consumed less DM than lambs fed LMS or hay alone or any of the alfalfa-grain mixtures. Apparent digestibilities of DM and fiber components were higher (P less than .05) for DCS than for LMS or hay. Lambs that were fed LMS digested more (P less than .05) DM and fiber components than lambs fed hay. Addition of grain resulted in increased (P less than .05) DM digestibility and decreased (P less than .05) digestibilities of neutral detergent fiber and acid detergent fiber. In Exp. 2, growing steers (271 kg) fed DCS-grain had increased (P less than .05) weight gains compared with steers fed hay-grain. Steers fed any of the alfalfa-grain mixtures gained weight more rapidly (P less than .05) than steers fed corn silage (CS)-based diets. In a third experiment, finishing steers (283 kg) fed DCS-grain, LMS-grain, hay-grain or CS-based diets performed similarly (P greater than .05), although steers fed DCS-grain had higher (P less than .05) dressing percentages and yield grades than steers that were fed the other three diets and were fatter (P less than .05) than those fed LMS-grain or CS. In Exp. 4, lambs fed DCS-grain or LMS-grain had higher (P less than .05) apparent DM and organic matter digestibilities than lambs fed CS-based diets with similar forage:grain proportions. In Exp. 5, finishing steers (326 kg) fed DCS-grain gained similarly (P greater than .05) to steers fed LMS-grain or an 85% concentrate diet based on high-moisture corn. Steers fed CS diets had lower (P less than .05) gains and increased (P less than .05) feed per gain compared with steers fed DCS-grain, LMS-grain or high-moisture corn.  相似文献   

7.
Two finishing trials were conducted to determine the effects of adding different types of corn bran, a component of corn gluten feed, on cattle performance. In Trial 1, 60 English crossbred yearling steers (283 +/- 6.7 kg) were used in a completely randomized design with four dietary treatments. Treatments were diets with no corn bran, dry corn bran (86% DM), wet corn bran (37% DM), and rehydrated dry bran (37% DM). Bran was fed at 40% of dietary DM. All finishing diets had (DM basis) 9% corn steep liquor with distillers solubles, 7.5% alfalfa hay, 3% tallow, and 5% supplement. Gain efficiency and ADG were greater (P < 0.01) for cattle fed no corn bran compared with all treatments containing corn bran; however, no differences were detected across corn bran types. In Trial 2, 340 English crossbred yearling steers (354 +/- 0.6 kg) were used in a randomized block design with treatments assigned based on a 2 x 4 + 2 factorial arrangement (four pens per treatment). One factor was the corn processing method used (dry-rolled corn, DRC; or steam-flaked corn, SFC). The other factor was corn bran type: dry (90% DM), wet (40% DM), or dry bran rehydrated to 40 or 60% DM. Bran was fed at 30% of dietary DM, replacing either DRC or SFC. Two control diets (DRC and SFC) were fed with no added bran. All finishing diets contained (DM basis) 10% corn steep liquor with distiller's solubles, 3.5% alfalfa hay, 3.5% sorghum silage, and 5% supplement. Corn bran type did not affect DMI (P = 0.61), ADG (P = 0.53), or G:F (P = 0.10). Dry matter intake was greater (P < 0.01) by steers fed bran compared with those fed no bran, and was greater by steers fed DRC than by steers fed SFC (P < 0.01). Interactions occurred (P < 0.01) between grain source and bran inclusion for ADG and G:F. The ADG by steers fed the SFC diet without bran was greater (P < 0.01) than by steers fed SFC diets with bran, whereas the ADG by steers fed DRC diets with or without bran was similar. Daily gain was 15.2% greater (P < 0.01) by steers fed SFC without bran than by steers fed DRC without bran. Gain efficiency was 16.9% greater (P < 0.01) for steers fed SFC without bran compared with steers fed DRC without bran. In DRC and SFC diets, feeding bran decreased (P < 0.01) G:F by 5.2 and 13.8%, respectively. The moisture content of corn bran had no effect on finishing steer performance, and drying corn bran did not affect its energy value in finishing cattle diets.  相似文献   

8.
Two metabolism trials were conducted with yearling steers fed mature native forage to measure the effect of supplemental protein degradability on selected metabolic variables. Supplements contained 40% crude protein equivalence. In Trial 1, four abomasal-cannulated steers weighing 290 to 379 kg were fed supplements containing the following N sources: (1) 15% corn, 85% urea (U); (2) 100% soybean meal (SBM); (3) 10% corn, 40% soybean meal, 50% urea (SBM-U) and (4) 14% corn, 36% blood meal, 50% urea (BM-U). Equal portions of the daily diet (2.2% of body weight) were fed every 2 h. Treatment differences were not significant for organic matter digestibility, abomasal organic matter flow, nonammonia N flow, feed N flow, bacterial N flow and efficiency of microbial protein synthesis. There was a positive (P less than .05) relationship between quantity of slowly degraded protein fed and nonammonia N flow (r = .97) or feed N flow (r = .98). Escape N was determined to be 21.5, 16.5 and 54.2% in SBM, SBM-U and BM-U supplements, respectively. In the second trial, no supplement, SBM, SBM-U and BM-U were fed in a N balance trial. Dry matter, crude protein and neutral detergent fiber digestibilities were higher (P less than .05) for steers fed supplemented diets. Acid detergent fiber digestibility was higher (P less than .05) for steers supplemented with SBM than steers fed the unsupplemented diets. Nitrogen retention was greater (P less than .05) for cattle fed SBM and BM-U than for cattle fed SBM-U or no supplement.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two digestion and metabolism experiments were conducted to determine effects of monensin in low-protein diets. Monensin supplementation (27 mg/kg of diet dry matter) of steers (303 kg) fed 8.7% crude protein increased (P less than .01) apparent N digestibility and N retention and decreased (P less than .01) percentage of N apparently absorbed lost in urine. Apparent digestibilities of dry matter, gross energy and acid detergent lignin were increased (P less than .05). Digestibilities of neutral detergent and acid detergent fibers were not affected by monensin. In growing wether goats (15 kg) fed 8.5% crude protein, monensin (23 mg/kg of diet dry matter) improved (P less than .01) apparent N digestibility and apparent N absorption. However, urinary N excretion also increased (P less than .05), resulting in no difference in N retention. Monensin did not affect digestibilities of dry matter or gross energy. Efficiency of feed conversion and average daily gain were improved with monensin supplementation of growing goats fed a low-protein, high-roughage diet. Monensin resulted in typical shift of acetate-to-propionate ratio in both experiments. Results suggest that improved N utilization may account for some benefits of feeding monensin.  相似文献   

10.
Sixty crossbred beef steers (initial BW = 412 kg) were used in a 83-d finishing study to determine the effect of feeding dry rolled high-oil corn on performance and total-tract digestibility of finishing diets. Steers were allotted by weight to the following dietary treatments: 1) control corn (C; 82% normal corn, 12% triticale silage), 2) high-oil corn (HO; 82% high-oil corn, 12% silage), and 3) high-oil corn formulated to be isocaloric to C (ISO; 74% high-oil corn, 20% silage). Total lipid content was 4.9% (DM basis) for normal corn and 7.0% for high-oil corn. Steers were individually fed using electronic gates. Quantity of feed offered and refused was recorded daily. Fecal samples were collected on d 63 to 66 of the trial to determine digestibility. Chromic oxide was fed as an indigestible marker for 7 d before fecal collection began. Planned contrasts of HO vs C and ISO vs C were used to assess treatment differences. Dry matter intake was greater for steers fed C vs HO (P < 0.01) or C vs ISO (P < 0.01), but daily gain and feed efficiency were not affected (P > 0.05) by treatments. Digestibility of DM, OM, starch, and GE was greater (P < 0.05) for the HO diet than the C diet, but lipid digestibility did not differ among treatments (P > 0.05). The combined effect of greater GE content and digestibility resulted in greater (P < 0.01) DE content for the HO than for the C diet. Calculated DE of the corn was 8.3% greater (3.74 Mcal/kg; P < 0.01) for the HO diet and 6.5% greater (3.67 Mcal/kg; P < 0.01) for the ISO diet than the corn in the C diet (3.25 Mcal/kg). Dry matter and GE digestibility did not differ (P > 0.05) between the C and ISO diets. Steers consuming ISO had greater (P < 0.05) starch digestibility than steers fed the C diet. Although HO had higher DE, DE intake was similar (P > 0.05) for HO and C due to lower DMI for HO. These results indicate that available energy is greater from high-oil corn than from typical corn, but depressed voluntary feed intake prevented performance improvements and resulted in equal energy intakes between high-oil corn and typical corn diets.  相似文献   

11.
Four experiments were conducted to evaluate three crude protein (CP) sources (urea, U; soybean meal, SBM; corn gluten meal, CGM) in diets based on corn silage (high energy) or grass hay (low energy). In Exp. 1 and 2, growing steers were fed all combinations of energy and protein source at 10.5 or 12% CP. Steers fed high energy diets or 12% CP had improved (P less than .05) daily gains and feed:gain over 84 d. Protein source had no effect (P greater than .05) on performance except that steers fed U consumed more (P less than .05) feed than those fed CGM. Steers were fed experimental diets to a common weight and switched to an 85% concentrate diet for finishing. During finishing, steers fed low energy diets in the growing period consumed more (P less than .05) feed and had increased (P less than .05) feed:gain compared with those fed high energy diets. Growing lambs were fed the same diets as steers. At 10.5% CP, lambs fed high energy diets had higher (P less than .05) digestibilities of dry matter (DM), organic matter (OM), nitrogen (N) and fiber components, and retained more (P less than .05) N. For lambs on 12% CP, high energy diets had higher (P less than .05) DM and OM digestibilities and lower (P less than .05) N digestibilities. At 12% CP, energy level had no effect (P greater than .05) on N retained. Protein source had no effect (P greater than .05) on N retention. There appeared to be no advantage in supplementing with ruminally undegradable proteins, i.e. CGM, in these experiments.  相似文献   

12.
In four feeding trials with beef steers, corn silage (CS), alfalfa hay (AH), and alfalfa silage (AS) were compared as roughage sources in dry-rolled (DRC); dry whole (DWC); ground, high-moisture (GHMC); and whole, high-moisture corn (WHMC) fattening diets. In processed corn diets (DRC and GHMC), steers fed CS had lower DMI (P less than .05) and feed:gain ratios (P less than .10) than steers fed AS as the roughage source. In a separate trial, greater gains (P less than .10) and lower feed:gain ratios (P less than .05) were found during the initial feeding period, which included the adaptation phase, for steers fed CS vs steers fed AH as the roughage source. Over the entire feeding period, lower (corn type x roughage source interaction, P less than .05) feed:gain ratios were found in GHMC diets when CS was fed as the roughage source; feed:gain ratios were similar in steers fed DRC diets containing either CS or AH. Over the entire feeding period, similar performance was found among steers fed the various roughage sources in DWC diets; however, with WHMC diets, steers fed AS as the roughage source had lower feed:gain ratios than did steers fed AH (P less than .05) or CS (P greater than .10). In the processed corn diets, high correlations were found between diet NDF digestibility and gain (r = .80), intake (r = .68), and feed:gain ratios (r = -.66); similar trends were found in WHMC diets but not in DWC diets. These results suggest that the ideal roughage source to complement finishing diets may depend on corn processing method and feeding period (adaptation vs finishing).  相似文献   

13.
Tall fescue hay (H) supplemented with corn and urea (HU) or corn gluten meal (HCGM) and ammoniated tall fescue hay supplemented with corn (AH) or corn gluten meal (AHCGM) were fed to steers in two 4 X 4 Latin-square trials. Diets were fed to four Angus-Hereford steers (550 kg) at equal intakes in trial 1 and to four Hereford steers (350 kg) at ad libitum intakes in trial 2. Ammoniation reduced cell wall concentrations of p-coumaric acid and ferulic acid by 48 and 67%, respectively. Concentrations of other phenolics were also reduced. Apparent total tract digestibilities of vanillin, p-coumaric acid and ferulic acid were lower (P less than .05, .001 and .01, respectively) when nontreated hay was fed in trial 1, but were not different between hay types in trial 2. In trial 1, greater negative intestinal digestibilities of p-coumaric acid (P less than .001) and vanillin (P less than .05) occurred for steers fed HU and HCGM vs AH and AHCGM diets. Digestibilities of neutral detergent fiber (NDF) and acid detergent fiber (ADF) were greater (P less than .001) for steers fed ammoniated hay diets in both trials and greater (P less than .05) for HCGM vs HU in trial 1. More than 96% of the NDF and ADF digested by steers in trial 1 was digested in the stomach. Intakes of digestible NDF and ADF, but not indigestible NDF or ADF, were higher (P less than .001) for steers fed AH and AHCGM in trial 2. In situ dry matter disappearance rate of ammoniated hay was greater (P less than .05) than that of nontreated hay, but rate of cotton thread disappearance from bags suspended in the rumen of steers fed the various diets was similar among treatments. In both trials, feeding ammoniated hay resulted in higher (P less than .05) ruminal concentrations of acetate and higher (P less than 0.05) acetate:propionate ratios. Ruminal liquid dilution rates were lower (P less than .05) for steers fed AH and AHCGM in trial 1, but were not different in trial 2. Ruminal dry matter concentration and solids dilution rate were not affected by diet in either trial. The results are interpreted to indicate that increased intake of ammoniated hay is a result of increased rate and extent of fiber digestion.  相似文献   

14.
Two split-plot designed experiments were conducted to determine the effects of breed (Angus, A, or Brangus, B) and diet (fescue hay, FH; corn silage, CS; or concentrate) on composition and rate of growth, diet digestibility and plasma hormones of steers. In Exp. 1, 10 steers (five of each breed) were fed a CS-based diet followed by a FH-based diet for two consecutive 60-d periods. Both breeds had lower (P less than .01) DM intake and digestibility when fed FH than when fed CS diets. The B steers had higher (P less than .01) plasma insulin concentrations than A steers when fed the CS diet. In Exp. 2, during two consecutive years, 10 steers previously fed CS- and FH-based diets were finished with a corn silage-whole shelled corn-based diet. During yr 1, A steers had higher (P less than .01) DM intake and plasma triiodothyronine (T3) and thyroxine (T4) concentrations (P less than .05) than B steers did. Although final weights were similar (P greater than .10), A steers had heavier (P less than .05) carcass weights than B steers did. During yr 2, A steers had higher (P less than .07) DM and starch digestibilities and higher (P less than .01) plasma T4 concentrations than B steers did. The greater (P less than .01) energetic efficiency of A steers was attributed to the greater rates of fat deposition during yr 2. Regardless of type of diet fed, A steers were more efficient at depositing energy. Higher circulating T4 concentrations of A than B steers may explain some of the physiological differences between these breeds.  相似文献   

15.
The efficacy of replacing broiler litter with rice mill feed was evaluated in four experiments. In Exp. 1, 40 predominantly Angus steers (initial BW = 277+/-18.2 kg) were fed four dietary treatments for 112 d (five steers per pen; two pens per diet). Dietary treatments (DM basis) were as follows: 1) 47% broiler litter:53% corn; 2) 60% rice mill feed:40% corn; 3) 50% rice mill feed:50% corn; and 4) 40% rice mill feed:60% corn. All diets, along with bermudagrass hay, were fed free choice. Daily gains were faster (P < 0.10) for the 50:50 and 40:60 diets (1.26 and 1.30 kg/d, respectively) than for the broiler litter diet (0.89 kg/d). Daily DMI was less (P < 0.10) by steers consuming rice mill feed-based diets than by those consuming broiler litter-based diets. In Exp. 2, 16 Angus x Charolais steers (initial BW = 277+/-22.7 kg) were fed the same four diets used in Exp. 1 while housed in individual metabolism stalls for determination of nutrient digestibility. Daily DMI was not different (P > 0.10) among diets. Nutrient digestibilities did not differ among diets (P > 0.10). In Exp. 3, 40 Continental cross steers (initial BW = 257+/-21.3 kg) were fed one of four dietary treatments for 112 d (five steers per pen; two pens per diet). On a DM basis, diets were as follows: 1) 47% broiler litter:53% soyhulls; 2) 70% rice mill feed:30% soyhulls; 3) 60% rice mill feed:40% soyhulls; and 4) 50% rice mill feed:50% soyhulls. All diets, along with bermudagrass hay, were fed free choice. Daily gains were less (P < 0.05) for the broiler litter diet than for the 60:40 and 50:50 diets (1.05, 1.16, and 1.28 kg/d, respectively), and steers fed the broiler litter diet consumed less DM than did steers fed the varying rice mill feed-based diets (P < 0.10). In Exp. 4, 16 Angus x Charolais steers (initial BW = 292+/-21.1 kg) were fed the same four diets as in Exp. 3 while housed in individual metabolism stalls for determination of nutrient digestibility. Daily DMI was less (P < 0.01) for the broiler litter diet (5.0 kg/d) than for the 70:30, 60:40, and 50:50 diets (7.8, 7.9, and 7.9 kg/ d, respectively). Digestibilities for DM, OM, and ADF did not differ (P > 0.10) among treatments; however, CP digestibility was greatest (P < 0.10) for the 60:40 diet, and NDF digestibility was least (P < 0.10) for the 70:30 diet. Rice mill feed can be used to replace broiler litter to formulate low-cost diets for stocker calves. Soyhulls and corn can be blended with rice mill feed to produce acceptable backgrounding diets for growing beef calves.  相似文献   

16.
Two experiments were conducted to evaluate supplementation of diets with 8% corn oil, lard or tallow. In Exp. 1, 36 barrows weaned at 21 d of age were used to evaluate the effects of these three diets on digestibilities of fat and dry matter and subsequent N retentions from wk 1 to 4 postweaning. In Exp. 2, 147 weanling pigs in six replicates were used to evaluate weekly growth and feed performance measurements when fed these same diets for a 4-wk postweaning period. A large quantity of fat was absorbed (P less than .01) during wk 1 postweaning by pigs fed the corn oil diet, with the quantity absorbed similar for the three sources of fat from wk 2 to 4. Diets with corn oil had a higher apparent fat digestibility than diets supplemented with lard or tallow during each week postweaning (P less than .05). Apparent digestibility of fat increased (P less than .01) for each fat source each week postweaning but appeared to reach a plateau by wk 3 postweaning. Differences in apparent digestibility of fat between fat sources narrowed from wk 1 to wk 4, with digestibility of corn oil increasing from 79 to 89% and of animal fat sources increasing from 67 to 84%. Apparent digestibility of dry matter tended (P less than .10) to be highest when corn oil was provided during the initial 2-wk postweaning period. Although N retention was highest during wk 1 postweaning when the corn oil was fed, this response was attributed to the higher feed intakes of pigs fed this diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two trials were conducted to determine the effect of corn processing method on performance and carcass traits in steers fed finishing diets containing wet corn gluten feed (WCGF). In Trial 1, 480 steer calves (303 kg initial BW) were fed eight finishing diets: 1) dry-rolled corn (DRC) without; and 2) with 32% (DM basis) WCGF; 3) steam-flaked corn (SFC) without; and 4) with WCGF; 5) a combination of DRC and SFC without WCGF; 6) finely-ground corn (FGC) with WCGF; 7) high-moisture corn (HMC) with WCGF; and 8) whole corn (WC) with WCGF. Feeding WC + WCGF increased (P < 0.10) DMI and decreased gain:feed compared with all other treatments. Feeding DRC + WCGF increased (P < 0.10) DMI and decreased (P < 0.10) gain:feed compared with treatments other than WC + WCGF. Steers on treatments that included WCGF gained similarly, regardless of corn processing method, and at a rate 6% faster (P < 0.10) than steers fed diets that did not include WCGF. Gain:feed did not differ among steers fed SFC, SFC + WCGF, SFC + DRC, and HMC + WCGF. Steers fed SFC or SFC + WCGF were more efficient (P < 0.10) than steers fed DRC or FGC + WCGF. In Trial 2, 288 steer calves (382 kg initial BW) were fed six finishing diets: 1) DRC without; and 2) with 22% (DM basis) WCGF; 3) SFC without; and 4) with WCGF; 5) finely rolled corn (FRC) with WCGF; and 6) HMC corn with WCGF. Steers fed DRC + WCGF or FRC + WCGF consumed more DM (P < 0.10) than steers fed DRC, SFC, or SFC + WCGF. Feed intake did not differ between steers fed SFC + WCGF and HMC + WCGF. All treatment groups receiving WCGF consumed more DM (P < 0.10) feed than steers fed DRC or SFC without WCGF. Steers fed SFC + WCGF gained 8% faster (P < 0.10), and steers fed DRC 9.5% slower (P < 0.10) than steers receiving all other treatments. Daily gains did not differ among other treatment groups. Steers fed SFC or SFC + WCGF gained 10% more (P < 0.10) efficiently than all other treatment groups. Feed efficiency did not differ among steers fed DRC, DRC + WCGF, FRC + WCGF, and HMC + WCGF. Estimates for the NEg of WCGF calculated from animal performance indicated that WCGF contained approximately 25.3% more energy when fed with SFC than when fed with DRC. In general, more intensively processing corn improved gain:feed in finishing diets containing WCGF.  相似文献   

18.
Two metabolism studies were conducted with 24 (Exp. 1) and 36 (Exp. 2) crossbred barrows (initial weight 35 kg) to determine the effect of corn type--normal corn (NC) and high-lysine corn (HLC)--and storage method--dry (D), high-moisture (HM) and reconstituted (RC)--on energy and N digestibility. Diets fed in Exp. 1 were: 1, NC-soybean meal formulated at .78% lysine (dry matter basis); 2, HLC-soybean meal containing the same amount of corn as diet 1 (.87% lysine); 3, HLC-soybean meal with the same lysine level as diet 1. In Exp. 1, dry matter, energy and N digestibilities were not different between corn types or lysine levels (P greater than .16). These results indicate that energy and N digestibility of HLC in typical diets for growing swine are similar to those for NC diets when both are balanced on a lysine basis. Also, replacing NC with HLC on an equal-weight basis did not affect energy and N digestibility. In Exp. 2 six diets balanced on an isonitrogenous and dry-matter basis were tested. Normal corn and HLC diets, which had been stored by three different methods (D, HM and RC) were arranged in a 2 X 3 factorial plan. There were no differences between corn types in dry matter, energy and N digestibilities. The HM and RC treatments had larger particle sizes than the dry corn diets. For diets balanced on an isonitrogenous basis, dry corn storage improved energy digestibility (P less than .10). Reconstitution appeared to improve energy balance and N digestibility of HLC, while HM storage improved energy balance and N digestibility of NC.  相似文献   

19.
Two factorial experiments were conducted to investigate site and extent of organic matter (OM) digestion, nitrogenous fractions flowing at the abomasum and rates-of-passage in steers fed 0, 2 or 4 g NH3/100 g dry matter of treated corncobs supplemented with either a corn or a blood meal-corn gluten meal (BM-CGM) supplement. Rumen and total tract OM digestion coefficients were quadratically increased (P less than .05) and dietary N was quadratically increased (P less than .07) due to the main effect of ammonia. The main effect of protein supplement increased (P less than .05) postruminal OM digestibility, nonammonia N and dietary-N flow. Quadratic protein X ammonia interactions were noted for fluid flow, total-N flow, total amino acid flow and ammonia-N flow. Linear protein X ammonia interactions were noted for bacterial-N flow, which appeared to indicate that N utilization of the ammoniated corn-cob was improved by the inclusion of BM-CGM in the diet. Diet dry matter intake, fluid volume, rate of fluid passage, particulate mass and rate of particulate passage in rumen-fistulated steers were unaffected by either main effect. However, rumen fluid pH of steers fed BM-CGM was lower than that from steers fed the corn supplement.  相似文献   

20.
Three trials were conducted to compare effects of restricted intake of high-concentrate diets vs ad libitum intake of corn silage diets during the growing phase on feedlot cattle performance. In Trial 1, 120 steers (initial BW, 246 kg) were fed 1) a corn silage-based diet ad libitum, 2) a high-moisture corn-corn silage-based diet with intake restricted to a level 20% less than that of the corn silage diet or 3) a high-moisture corn-based diet with intake restricted to a level 30% less than that of the corn silage diet. Steers fed the 20% restricted corn-corn silage-based diet tended (P = .07) to gain slower than those fed the corn silage or 30% restricted high-concentrate diet. Feed efficiency and diet digestibility were greatest for steers fed the 30% restricted-intake, high-concentrate diet (P less than .01). Performance of steers during the subsequent 118-d finishing period was not affected (P greater than .65) by source of energy during the growing period. In Trial 2, ADG of steers fed the 30% intake-restricted, high-concentrate diet was lower (P less than .01) than that of steers with ad libitum access to corn silage. During the 84-d growing period, steers fed supplemental blood meal had 8.3% greater gains and a 6% greater efficiency of feed use than those fed supplemental soybean meal (P less than .01). Monensin did not affect (P = .82) performance of steers fed 30% restricted-intake diets. During the 76-d finishing period, gains and feed conversion were improved (P less than .01) for steers fed the restricted-intake diet in the growing period compared with those given ad libitum access to corn silage. During the growing period in Trial 3, ADG of steers restricted-fed an all-concentrate diet were slightly greater (P less than .10) than ADG of those given ad libitum access to corn silage. Gains did not differ (P = .37) during the subsequent finishing period when steers were switched to 85 or 100% concentrate diets. We concluded that intake of all concentrate diets can be restricted to achieve gains equal to those of steers given ad libitum access to corn silage-based diets without detrimental effects on finishing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号