首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
We evaluated the humoral and cellular immune responses in pigs immunized intranasally with crude rhoptry proteins of Toxoplasma gondii plus Quil-A. The experiment used 13 mixed-breed pigs divided into the following three groups: G1 (vaccinated-challenged, n=6), which received the rhoptry vaccine (200(g/dose); G2 (adjuvant-challenged, n=4), which received PBS plus Quil-A; and G3 (unvaccinated-challenged, n=3), which was the control group. The treatments were performed intranasally at days 0, 21, and 42. Three pigs from G1 produced IgG and IgM antibody levels above the cut-off in the ELISA on the challenge day. Partial protection was observed in G1 at the chronic phase of infection when compared with G3. The preventable fractions were 41.6% and 6.5%, in G1 and G2, respectively. The results of this study suggest that rhoptry proteins plus Quil-A stimulated humoral, local, and systemic immune responses, which were able to partially protect the brain from cyst formation.  相似文献   

2.
A vaccine containing crude Toxoplasma gondii rhoptry proteins incorporated in the immunostimulating complexes (ISCOM) adjuvant was tested in pigs for protecting against tissue cyst formation. For this, 38 mixed breed pigs were divided into four groups, G1 (vaccinated challenged, n=10) received two doses (100 microg/dose) of the rhoptry vaccine at days 0 and 21, G2 (vaccinated challenged, n=10) received viable tachyzoites (7 x 10(7)) of the RH strain at day 0, G3 (unvaccinated challenged, n=10) and G4 (unvaccinated unchallenged, n=8). Pigs were challenged with 4 x 10(4) VEG strain oocysts 57 days later. The G1 pigs produced high IgG antibody levels in the indirect enzyme-linked immunosorbent assay (ELISA) after the second dose of rhoptry vaccine, but were not clinically protected against a high dose oocyst challenge. Partial protection was observed in G1 at the chronic phase of infection, when compared with G3. Pigs in group 2 developed high antibody levels and were protected against clinic signs. T. gondii was not detected in two (G1) and three (G2) pigs by mouse bioassay. The results indicate partial protection in pigs vaccinated with a rhoptry vaccine.  相似文献   

3.
Tachyzoites, bradyzoites (in tissue cysts), and sporozoites (in oocysts) are the three infectious stages of Toxoplasma gondii. The prepatent period (time to shedding of oocysts after primary infection) varies with the stage of T. gondii ingested by the cat. The prepatent period (pp) after ingesting bradyzoites is short (3-10 days) while it is long (18 days or longer) after ingesting oocysts or tachyzoites. The conversion of bradyzoites to tachyzoites and tachyzoites to bradyzoites is biologically important in the life cycle of T. gondii and it has been proposed that the pp can be used to study stage conversion. In the present study, infectivity of oocysts and bradyzoites released from tissue cysts of a recent isolate of T. gondii, TgCkAr23, to cats and mice was compared. Ten-fold dilutions of oocysts or bradyzoites were administered orally to cats, and orally and subcutaneously to mice. Of the 29 cats each fed 1-10 million oocysts only one cat shed oocysts and the pp was 23 days; all cats remained asymptomatic. In contrast, all mice administered the same 10-fold dilutions of oocysts either orally or subcutaneously died of toxoplasmosis. The results confirm that infectivity of the oocysts to cats is lower than for mice and that oocysts are non-pathogenic for cats. Of the 41 cats each fed 1-1,000 free bradyzoites, 15 shed oocysts with a short pp of 4-9 days, and all remained asymptomatic. The infectivity of bradyzoites to mice by the oral route was approximately 100 times lower than that by the subcutaneous route. The results confirm the hypothesis that the pp in cats is stage and not dose dependent, and that transmission of T. gondii is most efficient when cats consume tissue cysts (carnivory) or when intermediate hosts consume oocysts (fecal-oral transmission).  相似文献   

4.
This work aimed to evaluate the effects of preventive oral Clindamycin in cats infected with Toxoplasma gondii. Twelve short hair cats were divided into two groups (group 1 and group 2). No titres of T. gondii antibodies were detected in these cats before the experiment. The animals from group 1 were infected with tissue cysts of T. gondii and group 2 were infected and treated with Clindamycin (20 mg/kg/day). The infection was done with almost 40-50 tissue cysts for each cat on day 0. The cats from group 2 were treated with Clindamycin by oral rout for 24 days (from day -3 to day 21). At day 45, the groups 1 and 2 were divided into two subgroups with three animals each. Subgroups 1A and 2A were immunosuppressed with dexamethasone (1 mg/kg/day) for30 days and subgroups 1B and 2B were not immunosuppressed. Faecal exam looking for oocyst shedding was made by 30 days after T. gondii infection, and for 30 days after immunosuppression. All kittens from group 1 shedding oocysts after infection, while animals from group 2 did not shed. After immunosuppression period, all animals from group 1A re-shed oocysts and animals from group 2A remained without shed. However, 2 (66.6%) of the kittens from subgroup 2B shed oocysts 19-20 days after re-challenge. Based on this preliminary study, Clindamycin had a complete inhibitory effect on shedding of oocysts by cats, even under severe immunosuppression, which is a new finding not reported elsewhere.  相似文献   

5.
In horses, natural infection confers long lasting protective immunity characterised by mucosal IgA and humoral IgGa and IgGb responses. In order to investigate the potential of locally administered vaccine to induce a protective IgA response, responses generated by vaccination with an immunostimulating complex (ISCOM)-based vaccine for equine influenza (EQUIP F) containing A/eq/Newmarket/77 (H7N7), A/eq/Borl?nge/91 (H3N8) and A/eq/Kentucky/98 (H3N8) using a systemic prime/mucosal boost strategy were studied. Seven ponies in the vaccine group received EQUIP F vaccine intranasally 6 weeks after an initial intramuscular immunisation. Following intranasal boosting a transient increase in virus-specific IgA was detected in nasal wash secretions. Aerosol challenge with the A/eq/Newmarket/1/93 reference strain 4 weeks after the intranasal booster resulted in clinical signs of infection and viral shedding in seven of seven influenza-naive control animals whereas the seven vaccinated ponies had statistically significantly reduced clinical signs and duration of virus excretion. Furthermore, following this challenge, significantly enhanced levels of virus-specific IgA were detected in the nasal washes from vaccinated ponies compared with the unvaccinated control animals. These data indicate that the intranasal administration of EQUIP F vaccine primes the mucosal system for an enhanced IgA response following exposure to live influenza virus.  相似文献   

6.
Tachyzoites, bradyzoites (in tissue cysts), and sporozoites (in oocysts) are the three infectious stages of Toxoplasma gondii. The prepatent period (time to shedding of oocysts after primary infection) varies with the stage of T. gondii ingested by the cat. The prepatent period (pp) after ingesting bradyzoites is short (3-10 days) while it is long (18 days or longer) after ingesting oocysts or tachyzoites, irrespective of the dose. The conversion of bradyzoites to tachyzoites and tachyzoites to bradyzoites is biologically important in the life cycle of T. gondii. In the present paper, the pp was used to study in vivo conversion of tachyzoites to bradyzoites using two isolates, VEG and TgCkAr23. T. gondii organisms were obtained from the peritoneal exudates (pex) of mice inoculated intraperitoneally (i.p.) with these isolates and administered to cats orally by pouring in the mouth or by a stomach tube. In total, 94 of 151 cats shed oocysts after ingesting pex. The pp after ingesting pex was short (5-10 days) in 50 cats, intermediate (11-17) in 30 cats, and long (18 or higher) in 14 cats. The strain of T. gondii (VEG, TgCKAr23) or the stage (bradyzoite, tachyzoite, and sporozoite) used to initiate infection in mice did not affect the results. In addition, six of eight cats fed mice infected 1-4 days earlier shed oocysts with a short pp; the mice had been inoculated i.p. with bradyzoites of the VEG strain and their whole carcasses were fed to cats 1, 2, 3, or 4 days post-infection. Results indicate that bradyzoites may be formed in the peritoneal cavities of mice inoculated intraperitoneally with T. gondii and some bradyzoites might give rise directly to bradyzoites without converting to tachyzoites.  相似文献   

7.
OBJECTIVE: To estimate the analytic sensitivity of microscopic detection of Toxoplasma gondii oocysts and the environmental loading of T gondii oocysts on the basis of prevalence of shedding by owned and unowned cats. DESIGN: Cross-sectional survey. SAMPLE POPULATION: 326 fecal samples from cats. PROCEDURES: Fecal samples were collected from cat shelters, veterinary clinics, cat-owning households, and outdoor locations and tested via ZnSO(4) fecal flotation. RESULTS: Only 3 (0.9%) samples of feces from 326 cats in the Morro Bay area of California contained T gondii-like oocysts. On the basis of the estimated tonnage of cat feces deposited outdoors in this area, the annual burden in the environment was estimated to be 94 to 4,671 oocysts/m(2) (9 to 434 oocysts/ft(2)). CONCLUSIONS AND CLINICAL RELEVANCE: Despite the low prevalence and short duration of T gondii oocyst shedding by cats detected in the present and former surveys, the sheer numbers of oocysts shed by cats during initial infection could lead to substantial environmental contamination. Veterinarians may wish to make cat owners aware of the potential threats to human and wildlife health posed by cats permitted to defecate outdoors.  相似文献   

8.
The study evaluated the efficiency of diagnostic laboratory methods to detect anti-Toxoplasma gondii antibodies in paired serum and aqueous humour samples from experimentally infected pigs. 18-mixed breed pigs were used during the experiment; these were divided into two groups, G1 (infected group, n=10) and G2 (uninfected group, n=8). Infection was performed with 4 x 10(4) VEG strain oocysts at day 0 by the oral route in G1 animals. All pigs were euthanized at day 60, when retina, aqueous humour, and blood samples were collected. Anti-T. gondii antibody levels were assessed in serum (s) and aqueous humour (ah) by indirect immunofluorescence assay (IFA), modified agglutination test (MAT), m-ELISA (using crude membranes from T. gondii tachyzoites as antigen) and r-ELISA (using rhoptries from T. gondii tachyzoites as antigen). Polymerase chain reactions (PCR) of samples from the retina were performed by using Tox4 and Tox5 primers. Antibody titers of G1 animals ranged from 128 to 1024 and from 16 to 256 in serum and aqueous humour, respectively. There were differences in the correlation coefficients between IFA(s) x IFA (ah) (r=0.62, P=0.05), MAT(s) x MAT (ah) (r=0.97, P<0.0001); however, there was no significant difference between r-ELISA(s) x r-ELISA (ah) (r= 0.14, P=0.7). Antibodies present in serum and aqueous humour recognized similar antigens. Samples of retina were positive by PCR in 30% (3/10) of infected pigs. G2 animals remained without antibody levels and were PCR negative throughout the experiment. These results suggest that the use of a combination of tests and immunoblotting for paired aqueous humour and serum samples could improve the sensitivity and specificity for the diagnosis of ocular toxoplasmosis.  相似文献   

9.
Acquisition of immunity to Hammondia hammondi, a newly recognized coccidian of cats, was studied in 18 specific-pathogen-free cats. One cat was given a single oral inoculation, 11 cats were given 2 oral inoculations, and 1 cat was given 3 oral inoculations of homogenized mouse carcasses containing H hammondi. In all cats, oocyst shedding began 6 to 9 days after the 1st inoculation. Oocyst shedding peaked at 1 to 2 days after the onset of shedding and lasted for 1 to 2 weeks. None of the cats became sick. Of the 11 cats inoculated twice (between 2-51 days after the 1st inoculation), 5 shed oocysts 7 to 14 days after the repeat inoculation; however, fewer oocysts were shed at this time. One cat that was inoculated thrice (14 and 51 days after the 1st inoculation) shed oocysts 14 to 17 days after the 3rd inoculation but not after the 2nd inoculation. Spontaneous oocyst shedding was studied in 9 of these 13 H hammondi-infected cats for 5 months. Two cats spontaneously shed oocysts: One cat (inoculated only once) spontaneously re-shed oocysts 21 to 24, 31 to 33, 49 to 50, and 118 to 120 days after inoculation; The other cat (inoculated twice-the 2nd time, 6 days after the 1st inoculation) re-shed oocysts 38 to 48, 85 to 89, and 133 to 136 days after the 1st inoculation. The course of H hammondi infection was studied in 5 cats given weekly injections of 6-methyl prednisolone acetate for at least 7 weeks, starting 18 days before inoculation in 2 cats, and starting 14, 34, and 45 day after inoculation in 3 cats. The induced hyperadrenocorticism did not affect the prepatent period or induce parasitism of extraintestinal organs. The 3 cats infected for 14, 34, and 45 days, re-shed oocysts after hyperadrenocorticism was induced. It was concluded that immunity to H hammondi infection in cats is less stable than immunity to the related coccidian, Toxoplasma gondii.  相似文献   

10.
Faecal samples of 24,106 cats from Germany and other European countries were examined microscopically in a veterinary laboratory in Germany between October 2004 and November 2006 to estimate the prevalence of animals shedding Toxoplasma gondii or Hammondia hammondi oocysts. Oocysts of 9-15 microm size with a morphology similar to that of H. hammondi and T. gondii were found in 74 samples (0.31%). A total of 54 samples were further characterised to achieve a species diagnosis and to determine the genotype of T. gondii isolates by PCR and PCR-RFLP. From these samples, 48 isolates were obtained: 26 (0.11%) were finally identified as T. gondii and 22 (0.09%) as H. hammondi. T. gondii-positive samples came from Germany, Austria, France and Switzerland while H. hammondi was detected in samples from Germany, Austria and Italy. In two samples (one T. gondii and one H. hammondi), PCR indicated the presence of Hammondia heydorni DNA. No Neospora caninum DNA was detected in any of the feline faecal samples. Twenty-two of the 26 T. gondii isolates could be genotyped. A PCR-RFLP analysis for the SAG2, SAG3, GRA6 and BTUB genes revealed T. gondii genotype II in all cases. Morphologically, H. hammondi oocysts exhibited a statistically significantly smaller Length-Width-Ratio than T. gondii oocysts.  相似文献   

11.
A DNA vaccine against rabies (pGQH) was administrated to cats in order to examine different administration routes. Four groups of three cats each were inoculated with pGQH as follows: group A, intramuscularly (IM), 100 microg; group B, intranasally (IN), 100 microg; group C, intradermally into ear pinnae (ID-EP), 100 microg, and group D, IM, 200 microL of phosphate buffer solution (PBS) alone (control group). Blood was drawn on days 0, 30, 60, 90, 120, 150, and 180. Groups A, B, and C received a booster on day 30. At day 200 all animals were challenged. A passive transfer of cat sera, as well as a viral challenge, was performed in mice. The results displayed that neutralizing antibody titers were higher in cats of group C (ID-EP) showing high early titers (> 2 IU) and the highest titer was on day 120 (> 14 IU). In group B (IN), two out of three cats seroconverted on day 30 (> 0.5 IU), the third cat seroconverted until day 60 (> 0.5 IU). In contrast, the lowest levels of neutralizing antibodies were detected in group A (IM). The control group showed no anti-rabies antibodies. Groups A (IM) and D (control) succumbed after lethal challenge. All animals from the ID-EP group (C) survived, only one individual from the IN (B) group died. Mice that received cat sera from ID-EP, IM, and IN groups survived and were protected (30/30 survivors). Mice groups that received pre-immunization sera from cats were not protected (0/30 survivors). This study demonstrates that pGQH immunization was successful when it was administrated ID-EP, and acceptable through the IN route. The IM route, however, was not effective in cats. For vaccination, the IN route seems attractive due to its accessibility for application, but it seems to activate seroconversion slowly. The best route to promote anti-rabies antibody titers was the ID-EP route. This practical and efficient route should be further studied.  相似文献   

12.
The protozoan parasite Toxoplasma gondii infects almost all warm blooded animal species including humans, and is one of the most prevalent zoonotic parasites worldwide. Post-natal infection in humans is acquired through oral uptake of sporulated T. gondii oocysts or by ingestion of parasite tissue cysts upon consumption of raw or undercooked meat. This study was undertaken to determine the prevalence of oocyst-shedding by cats and to assess the level of infection with T. gondii in meat-producing animals in Switzerland via detection of genomic DNA (gDNA) in muscle samples. In total, 252 cats (44 stray cats, 171 pet cats, 37 cats with gastrointestinal disorders) were analysed coproscopically, and subsequently species-specific identification of T. gondii oocysts was achieved by Polymerase Chain Reaction (PCR). Furthermore, diaphragm samples of 270 domestic pigs (120 adults, 50 finishing, and 100 free-range animals), 150 wild boar, 250 sheep (150 adults and 100 lambs) and 406 cattle (47 calves, 129 heifers, 100 bulls, and 130 adult cows) were investigated by T. gondii-specific real-time PCR. For the first time in Switzerland, PCR-positive samples were subsequently genotyped using nine PCR-restriction fragment length polymorphism (PCR-RFLP) loci (SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) for analysis. Only one of the cats shed T. gondii oocysts, corresponding to a T. gondii prevalence of 0.4% (95% CI: 0.0-2.2%). In meat-producing animals, gDNA prevalence was lowest in wild boar (0.7%; 95% CI: 0.0-3.7%), followed by sheep (2.0%; 95% CI: 0.1-4.6%) and pigs (2.2%; 95% CI: 0.8-4.8%). The highest prevalence was found in cattle (4.7%; 95% CI: 2.8-7.2%), mainly due to the high prevalence of 29.8% in young calves. With regard to housing conditions, conventional fattening pigs and free-range pigs surprisingly exhibited the same prevalence (2.0%; 95% CI: 0.2-7.0%). Genotyping of oocysts shed by the cat showed T. gondii with clonal Type II alleles and the Apico I allele. T. gondii with clonal Type II alleles were also predominantly observed in sheep, while T. gondii with mixed or atypical allele combinations were very rare in sheep. In pigs and cattle however, genotyping of T. gondii was often incomplete. These findings suggested that cattle in Switzerland might be infected with Toxoplasma of the clonal Types I or III, atypical T. gondii or more than one clonal Type.  相似文献   

13.
The prevalence of Toxoplasma gondii in free range chickens is a good indicator of the prevalence of T. gondii oocysts in the environment because chickens feed from the ground. In the present study, prevalence of T. gondii in 121 free range chickens (Gallus domesticus) and 19 ducks (Anas sp.) from a rural area surrounding Giza, Egypt was assessed. Blood, heart, and brain from each animal were examined for T. gondii infection. Antibodies to T. gondii, assayed with the modified agglutination test (MAT), were found in 49 (40.4%) chickens in titers of 1:5 in 11, 1:10 in four, 1:20 in four, 1:40 in eight, 1:80 in 10, and 1:160 or more in 12 chickens. Antibodies were found in three ducks each with a titer of 1:80. Hearts and brains of seropositive (MAT > or = 1:5) chickens and ducks were bioassayed in mice. Additionally, hearts and brains of seronegative (MAT<1:5) animals were bioassayed in T. gondii-free cats. T. gondii was isolated from 19 of 49 seropositive chickens (one with a titer of 1:5, two with a titer of 1:20, one with a titer of 1:40, five with a titer of 1:80, three with a titer of 1:160, and seven with a titer of > or = 1:360). One cat fed tissues pooled from 15 seronegative chickens shed T. gondii oocysts, while two cats fed tissues of 34 seronegative chickens did not shed oocysts. T. gondii was isolated from one of the seropositive ducks by bioassay in mice. The two cats fed tissues from 16 seronegative ducks did not shed oocysts. Genotyping of 20 chicken isolates of T. gondii using the SAG 2 locus indicated that 17 isolates were type III and three were type II. The duck isolate of T. gondii was type III. The mice inoculated with tissue stages of all 21 isolates of T. gondii from chickens and ducks remained asymptomatic, indicating that phenotypically they were not type I because type I strains are lethal for mice. Infections with mixed genotypes were not found.  相似文献   

14.
Four adult cats (two testing positive and two negative for feline leukemia virus FeLV) were fed Toxoplasma gondii tissue cysts collected from the brains of mice. Two control cats (1 FeLV+, 1 FeLV-) were not fed cysts. The cats infected with T. gondii shed thousands of oocysts but remained clinically and physically normal, with hemograms and clinical chemistry values essentially unchanged irrespective of their FeLV status. Infection with FeLV did not increase the duration of oocyst shedding. At necropsy no significant lesions were found. T. gondii antibodies were detected by three serologic tests in the cats fed tissue cysts. The time necessary for an antibody response to T. gondii was not altered by the FeLV infection. Indirect hemagglutination (IHA) was the least reliable of the serologic tests studied; it detected antibodies later in the infection, and titers were less than in the other tests. Latex agglutination (LA) detected antibodies a few days before IHA, but titers were less than in modified direct agglutination (MAT). MAT detected antibodies earliest in the infection and also measured antibodies in aqueous humor and cerebrospinal fluid.  相似文献   

15.
Two groups of feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus-1 (FHV-1) seronegative cats (five cats per group) were administered one of two modified live feline viral rhinotracheitis, calicivirus, and panleukopenia virus (FVRCP) vaccines and the serological responses to each agent were followed over 28 days. While all cats developed detectable FPV and FCV antibody titers; only two cats developed detectable FHV-1 antibody titers using the criteria described by the testing laboratory. For FPV and FHV-1, there were no differences in seroconversion rates between the cats that were administered the intranasal (IN) FVRCP vaccine and the cats that were administered the parenteral FVRCP vaccine on any day post-inoculation. For FCV, the cats that were administered the IN FVRCP vaccine were more likely to seroconvert on days 10 and 14 when compared to cats that were administered the parenteral FVRCP vaccine.  相似文献   

16.
OBJECTIVE: To compare protection against FeLV challenge obtained following administration of 2 doses of an adjuvanted, chemically inactivated, whole FeLV (FeLV-k) vaccine with protection obtained following administration of 1 dose of an FeLV-k vaccine followed by 1 dose of a canarypox virus-vectored recombinant FeLV (rCP-FeLV) vaccine. DESIGN: Prospective study. ANIMALS: Thirty-two 9-week-old domestic shorthair cats. PROCEDURE: Cats received 2 doses of the FeLV-k vaccine SC, 21 days apart (n = 11); 1 dose of the FeLV-k vaccine SC and, 21 days later, 1 dose of the rCP-FeLV vaccine transdermally (11); or 2 doses of physiologic saline (0.9% NaCl) solution (control; 10). Four weeks after the second vaccine dose, all cats were challenged with FeLV by means of oronasal administration. Blood samples were collected at weekly intervals beginning 21 days after challenge, and serum was tested for FeLV antigen. RESULTS: All 10 control cats became persistently infected (ie, FeLV antigen detected in > or = 3 consecutive serum samples) following FeLV challenge, whereas only 1 of 11 cats that received 2 doses of the FeLV-k vaccine and none of the 11 cats that received 1 dose of the FeLV-k vaccine and 1 dose of the rCP-FeLV vaccine did. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that protection against FeLV challenge obtained following SC administration of a single dose of an FeLV-k vaccine followed, 21 days later, by transdermal administration of a single dose of an rCP-FeLV vaccine was similar to that obtained following SC administration of 2 doses of the FeLV-k vaccine 21 days apart.  相似文献   

17.
The records of the Transfusion Medicine Service of the Veterinary Teaching Hospital at The Ohio State University were searched for client-owned cats that received whole blood (WB), packed red blood cells (PRBCs), or fresh frozen plasma (FFP) transfusions between December 1, 1997, and April 1, 2000. Eighty-one cats received 112 units of blood products, consisting of 49 units of WB (administered to 35 cats), 44 units of PRBCs (administered to 34 cats), and 19 units of FFP (administered to 13 cats); 10 cats received more than 1 product each. Anemia was the most common reason for transfusing RBC-containing blood products, requiring 33 units of WB (75%) and 39 units of PRBCs (80%). The 2 most common causes of anemia were blood loss (27%) and renal disease (20%). Hypoalbuminemia (n = 9) and coagulopathies (n = 6), primarily due to liver disease (n = 7), were the 2 most common reasons for cats to receive transfusions of FFP. There were no differences in increase in PCV after administration of either 1 unit of WB or 1 unit of PRBCs (P = .22). Transfusion reactions occurred in 3 cats; 2 reactions were mild febrile events, but a fatal reaction occurred when a type B cat inadvertently received type A blood.  相似文献   

18.
Cats are the most important hosts in the epidemiology of Toxoplasma gondii infections in humans and animals. Serologic and parasitological prevalence of T. gondii were determined in 237 cats from 15 counties in S?o Paulo state, Brazil. Antibodies to T. gondii were found in a 1:25 dilution of serum of 84 (35.4%) out of 237 cats by the modified agglutination test (MAT). Samples of brain, heart, tongue, and limb muscles (total 50 g) of 71 of the seropositive cats were pooled for each cat, digested in pepsin and bioassayed in mice. Faeces (1 g) from the rectum of each cat were examined microscopically for T. gondii-like oocysts and verified by bioassay in mice; T. gondii oocysts were found in the faeces of three (1.3%) of 237 cats. T. gondii was isolated from tissue homogenates of 47 cats. The DNA obtained from these 47 tissue isolates was characterized using the SAG2 locus: 34 (72.4%) isolates were type I, 12 (25.5%) were type III and one (2.1%) was mixed with types I and III. No type II isolates were detected. Most (23/34) of the type I isolates killed all infected mice and 7 of 12 type III isolates did not kill infected mice. Characterization of the SAG2 locus directly from tissue homogenates from 37 of 46 cats was successful. Genotypes obtained from these primary samples were the same as those from the corresponding isolates obtained in mice. Genotyping of the three oocyst isolates revealed that two were type I and one was type III. Molecular and biologic characteristics of T. gondii isolates from animals from Brazil are different from those from other parts of the world.  相似文献   

19.
Copro-diagnostic methods for Toxoplasma gondii infected cats have been traditionally based on the identification of oocysts by light microscopy or by bioassays. The first method is not sensitive and also unable to differentiate between Toxoplasma oocysts from other coccidian parasites in cats, and the second is cumbersome, time consuming and expensive. We have adapted a polymerase chain reaction (PCR) method to detect T. gondii oocyst DNA in fecal samples. Oocysts were successfully disrupted by freeze thawing coupled with mechanical means, and DNA extraction was subsequently accomplished. The test, based on amplifying a 529 bp repeated sequence, proved sensitive for detecting 1-2 oocysts in 200 microg of stool sample. The test specificity was established by showing that DNA from other cat coccidia tested negative. Specificity was reconfirmed by Southern hybridization of the PCR products with a specific probe. Of 122 stool samples from Jerusalem cats surveyed for the presence of Toxoplasma oocysts, 11 were found positive by PCR while none was detected by microscopy.  相似文献   

20.
Within two years and a half, the faeces of 620 cats coming from Brno and the area around the city were subjected to parasitological examination with special regard to the occurrence of the oocysts of Toxoplasma gondii. Sucrose solution at the specific weight of 1,150 was used as flotation medium. Oocysts of Toxoplasma gondii were eliminated by eight cats (1.29%) at the age from 16 days to 1.5 years. Six of the eight cats were younger than seven months. The Toxoplasma gondii oocysts were eliminated by the cats for 1-16 days while exhibiting signs of short-term scours and swelling of lymph nodes. In all cases the oocysts of Toxoplasma gondii were produced in the summer and autumn seasons (June-December). During the patent period, other coccidia (Isospora felis and Isospora rivolta) were also present in the cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号