共查询到18条相似文献,搜索用时 62 毫秒
1.
基于机器视觉的自然环境中猕猴桃识别与特征提取 总被引:10,自引:0,他引:10
研究了综合应用果实颜色和形状特征识别自然环境中猕猴桃果实及特征提取的方法.通过对比不同颜色空间,选用R-G色差分量;再采用基于误分割像素的分割评价方法来确定颜色特征nR-G中最佳分割系数n,最终选取0.9R-G颜色特征.利用0tsu法对其进行阈值分割,形态学运算去除掉残余噪声,实现了目标果实区域和背景区域的分割.然后利用Canny算子提取边界,最后对边界图像进行椭圆形Hough变换,逐个识别出目标果实,并提取出果实的形心坐标、长轴端点坐标和长短轴长度等特征信息.对49幅包含110个果实图像进行识别试验,试验结果表明:相互分离果实的识别率为96.9%,邻接果实识别率为92.0%,被枝叶部分遮挡果实识别率为86.6%,重叠的果实识别率为81.6%. 相似文献
2.
基于机器视觉的苹果识别和形状特征提取 总被引:14,自引:1,他引:14
提出了利用色差R-G和色差比(R-G)/(G-B)相结合的苹果识别方法.在顺光、逆光等不同情况下对拍摄的苹果图像进行了识别,并对识别后的图像进行消除噪声、区域填充等预处理,获得苹果的轮廓图像.针对轮廓图像,采用遗传算法进行形状特征提取.采取多次运行遗传算法,并依次转换目标轮廓点为背景点的方法,处理果实图像邻接、重叠问题.实验结果表明:苹果识别方法在一定程度上消除了阴影、逆光、土壤等影响,识别率达97%.基于遗传算法的形状特征提取方法,可对邻接、重叠图像进行有效分割,快速、准确地实现苹果图像圆心坐标和半径的提取. 相似文献
3.
张黎明 《农业装备与车辆工程》2019,(1):102-104
针对自然灾害频繁发生,而目前我们对于自然灾害的预防措施又相对比较落后的现状,提出了通过物联网与数字图像处理技术的结合来检测河道中河水信息的实时变化,预防洪水灾害发生,最终达到保护人类生命财产的目的。 相似文献
4.
通过对植物叶特征的分析,可以确定植物的种类和生长状态,对于植物研究、指导生产等具有重要意义.传统的叶特征提取方法都是通过人的手工操作完成的,效率较低,而当前可以借助于图像处理技术对叶特征进行自动提取.为此,对基于图像处理的叶特征提取研究现状进行了综述,并对其做了展望. 相似文献
5.
对奶牛的图像进行高精度边缘特征提取,为奶牛的个体识别或者奶牛的线性评定提供重要的评判依据,可以更好的实现奶牛保险业的自动化管理。采用基于FCN和VGG改进的边缘检测HED(Holistically-Nested Edge Detection)网络,在caffe框架下通过MATLAB实现对奶牛原始图像的边缘特征提取。将HED网络检测出的边缘特征图像与传统优化过的Canny算子作比较,无论从直观的边缘图像对比,还是数据的对比,HED网络的效果远远优于传统算法。用500张奶牛图片在BSDS500上进行性能评估,其中200张为训练图片,200张为测试图片,100张为检验图片。HED网络的奶牛边缘检测效果比Canny算法提高18.6%,大大提高奶牛边缘图像的处理精度、去噪声能力。将HED网络检测出的奶牛边缘图像为奶牛的识别提供重要依据,实现奶牛保险业高效的自动化管理。 相似文献
6.
以水稻植株模型的重建为研究对象,为尽可能地保留植株原始形态特征,研究过程中充分运用图像处理技术对水稻植株叶片图像进行了特征信息提取,并应用于叶片器官模型重建;同时,结合L-系统建模方法在稻穗器官模型重建的基础上,将图像处理技术与L-系统建模机制相结合,较为形象、逼真地实现了对水稻植物模型的虚拟重建。实验仿真结果表明,该方法能够较好地保存植株原始形态特征,对相关领域研究具有一定的参考价值。 相似文献
7.
针对实际番茄特征提取环境复杂情况的问题,提出了针对不同环境应用不同颜色模型来进行阈值分割的方法。通过应用改进的n R-G、YUV两种颜色模型对不同实验环境采集的图像进行阈值分割,并结合canny边缘提取算法、fitzgibbon椭圆拟合算法提取得出番茄像素坐标与像素尺寸,以此完成番茄特征提取。为得出各种颜色模型适用环境等特点,对比各种颜色模型在光线充足果实未被遮挡、光线充足果实部分遮挡和光线较弱果实未被遮挡3种情况下特征提取成功率,并比较3种颜色模型在光线充足果实未被遮挡情况下对采集图像的降噪能力。实验结果表明:n R-G颜色模型适用于采集图像噪声较小的实验环境,对于光线较弱的实验环境该模型表现出较高且稳定的特征提取成功率;YUV颜色模型表现出对含噪图像具有较为稳定的降噪能力,且对光线较强的实验环境表现出较高的特征提取成功率。 相似文献
8.
9.
10.
11.
基于无人机数码影像的马铃薯覆盖度提取方法 总被引:3,自引:0,他引:3
为了利用数码影像快速提取马铃薯覆盖度,首先,利用植被覆盖度提取算法从地面数码影像中获取马铃薯覆盖度实测值;然后,通过植被指数提取法和最大似然监督分类法对无人机数码影像进行处理,分别获取各个研究小区的马铃薯覆盖度;提出利用颜色转换空间HSI(H-A法)从无人机数码影像中快速提取马铃薯覆盖度;最后,对HA法、最大似然监督分类法和植被指数提取法3种方法的计算结果进行精度比较。结果表明,H-A法估测的植被覆盖度的精度最高,均达到0. 91以上,拟合函数拟合度为0. 97;最大似然监督分类法次之,最低精度为0. 75,拟合度为0. 82;植被指数提取法最差,最低精度为0. 74,拟合度为0. 74。 相似文献
12.
13.
14.
基于深度图像的蔬果形状特征提取 总被引:1,自引:0,他引:1
针对蔬果二维投影图像含形状信息量少而影响蔬果分级精度的问题,提出一种基于深度图像的蔬果形状特征描述方法,以番茄形状特征提取为例,对该方法进行了探讨.首先利用彩色图像信息将番茄从背景中分割出;其次通过三维机器视觉测量设备获取番茄的点云数据,并对待检测番茄的点云数据深度进行归一化处理;然后通过关联被分割出的番茄区域信息与深度信息得到了番茄的深度图,并对该深度图进行极坐标采样.通过在笛卡尔直角坐标下对采样结果进行傅里叶变换,获得了基于深度图像的通用傅里叶形状描述子,该描述子不仅能有效地描述番茄在深度和横向上的形状特征,同时还具有平移、旋转和缩放的不变性.将基于深度图的通用傅里叶描述子和基于一般二维投影图像的通用傅里叶描述子先后用于番茄的分级实验中,结果表明前者平均分级精度达到92%,精度高于后者. 相似文献
15.
玉米长势是指玉米生长的状况与趋势,在生长期内实时掌握长势是玉米生产调控的关键,玉米长势可以通过叶面积、叶尖距、叶基角等特征参数来衡量。吉林省是我国主要的玉米种植区域,种植规模多为小地块,如果采用传统人工方式测量玉米长势,需要耗费大量人力、物力,而遥感技术适用于大面积种植,因此采用人工测量与遥感技术都具有明显的局限性。该研究采用数字图像处理技术,利用固定影像采集设备获取不同生长期玉米多尺度影像,首先利用灰度化和增强技术对影像进行前期预处理,然后使用迭代阈值分割算法提取影像中玉米植株区域,通过图像细化技术并结合参照物标定方法获取玉米植株的株高、叶尖距、叶基角和冠层面积等特征参数,最后对获取的特征参数使用回归分析建立玉米长势模型。试验结果证明,提出的方法有效可行,可以作为人工测量和遥感技术必要有益的补充。 相似文献
16.
提出了基于小波变换的农田图像光照不变特征的提取算法。采用Retinex光照模型,对原始农田图像进行剪裁和归一化等预处理,选用Haar小波基多级分解预处理后的图像,从而得到图像的高低频成分;通过阈值法更新小波分解后的高频系数,重构获得多尺度反射模型,以提取光照不变特征;进行了光照不变特征提取和农作物航线获取试验。结果表明,该算法提取的特征图受自然光照的影响很小,且能够极大程度保留场景中的物体特征。同时,农作物航线提取在不同光照条件下均具有较高精度,航线误差在±2°以内,能够满足农机导航的精度要求。在NVIDIA的Jetson TX2硬件平台上,该算法总耗时在300 ms以内,相机前视距离可达20 m,满足农机正常作业的实时性要求。 相似文献
17.
18.
基于卷积层特征可视化的猕猴桃树干特征提取 总被引:2,自引:0,他引:2
为探究卷积层深度对猕猴桃树干图像特征提取的影响,提出了一种分析所提取特征的可视化方法。首先,对所采集建立的数据集进行正负样本分类,将数据集中的树干与输水管交叉区域作为正样本,其余区域作为负样本,输入LeNet、Alexnet、Vgg-16以及定义的3类浅层模型进行训练;然后,通过提取激活映射图、归一化、双三次插值的可视化方法,获取各个分类模型最后一个卷积层的可视化结果,通过可视化试验对比可知,Alexnet和Vgg-16能够准确提取测试集图像中的树干区域特征,而LeNet与3类浅层模型在提取树干的同时将输水管、地垄等区域特征一并提取;最后,以上述6类网络结构作为特征提取层的图像分类和目标检测模型,对开花期和结果期的数据集进行验证,以不同季节数据集特征变化而引起的精度下降幅度作为评判标准,结果显示,图像分类浅层模型精度下降幅度不小于15.90个百分点、Alexnet与Vgg-16分别下降6.94个百分点和2.08个百分点,目标检测浅层模型精度下降幅度不小于49.77个百分点、Alexnet和Vgg-16分别下降22.53个百分点和20.54个百分点。所有浅层模型因所提取特征的改变,精度有更大幅度的下降。该方法从可视化角度解释深层网络与浅层网络对猕猴桃树干目标特征的提取差异,可为研究网络深度和训练样本的调整提供参考。 相似文献