首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 73 毫秒
1.
基于冠层光谱的锦橙叶片磷素营养监测研究   总被引:2,自引:0,他引:2  
以盆栽蓬安100号锦橙施肥调控试验为基础,利用田间冠层光谱信息探索建立植株磷素营养监测技术与方法。通过采集蓬安100号锦橙95个单株样本的冠层光谱信息和室内检测分析叶片磷含量,随机选取76个作为建模样本,19个为检验样本,运用多种光谱预处理方法和偏最小二乘法(Partial least square method,PLS)及内部交叉验证方法建立校正模型与模型检验。结果表明,经多种光谱预处理方法的建模结果比较,冠层原始反射光谱经二阶求导和SNV处理后建立的蓬安100号锦橙叶片磷含量冠层光谱监测模型预测能力和稳健性最佳,其主成分数4个,能表达全波段63%的信息;校正模型相关系数为0.90,偏差Bias=2.45E-10,且RMSEC和RMSEP均最小。模型检验预测的决定系数R2=0.85。因此,利用二阶导数及标准归一化(Standard normal variate transformation,SNV)预处理的田间冠层光谱信息快速无损监测蓬安100号锦橙叶片磷含量具有一定的可行性。  相似文献   

2.
棉花叶片厚度的高光谱测试方法   总被引:1,自引:0,他引:1  
植物叶片厚度的变化能够指示植物生长状态的改变,为了实时、活体、无损地获取叶片厚度,该研究以棉花叶片为研究对象,利用DPS、Origin统计分析软件分析84组光谱数据与叶片厚度的相关性。研究表明,光谱反射率与叶片厚度在可见光350~369 nm及664~689 nm 2个较窄区域达到了极显著正相关关系,在红外917~1 884、2 048~2 380 nm 2个区域呈极显著负相关关系,总体相关程度红外波段高于可见光波段。红边参数与叶片厚度的相关性不高,24个形状参数与厚度达到了极显著相关水平,其中,中心为980 nm的吸收谷面积与叶片厚度相关度最高,相关系数为0.848。分别用反射率、植被指数、光谱形状参数建立并测试3个估算模型,相对误差最高为7.4%,均方根差最高为0.051 mm。结果表明利用高光谱分析技术,可以实现叶片厚度的快速、活体测量。  相似文献   

3.
基于冠层光谱特性的水稻叶片含水率模型   总被引:1,自引:1,他引:1  
基于水稻叶片含水状况与冠层光谱反射率存在关联,尝试构建水稻叶片含水率模型。在水稻生长的孕穗期,同时测量室外水稻冠层光谱反射率和叶片含水率,依据水稻叶片含水率与各光谱波段反射率之间的相关性系数,选取高相关性系数对应的光谱特征波段。采用遗传算法对BP神经网络的初始权值进行优化处理。分别应用BP神经网络和GA-BP-Network、传统多元线性回归方法建立预测模型。试验表明,GA-BP-Network模型的预测含水率值与真实值平均误差率为3.9%,最大误差率为6.1%,均比BP神经网络、传统多元线性回归预测模型有了很大的改善,提高了预测水稻叶片含水率的准确性。  相似文献   

4.
基于高光谱的叶片滞尘量估测模型   总被引:1,自引:1,他引:1  
为探索建立叶片滞尘量高光谱估测模型,利用光谱仪和电子分析天平采集了北京市区杨树叶片高光谱数据和滞尘量数据,研究了叶片光谱特征与滞尘量间的关系,并建立了基于光谱参数的叶片滞尘量估测模型。研究结果表明:近红外波段(730~1 000 nm)光谱反射率与叶片滞尘量呈现明显的线性相关性,各波段相关系数均高于0.7,绿光区波段反射率对叶片滞尘的影响不敏感;三边参数中仅红边幅值、红边面积与叶片滞尘量达到显著相关;基于多元线性回归、主成分回归、偏最小二乘回归建立的模型均具有较强的预测能力,其中以偏最小二乘回归为模型构建方法,以749、644、514 nm波段的光谱反射率值,红边幅值,红边面积,924、1 010 nm波段组成的归一化指数,713、725 nm波段组成的差值指数,749、644 nm波段组成的归一化植被指数为自变量建立的模型估测精度最好,其建模和预测的决定系数分别达到0.734和0.731,预测均方根误差为0.311。该研究为促进高光谱技术在大气降尘监测中的应用提供参考。  相似文献   

5.
利用红边特征参数监测小麦叶片氮素积累状况   总被引:5,自引:5,他引:5  
以不同类型小麦品种在氮素差异梯度下连续3 a田间试验为基础,在关键生育时期同步测定冠层光谱反射率、叶片干物质量及氮含量,探索建立小麦叶片氮素状况估算的新型红边参数及监测模型。结果表明,冠层微分光谱在红边区域内随氮素水平提高呈明显规律性变化,而原始光谱反射率的变化却较为复杂。与叶片氮积累量关系密切的常见红边参数间存在差异,其中,以GM2、SR705和FD742表现最突出,线性回归模型拟合精度(R2)分别为0.854、0.848和0.873,估计标准误差(SE)分别为1.136、1.160和1.059。基于红边双峰特征分析,构建新型红边双峰特征参数,其中,红边左偏峰面积LSDr_REPLE对叶片氮积累量方程拟合取得很好效果,决定系数和估计标准误差分别为0.869和1.080。经不同年际独立数据的检验表明,以GM2、SR705和FD742为变量,模型预测平均相对误差(RE)分别为17.6%、17.0%和14.9%,而红边左偏峰面积LSDr_REPLE模型预测误差控制得更好,平均相对误差RE为14.5%。以上表明,红边参数GM2、SR705和FD742可以对小麦叶片氮素状况进行有效监测,而红边左偏峰面积LSDr_REPLE模型预测更为准确可靠。  相似文献   

6.
不同生长期柑橘叶片磷含量的高光谱预测模型   总被引:2,自引:2,他引:2  
针对传统柑橘叶片磷含量检测耗时费力、操作繁琐且损伤叶片等弊端,该研究引入高光谱信息探索柑橘叶片磷含量快速无损检测与预测模型,选ASD Field Spec 3光谱仪采集柑橘4个重要生长期的叶片反射光谱,同步采用硫酸-双氧水消煮-钼锑抗比色法测定叶片的磷含量;先用正交试验确定小波去噪的最佳去噪参数组合,再分别选拉普拉斯特征映射(laplacian eigenmaps,LE)、局部线性嵌入(locally-linear embedding,LLE)、局部切空间对齐(local tangent space alignment,LTSA)、等距映射(isometric mapping,Isomap)和最大方差展开(maximum variance unfolding,MVU)5种典型的流形学习算法对去噪后的光谱数据进行降维和特征提取,进而建立基于支持向量机回归(support vector regression,SVR)的柑橘叶片磷含量预测模型。结果表明,基于一阶导数谱的Isomap-SVR建模结果最佳,全生长期校正集和验证集模型决定系数分别为0.9430和0.8949。试验表明,5种流形学习算法皆适用于对柑橘叶片磷含量的预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。  相似文献   

7.
基于多种光谱仪的水稻前期植株氮积累量监测   总被引:1,自引:5,他引:1       下载免费PDF全文
为了明确水稻穗肥施用前地上部植株氮积累量与各光谱仪冠层光谱参数的定量关系,进而为水稻精确追氮提供决策依据。基于不同品种和不同施氮水平的7个水稻田间试验,于分蘖期和拔节期利用ASD Fieldspec FR2500高光谱仪、Cropscan MSR-16多光谱仪和Greenseeker RT100主动光谱仪同时采集冠层光谱反射率,并同步取样测定地上部植株氮积累量,研究基于不同光谱仪构建的植被指数与植株氮积累量之间的关系。结果表明,部分植被指数与水稻地上部植株氮积累量关系密切,基于3种光谱仪构建的水稻地上部植株氮积累量监测模型的稳定性和适用性有较大差异。对于ASD高光谱仪,虽然基于差值植被指数(760,740)能较好估测植株氮积累量,拟合模型决定系数R2为0.79,但模型检验效果较差,其R2和均方根误差分别为0.15和2.11 g/m2;对于Cropscan多光谱仪,差值植被指数(760,710)能较好反演植株氮积累量,拟合模型的R2为0.94,模型检验的R2和均方根误差分别为0.94和0.76 g/m2;Greenseeker主动光谱仪的归一化植被指数(770,660)对地上部植株氮积累量的反演效果最好,拟合模型的R2为0.97,模型检验的R2和均方根误差分别为0.97和0.62 g/m2。研究结果可为水稻前期植株氮积累量监测过程中的光谱仪选择提供参考,为水稻精确追氮管理提供技术支撑。  相似文献   

8.
基于光谱特征分析的苹果树叶片营养素预测模型构建   总被引:2,自引:3,他引:2  
该文旨在利用光谱分析技术建立高精度苹果叶片营养素预测模型,为苹果树的精细管理提供技术支持。在苹果树年度生长周期的坐果期、生理落果期和果实成熟期等重要物候期,采集了180个果树叶片样本并测量了果树叶片在可见光和近红外波段的反射光谱,同时在实验室采用化学方法获取了果树叶片的氮素以及叶绿素含量。对于聚类后样本,分别分析了果树叶片反射光谱以及经小波滤波后的反射光谱与叶绿素以及氮素之间的相关关系,而后利用偏最小二乘和支持向量机(SVM,support vector machine)方法分别建立了果树叶片叶绿素和氮素含量的回归模型。研究发现,随着生长阶段的推进,在可见光处的反射率逐渐升高,在近红外处的反射率逐渐降低,且基于小波滤波反射光谱的营养素SVM回归模型精度最高:建立的叶绿素回归模型,其测定系数R2达到0.9920,均方根误差 RMSE为0.0039,验证精度R2达到0.9036,RMSE为0.1979;建立的氮素回归模型,其测定R2和验证R2也达到0.74以上,模型的回归RMSE为0.0554,验证RMSE为0.1215。结果表明,采用支持向量机回归模型可以精确估计果树叶片叶绿素含量,对氮素含量的估计精度也达到了实用化水平。  相似文献   

9.
以“红颜”草莓(Fragaria×ananassa Duch“Benihope”)为试材,于2021年9−11月在人工气候室进行苗期(9~12片真叶,叶长≥5cm)动态高温环境控制实验,日最高温度以32℃为起点,设置日最高气温/日最低气温分别为32℃/22℃、35℃/25℃、38℃/28℃和41℃/31℃共4个水平,持续时间分别为2d、5d、8d和11d,以28℃/18℃为对照(CK)。试验期间空气相对湿度60%~70%,光周期12h/12h(6:00−18:00),光照强度800μmolm−2s−1。测定不同处理下叶片叶绿素含量及高光谱反射率,对原始光谱进行变换,从而细化光谱特征信息。在相关分析的基础上,建立原始和一阶敏感波段植被指数,进而筛选出表征叶绿素含量的光谱特征参数,以期构建叶绿素含量最佳估算模型。结果表明:(1)随着温度的升高和高温持续时间的延长,草莓叶片叶绿素a、叶绿素b和总叶绿素(a+b)含量呈下降趋势。(2)草莓叶片原始光谱在可见光区域均存在绿峰和红谷,除绿峰和红谷外各处理间差异不明显,高温条件下的近红外区域反射率与CK相比出现不同程度的上升。与原始光谱相比,一阶导数光谱曲线震荡更剧烈,且能够显著突出红边参数特征,各处理的红边位置λr稳定在716nm,红边幅值Dr与红边面积Sr差异显著;而在连续统去除光谱中各处理的绿峰(550nm附近)和红谷(675nm附近)被完全突显出来。(3)在光谱反射率与叶绿素含量相关性分析的基础上,选取原始光谱与一阶导数光谱在可见光和近红外波段相关性最强的R747、R800和R'716、R'906为敏感波段组合,构建植被指数。(4)PVI、MSAVI、TSAVI、TSAVI'、DVI'、MSAVI'、PVI'、SAVI'、Dr和Sr指数与叶绿素含量相关性达极显著水平,可作为表征设施草莓叶片叶绿素含量对苗期高温胁迫响应的高光谱特征参数。其中以TSAVI、DVI'和PVI'植被指数建立的逐步回归模型为叶绿素含量最佳估算模型,其决定系数(R2)为0.843,均方根误差(RMSE)为0.379,相对误差(RE)为12.65%。  相似文献   

10.
为实现玉米叶片水分含量快速检测,利用近红外光谱仪在300~1 700 nm采用透射法对玉米叶片水分含量进行快速检测。试验利用烘干法对叶片水分梯度进行控制,并测量玉米叶片的透射光谱曲线和含水率。对透射光谱数据采用Savitzky-Golay方法进行平滑预处理,滤除光谱波动噪声干扰。分析了叶片透射光谱与含水率之间的相关关系,通过相关性分析提取敏感波长800、932、1 423 nm;利用主成分分析法提取敏感波长478、748、1058和1 323 nm。综合二者敏感波长最终筛选出水分敏感波长800、1 323、1 058和1 423 nm。利用这4个波长的组合得到比值植被指数、差值植被指数和归一化植被指数等12种植被指数,选取了最优差值植被指数DVI(1423、800)与透射率T1 323和T1 058建立了玉米叶片含水率多元线性回归诊断模型,建模集决定系数Rc2=0.968 8,验证集决定系数Rv2=0.951 9,预测结果方根误差为0.061。结果表明,利用透射光谱技术检测的玉米叶片水分含量具有较高的精度,可为植物叶片水分快速检测仪器开发提供指导。  相似文献   

11.
水稻冠层的叶面积是分析水稻生长状况的重要参数,传统叶面积统计方法效率较低且误差较大,难以对植株冠层不同高度层的叶面积进行测量。针对传统水稻冠层叶面积统计方法的薄弱点,该文提出一种基于虚拟模型的水稻冠层叶面积计算方法。该方法首先通过田间试验获取的水稻形态参数,建立虚拟水稻模型,然后基于该模型计算植株整体叶面积以及两株水稻在一定株距下不同高度层内叶片面积的大小,从而为水稻种植管理措施的优化提供参考。该文算法与长宽校正法相比,在整株叶面积统计结果上,二者相差在5%左右;每层叶片面积实际测定和仿真结果的比较,两者误差在10%之内。该方法对于水稻冠层叶片面积统计具有一定的实际意义。  相似文献   

12.
基于高光谱的冬油菜叶片磷含量诊断模型   总被引:3,自引:2,他引:3  
为快捷、无损和精准表征冬油菜磷素营养与冠层光谱间的定量关系,该文以连续3a田间试验为基础,探究叶片磷含量的敏感波段范围及光谱变换方式,明确基于高光谱快速诊断的叶片磷含量有效波段,降低光谱分析维度,提高磷素诊断时效性。以2013-2016年田间试验为基础,测定不同生育期油菜叶片磷含量和冠层光谱反射率。此后,对原初光谱(raw hyperspectral reflectance,R)分别进行倒数之对数(inverse-log reflectance,log(1/R))、连续统去除(continuum removal,CR)和一阶微分(first derivative reflectance,FDR)光谱变换,采用Pearson相关分析确定叶片磷含量的敏感波段区域。在此基础上,利用偏最小二乘回归(partial least square,PLS)构建最优预测模型并筛选有效波段。结果表明,油菜叶片磷含量的敏感波段范围为730~1300 nm的近红外区域;基于敏感波段的FDR-PLS模型预测效果显著优于其他光谱变换方式,建模集和验证集决定系数(coefficient of determination,R2)分别为0.822和0.769,均方根误差(root mean square error,RMSE)分别为0.039%和0.048%,相对分析误差(relative percent deviation,RPD)为2.091。根据各波段变量重要性投影(variable importance in projection,VIP)值大小,确定油菜叶片磷含量有效波段分别为753、826、878、995、1 187和1 272 nm。此后,再次构建基于有效波段的油菜叶片磷含量估算模型,R2和RMSE分别为0.678和0.064%,预测精度较为理想。研究结果为无损和精确评估冬油菜磷素营养提供了新的研究思路。  相似文献   

13.
为了充分挖掘高光谱图像的光谱信息和图像信息,实现大米中蛋白质含量的无损检测,该文提出一种堆叠自动编码器(stackedauto-encoder,SAE)提取高光谱图像深度特征的方法,在高温(45℃)高湿(95%相对湿度)条件下对市售大米进行放置处理,以6组不同放置时间(0,24,48,72,96和120h)共420个大米样本(每组70个)为对象,利用可见光/近红外高光谱成像仪采集高光谱图像(400~1 000 nm,共478个波段),采用阈值分割法获取样本高光谱图像掩膜,分别提取掩膜后高光谱图像感兴趣区域(region of interest,ROI)的平均光谱信息和图像信息。应用多项式平滑(savitzky-golay,SG)对获取的光谱曲线进行预处理,利用SAE提取光谱深度特征,采用支持向量机回归(support vector regression,SVR)建立预测模型,结果表明训练集决定系数RC2、训练集均方根误差RMSEC、预测集决定系数RP2和预测集均方根误差RMSEP分别为0.976 2、0.068 6 g/(100 g)、0.939 2和0.115 3 g/(100 g)。将图像尺寸统一为28像素?28像素的灰度图并扁平化处理,利用SAE提取图像深度特征,结果表明RC2、RMSEC、RP2和RMSEP分别为0.915 4、0.051 0 g/(100 g)、0.821 0和0.111 8 g/(100 g)。进一步融合光谱信息和图像信息,结果表明RC2、RMSEC、RP2和RMSEP分别为0.971 0、0.077 2 g/(100 g)、0.964 4和0.085 1 g/(100 g),相较于光谱信息,RP2提升幅度2.68%;相较于图像信息,RP2提升幅度17.47%。研究表明,充分挖掘大米样本高光谱图像中的光谱信息和图像信息并进行融合,利用SAE提取光谱-图像融合深度特征,可有效提高模型的预测精度,为大米蛋白质含量无损检测提供了理论依据,具有良好的应用前景。  相似文献   

14.
为探索作物生长监测诊断仪(Crop Growth Monitoring and Diagnosis Apparatus,CGMD)在不同株型双季稻长势指标监测应用的准确性和适用性,该研究开展了不同株型品种和施氮量的田间试验,采用CGMD获取冠层差值植被指数(Differential Vegetation Index,DVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和比值植被指数(RatioVegetationIndex,RVI),并同步采用高光谱仪(AnalyticalSpectralDevices,ASD)获取冠层光谱反射率,构建DVI、NDVI和RVI;通过比较2种光谱仪获取的植被指数变化特征及相互定量关系,评价CGMD的监测精度,建立基于CGMD的不同株型双季稻叶面积指数(Leaf Area Index,LAI)监测模型,并用独立数据对模型进行检验。结果表明:不同株型品种的LAI、DVI、NDVI和RVI随施氮量增加而增大,随生育进程推进呈"低—高—低"的变化趋势;基于CGMD与ASD的DVI、NDVI和RVI间的决定系数(Determination Coefficient,R2)分别为0.959~0.968、0.961~0.966和0.957~0.959,表明CGMD具有较高监测精度,可替代价格昂贵的ASD获取DVI、NDVI和RVI。基于CGMD植被指数的单生育期LAI监测模型的预测效果优于全生育期,基于CGMD植被指数的松散型品种LAI监测模型的预测效果优于紧凑型品种;基于DVICGMD的线性方程可较好地预测LAI,模型R2为0.857~0.903,模型检验的相关系数(Correlation Coefficient,r)、均方根误差(Root Mean Square Error,RMSE)和相对均方根误差(Relative Root Mean Square Error,RRMSE)分别为0.950~0.984、0.18~0.43和3.95%~9.40%;基于NDVICGMD的指数方程可较好地预测LAI,模型R2为0.831~0.884,模型检验的r、RMSE和RRMSE分别为0.906~0.967、0.24~0.38和5.73%~9.16%;基于RVICGMD的幂函数方程可较好地预测LAI,模型R2为0.830~0.881,模型检验的r、RMSE和RRMSE分别为0.905~0.954、0.25~0.56和7.37%~9.99%。与传统人工取样测定LAI法相比,利用CGMD可实时无损监测双季稻LAI动态变化,可替代SunScan植物冠层分析仪获取双季稻LAI,在双季稻生产中具有推广应用价值。  相似文献   

15.
基于SVR算法的小麦冠层叶绿素含量高光谱反演   总被引:7,自引:14,他引:7  
为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。  相似文献   

16.
基于高光谱成像的寒地水稻叶瘟病与缺氮识别   总被引:2,自引:2,他引:2  
为进行水稻叶瘟病与养分缺失的区分、实现叶瘟病及时、准确的诊断,以大田试验为基础,利用高光谱成像仪获取2个品种的健康、缺氮、轻度感病和重度感病共4类水稻叶片的反射率光谱,对其光谱特性进行分析,并采用多种预处理方法、分别结合偏最小二乘判别分析(partial least squares-discriminate analysis,PLS-DA)和主成分加支持向量机(principle component analysis-support vector machine,PCA-SVM)方法构建水稻叶瘟病识别模型。试验结果显示6个判别模型都获得了较高的识别准确率,经标准正态变量(standard normal variate,SNV)变换预处理的PLS-DA模型获得了最佳的识别结果,预测准确率达100%,经多元散射校正(multiplicative scatter correction,MSC)预处理的PCA-SVM模型的预测准确率也达到97.5%。本研究为水稻叶瘟病的判别和分级提供了新方法,也为稻瘟病大范围遥感监测提供了基础。  相似文献   

17.
基于实测高光谱指数与HSI影像指数的土壤含水量监测   总被引:1,自引:0,他引:1  
为了探索土壤含水量与高光谱植被指数的内在关系,实现土壤含水量的快速且准确监测,以ASD光谱仪测定的研究区植被高光谱数据和环境卫星HSI高光谱影像数据为基础数据计算得到26种光谱植被指数,通过灰度关联分析法(grey relational analysis)对不同深度(0~10,10~30,30~50 cm)土壤含水量与实测光谱指数和影像光谱指数进行分析和筛选,确定了与土壤含水量相关性较高的5个光谱植被指数,采用多元线性回归法(multiple linear regression)分别构建了基于实测数据和影像数据的高光谱植被指数土壤含水量反演模型,并用实测高光谱植被指数模型对HSI影像植被指数模型进行校正。结果表明:2种土壤含水量反演模型对0~10 cm层的土壤含水量均有较高的拟合度,判定系数(R2)均高于0.589,并具有较好的稳定性;实测高光谱植被指数模型精度优于HSI影像植被指数模型,判定系数(R2)分别为0.668和0.589;经过校正的HSI影像土壤含水量反演模型精度有了较大的提高,判定系数(R2)从0.589提升到0.711,均方根误差(RMSE)为0.0014。该研究方法进行土壤含水量监测是可行的,为进一步提高土壤含水量定量遥感监测提供一定参考。  相似文献   

18.
为探索不同生理物候期苹果树叶片氮素含量的快速检测方法。分别在果树坐果期、生理落果期和果实成熟期,使用光谱仪测量了果树叶片在可见光和近红外区域的反射光谱,同时在实验室测定了果树叶片的全氮含量。研究首先将实验所得的光谱反射率与氮素含量以果树为单位进行聚类,利用小波包分析技术对每棵果树的光谱信息进行分解,提取出的低频信号和去除高频噪音后的信号分别组成了低频全光谱和去噪全光谱。针对这两个全光谱均实施了主成分分析,利用提取主成分分别建立了果树不同生长阶段的氮素含量多元线性回归模型。对比基于归一化植被指数(NDVI)建立的氮素含量估测模型发现,利用全光谱信息建立的氮素含量预测模型精度更高;在坐果期和果实成熟期,使用去噪全光谱提取的主成分建立的氮素预测模型最优;而在生理落果期,使用低频全光谱提取的主成分建立的模型最优。结果表明,利用小波包分析技术能够有效地提高苹果果树叶片氮素含量的光谱预测能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号