首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Soil conditions at sampling and the dimensions of the sample are critical factors when soil aggregation is indirectly characterized by determining the distribution of soil fragments. Our objective was to determine the effects of gravimetric soil water content and core sampler diameter (16, 54, and 84 mm) at sampling on the dry‐fragment‐size distribution of two soils (Typic Paleudalf and Typic Hapludalf) under undisturbed Festuca arundinacea L. sod and recently rototilled treatments. The 16‐mm core diameter sampler compressed the rototilled soil, and it was not appropriate for soil aggregation studies. The fragmentation of samples taken with core diameters greater than 54 mm decreased with decreasing soil water content. A greater probability of discriminating between undisturbed and fragmented silt loam or clay loam soils was observed when sampling with a 54‐mm‐diameter probe and when the soil had a mean soil water content of 237g kg?1 or at a potential of ?0.61MPa.  相似文献   

2.
Abstract

Higher rates of nitrification often reported in fine than in coarse textured soils may not be a direct effect of soil texture because in most of the earlier studies, soil water content has been usually expressed as gravimetric, volumetric or soil's water‐holding capacity without consideration of differences in density/ porosity for soils of varying texture. The same water content in texturally different soils could provide very different conditions of soil aeration and associated nitrifying activity. Effects of soil texture on nitrification was studied by incubating three semiarid subtropical soils having sandy loam, loam, and silty clay textures at 35°C for 30 days using water‐filled pore space (WFPS) as the criterion of soil aeration. Upland or aerobic soil conditions, simulated by incubating soil at 60% WFPS, exhibited very fast nitrification of added fertilizer nitrogen (N) and most of the applied 100 mg of ammonium‐nitrogen (NH4+‐N/kg soil) was nitrified within 10 days of incubation in all three soils irrespective of the differences in texture. Under flooded soil conditions (120% WFPS), nitrification was slow and only 84 to 92% of the applied NH4+‐N was nitrified even after 30 days. Nitrification could be described by first‐order kinetics for both the upland and flooded moisture regimes, thus nitrification rate depended upon NH4+ concentration. At similar gravimetric water contents, rates of nitrification differed greatly in soils of varying texture, but when varying water‐holding capacity and bulk density were accounted for using WFPS, all the soils behaved similarly at 60% WFPS. Under impeded aeration (flooded conditions), however, substantial differences were observed in nitrification in soils of varying texture, the largest in fine‐textured Chamror silty clay followed by Habowal loam and the smallest in Tolewal sandy loam soil. These results illustrate the utility of WFPS, compared with soil water content, and its reliability as an indicator of aeration dependent nitrification for soils of varying texture.  相似文献   

3.
Soils under loaded conditions may have different shrinkage behaviour from that of load‐free soils. In this study, we applied two kinds of mechanical stress (σ) on repacked homogeneous soil samples: transient and constant stresses, simulating the traffic load during tillage and the overburden pressure, respectively. Three transient stresses were applied on the soil surface with 150, 400 and 1400 kPa, while the constant stresses ranged from 1.8, 3.8, 5.5, to 7.3 kPa. We hypothesized that the two stresses play different roles in soil shrinkage behaviour as depicted by void ratio (e) and moisture ratio (?), as compared with load‐free soil. Thus, our aim was to build up the relationship between e, ? and σ. For a swelling soil, total pores can be divided into rigid and non‐rigid components according to their swelling and shrinkage capacity relative to soil moisture. The non‐rigid pores compacted by the transient stress can be regained in the subsequent wetting at load‐free conditions, whereas the compacted rigid pores do not recover. The reduction in rigid pores does not alter the soil pore shrinkage capacity. The shrinkage curves of transiently‐loaded soils are therefore parallel to each other with an identical coefficient of linear extensibility (COLE) and the same shrinkage slope, although their structural shrinkage phase narrows with an increase of stress. However, the constant stress compresses non‐rigid pores readily through suppressing their swelling capacity during wetting as well as compacting rigid pores. If the change of rigid pores is negligible, the shrinkage curves of constantly‐loaded soils converge at the zero shrinkage or the dry‐end point with the load‐free soil shrinkage. If the reductions of rigid and non‐rigid pores are both considered, the soil shrinkage combines the part of parallel shrinkage derived from the reduced rigid pores and the intersected shrinkage resulted from the altered non‐rigid pores. On the basis of different shrinkage behaviours resulting from the two mechanical stresses, we propose numerical formulae to illustrate a series of curves for the e?‐σ relationship. The different changes in rigid and non‐rigid pores cause soil water release differently.  相似文献   

4.
Investigation of post‐amendment biochar impact on low clay soil moisture provides agriculture professionals with much needed data. While laboratory testing is available, we propose inexpensive containers, tools and measuring devices to enable agriculture professionals to directly assess biochar impact on gravimetric water content, shrinkage, and release at point of soil rupture. Sandy loam, silty loam and loamy sand soils are amended (10% ) with lignocellulosic (oak) and hemicellulosic (cardboard) biochars in cup, plug and roll experiments. Cups with oak and cardboard biochar addition produced 76.32% and 75.72% H2O retention respectively, compared to 67.75% (67.75 g H2O 100 g−1 H2O) for controls. Cardboard and oak biochar limited diametric shrinkage to 2.95% (1.29 mm) and 3.75% (1.65 mm) respectively; controls shrunk 6.96% (3.06 mm). Oak and cardboard biochar limited depth shrinkage to 2.95% (0.38 mm) and 2.99% (0.38 mm) respectively; control depth shrinkage is 3.64% (0.47 mm). In roll tests, cardboard and oak biochar treatment yielded 28.07% (1.37 g H2O), and 26.69% (1.3 g H2O) moisture at rupture, respectively, compared with 11.98% (0.58 g) for controls. Significant (p ≤ 0.001) differences in moisture retention, shrinkage and available moisture at rupture confirm biochar contributions to improved moisture performance. Physico‐chemical analyses complemented experimental findings. We find study methods suit the needs of agricultural professionals to measure moisture while working with biochar to amend soils.  相似文献   

5.
Among the geophysical tools used in soil science, electrical methods are considered as potentially useful to characterize soil compaction intensity. A laboratory investigation was undertaken on agricultural and forest soils in order to study the impact of compaction on bulk soil electrical resistivity. Samples taken from four different types of loamy soils were compacted at three bulk densities (1.1, 1.3 and 1.6 g cm−3). Bulk soil resistivity was measured at each compacted state for gravimetric water contents ranging from 0.10 to 0.50 g g−1. A specific experimental procedure allowed the control of the water‐filling of the intra‐aggregate pores and the inter‐aggregate pores. Soil resistivity decreased significantly with increase in density and typically for gravimetric water contents less than 0.25 g g−1. The decrease was more pronounced for the drier soils, indicating the strong impact of the surface conductance, especially in agricultural soils. The experimental data were in good agreement with simulated values given by the petro‐physical model of Waxman‐Smits (1968) , at least for water saturation greater than 0.3. The analysis of the petro‐physical parameters derived from the experimental data suggested that: (i) the electrical tortuosity of the loamy agricultural soil was significantly affected by compaction and (ii) the forest soil had a singular microstructure from an electrical point of view and had isolated conductive zones associated with clay embedded in a poorly conductive medium comprised mainly of soil solution and quartz grains. Our results provide the phenomenological basis for assessing, in the field, the relationship between soil electrical resistivity and compaction intensity.  相似文献   

6.
Sorption of phosphorus (P) in complete soil profiles in northern Europe is not adequately documented. I measured the sorption in genetic horizons of four cultivated soils (Inceptisols, Spodosol) in Finland using both field‐moist and air‐dried soil samples, fitted modified Freundlich equations (Q = a × Ib ? q) to the data, and presented the results in quantity/intensity (Q/I) graphs. Least‐squares‐estimates for the parameters of the modified Freundlich equation (a, b, q) were found to be imprecise measures of sorption. Values derived from the fitted equations (the amount of P sorbed at the P concentration of 2 mg litre?1 and P buffering capacity at the same concentration) were more precise. Both were correlated with concentrations of oxalate‐extractable iron and aluminium. In all soils, there was a distinct difference in sorption between the fertilized Ap horizons and the subsurface horizons, which retained P strongly. Most of the sorption capacity was located in the B horizons at depths between 0.3 and 0.7 m. The results demonstrate the effects of soil‐forming processes and human impact on the sorption of P in the soils. Drying the samples prior to the sorption experiments altered the shape of the Q/I graphs. It increased dissolution of P at small P concentrations, sorption at large P concentrations, and the estimates for P buffering capacity. The effects of drying soil samples on the results and the imprecision of the parameters estimated with the modified Freundlich equation should be taken into account when interpreting results of Q/I experiments.  相似文献   

7.
Swell–shrinkage, cracking and stickiness of expansive clayey soils usually lead to their low yield. Improvement of these poor soil physical properties is a key goal for enhancing the crop productivity of expansive clayey soils. This article presents results of a study on the impact of three biochars produced from wheat straw (SB), woodchips (WCB), and wastewater sludge (WSB) on the swell–shrinkage behavior, mechanical strength, and surface cracking of a clayey soil. The soil was treated with biochars at the rate of 0, 20, 40, and 60 g biochar kg?1 soil, respectively; and incubated for 180 d in glasshouse. Application of biochars decreased significantly (p < 0.01) the coefficient of linear extensibility (COLE) of the soil, the effect of SB being most prominent. The tensile strength (TS) of the clayey soil was originally 937 kPa, which decreased to 458 kPa, 495 kPa and 659 kPa for 6% SB‐, WCB‐, and WSB‐amended soils, respectively. Shear strength tests indicated that biochars significantly reduced cohesion (c) and increased internal friction angle (θ). Biochar significantly reduced the formation of soil surface cracks, surface area, and length of the cracks. The surface area density of cracks in the 6% biochar‐amended soils decreased by 14% for SB, 17% for WCB, and 19% for WSB, respectively, compared with control. The results suggest that biochar can be used as a soil amendment for improving the poor physical properties of the clayey soil, particularly in terms of reduction in swell–shrinkage, tensile strength and surface area density of cracking.  相似文献   

8.
The drying process of volcanic ash soils often results in the formation of shrinkage cracks with consequences for their physical properties (i.e., decrease of water retention capacity) and land use management. This study presents the soil water characteristics and shrinkage behaviour (shrinkage phases in terms of void and moisture ratio), the shrinkage potential (COLE index), and the pore shrinkage capacity (PSI) for 5 and 20 cm depth of a Haplic Arenosol (tephric) and two Silandic Andosols under pasture management along a soil gradient from the Andean mountains to the coastal range in southern Chile. The main focus of the presented study is on the effect of soil development in conjunction with the weathering of volcanic ash soils on the shrinkage properties. The water retention and shrinkage curves were continuously determined for undisturbed soil samples (100 cm3) during a drying process under laboratory conditions. In addition, the shrinkage curve data were modelled to distinguish different shrinkage zones. The results suggest that the investigated soil properties vary depending on soil development. The more developed Andosols had higher total porosities (up to 70 cm3 cm?3) than the less developed Arenosol. The shrinkage behaviour of the Haplic Arenosol showed a wide structural shrinkage phase, whereas the Silandic Andosols revealed a more pronounced proportional shrinkage phase, which is related to the pore size distribution. In addition, wide and narrow coarse pores of the Haplic Arenosol and medium and fine pores of the Silandic Andosols determine the shrinkage potential (COLE) and the pore shrinkage capacity, respectively. The finer‐grained and organic matter‐rich Andosols indicate a higher COLE index (> 0.03–0.09) compared to the Arenosol (≤ 0.03). The pore shrinkage index (PSI) of the total pores (TP) varied significantly (P < 0.05) with values of 0.042–0.149 in 5 cm depth and 0.04–0.091 in 20 cm depth of sites 1–3, respectively.In summary, the shrinkage potential and pore shrinkage capacity are positively correlated to the organic carbon content and decrease with increasing dry bulk density. The study points out a higher risk of soil degradation due to irreversible drying processes for the more clayey and allophane containing Andosols than the Arenosol.  相似文献   

9.
Time‐domain reflectometry (TDR) is being used increasingly for measuring the moisture content of porous media. However, successful application for measuring water in soil has been limited to non‐deformable soils, and it would be a valuable extension of the technique if it could be used for soils that shrink on drying. We have recently investigated its application to soils rich in clay and organic matter and peats. Here we propose a method for determining moisture content in deformable soils based on the relation between the dielectric constant, K, and the volumetric moisture content, Θ, measured by TDR. Parallel TDR probes with a length of 15 cm and a spacing of 2 cm were placed horizontally in soil cores with a diameter of 20 cm and height of 10 cm taken from a forest. The soil is very porous with large proportions of both silt and clay. The sample weight and travel time of the electromagnetic wave guided by parallel TDR probes were simultaneously measured as a function of time, from saturation to oven‐dryness during which the core samples shrank considerably. Vertical and horizontal components of shrinkage were also measured to take the air‐exposed region of TDR probe into account in the determination of K. The effect of deformation on volumetric moisture content was formulated for two different expressions, namely actual volumetric moisture content (AVMC) and fictitious (uncorrected) volumetric moisture content (FVMC). The effects of air‐exposure and expressions of volumetric moisture content on the relation between K andΘ were examined by fitting the observations with a third‐order polynomial. Neglecting the travel time in the air‐exposed part or use of the FVMC underestimated the Θ for a given K. The difference was more pronounced between AVMC and FVMC than between two different dielectric constants, i.e. accounting for air‐exposure, Kac, and not accounting for air‐exposure, Kau. When the existing empirical models were compared with the fitted results, most underestimated the relation based on the AVMC. This indicates that published empirical models do not reflect the effect of deformation on the determination of Θ in our forest soil. Correct use of the Θ expression has more impact on determining moisture content of a deformable soil than the accommodation of travel time through the air‐exposed region of TDR probe.  相似文献   

10.
The evolution of clay soil porosity is currently demonstrated via the shrinkage curves in a large water content domain spreading from a shrinkage limit to a liquidity limit. In fact, the parallel between in situ profiles and the shrinkage curves in such a large water content range is difficult to obtain because of the lack of earth pressure in the laboratory tests and in situ limited water contents. The vertical distribution of porosity throughout a clay-rich marsh soil profile was studied in a grassland field with samples taken from the soil surface characterized by water contents near their shrinkage limit down to 2.00 m deep saturated sediments over their liquidity limit. The depth of the plasticity limit isolates a soil in a solid state characterized by a vertical prism-like structure from a plastic to pseudo-liquid state in depth. The porosity was calculated from the measurements of the density of intact samples by double weighing and image analysis of 100 cm2 polished sections. The initial structure of clay soil was maintained by impregnation based on water–acetone–resin exchange. An ultraviolet photo luminescent pigment added to the resin allowed the capture of images from which shrinkage cracks and microporosity of the clay matrix were easily separated. The distribution of porosity between the shrinkage crack mesoporosity and the clay matrix microporosity was evaluated after the mathematical decomposition of the grey level curves characteristic of each level. Vertical evolution of the porosity distribution from the soil surface in a solid state to the plastic and pseudo-liquid sediment in depth was presented on the shrinkage curve of the clay material. The measurements point out how the clay matrix microporosity and mesoporosity of shrinkage cracks are complementary and the role of the scale effect on the shrinkage curve. The analysis of images captured on an optical microscope under polarized and analyzed light and the SEM observation of freeze-dried samples demonstrated the isotropic arrangement of the clay particles in typical “honey-comb” architecture in the in situ plastic-to-liquid saturated domain. Eventually the distribution of porosity through the profile results from the evolution of the initial “honey-comb” microstructure of the sediment induced by the desiccation phenomenon. It is governed by the depth of plasticity limit of the clay material and by the depth of the water table.  相似文献   

11.
Most of the carbon (C) in terrestrial ecosystems is stored in the mineral soil layers. Thus, the response of the mineral soil to potential increases in temperature is crucial for the prediction of the impact of climate change on terrestrial ecosystems. Samples from three mineral soil layers were collected from eight mature forest sites in the European network CARBOEUROFLUX and were incubated at four temperatures (4, 10, 20 and 30°C) for c. 270 days. Carbon mineralization rates were related to soil and site characteristics. Soil water holding capacity, C content, nitrogen (N) content and organic matter all decreased with soil depth at all sites, with significantly larger amounts of organic matter, C and N in the top 0–5 cm of mineral soil than in the deeper layers. The conifer forest soils had significantly lower pH, higher C/N ratios and carbon contents in the top 5 cm than the broadleaf forest soils. Carbon mineralization rates decreased with soil depth and time at all sites but increased with temperature, with the highest rates measured at 30°C for all sites. Between 50 and 70% of the total C respired after 270 days of incubation came from the top 5 cm. The percentage C loss was small in all cases, ranging from 1 to 10%. A two‐compartment model was fitted to all data to derive the labile/active and slow/recalcitrant fractions, as well as their decomposition constants. Although the labile fraction was small in all cases, we found significantly larger amounts of labile C in the broadleaf forest soils than in the conifer forest soils. No statistically significant differences were found in the temperature sensitivity parameter Q10 among sites, soil layers or between conifer and broadleaf soils. The average Q10 for all soils was 2.98 (± 0.10). We found that despite large differences among sites, C mineralization can be successfully predicted as a combined function of site leaf area index, mean annual temperature and content of labile carbon in the soil (R2 = 0.93).  相似文献   

12.
Soil strength and water content are important indices for assessing soil resistance to root growth and soil compaction both of which affect other soil properties. Therefore, simultaneous measurement of soil penetration resistance (PR) and soil water content can aid agricultural land management. We measured PR with a conventional cone penetrometer, followed immediately by determining water content using a modified TDR probe inserted into the penetrometer hole. From the results of a field feasibility test, soil water content was measured satisfactorily and correlated well with data obtained by the gravimetric method, except for those data from near the surface owing to soil disturbance when the cone penetrometer was extracted after the PR measurements. Field results demonstrate that PR and soil water content have three‐dimensional variability, with a markedly different distribution pattern between cultivated and subsoil layers at the field scale. Overall, the variability in the PR and soil water data is similar to that reported in previous studies. We conclude that our method produces results helpful to field management of soil and water because it is based on a simple and easy technique for the simultaneous measurement of soil water content and PR.  相似文献   

13.
Abstract

A simple, rapid, and sensitive liquid Chromatographic (LC) method for the determination of water in soils was developed. In this method, water is extracted from soil with anhydrous methanol and injected into an LC system including a cation‐exchange column in the H form. The eluent is 1.0 mM transcinnamaldehyde in acetonitrile‐methanol (40:60). The detection scheme is based on the effect of water on the equilibrium established when trans‐cinnamaldehyde and methanol react in the H+ column to form cinnamaldehyde dimethylacetal and water. The equilibrium of the reaction is shifted towards the trans‐cinnamaldehyde (absorbs strongly at the detection wavelength, 300 nm) when water is introduced into the column. The extent of the shift and the resulting change in absorbance at 300 nm are proportional to the amount of water present.

Application of the method to a wide range of soils and of clay minerals containing from 0.7 to 25% water showed that the results of the LC method agreed closely with those of the gravimetric method. The LC method is accurate, precise, relatively free from interference, requires a small sample size, and gives a linear calibration graph over approximately three orders of magnitude of water concentrations. A single operator can perform approximately 80 analyses in a normal working day.  相似文献   

14.
In advanced stages of volcanic ash soil formation, when more clay is formed, soil porosity values and soil water retention capacities are large and the soils show pronounced shrinkage on drying. Soil shrinkage is a key issue in volcanic soil environments because it often occurs irreversibly when topsoils dry out after changes from permanent grassland or forest to agriculture. European Andosols have developed in a wide range of climatic conditions, leading to a wide range in intensity of both weathering and organo‐mineral interactions. The question arises as to whether these differences affect their shrinkage properties. We aimed to identify common physically based shrinkage laws which could be derived from soil structure, the analysis of soil constituents, the selected sampling size and the drying procedure. We found that the final volumetric shrinkage of the initially field‐wet (56–86% of total porosity) or capillary‐wet (87–100% of total porosity) undisturbed soil samples was negatively related to initial bulk density and positively related to initial capillary porosity (volumetric soil water content of soil cores after capillary rise). These relationships were linear for the soil clods of 3–8 cm3, with final shrinkage ranging from 21.2 to 52.2%. For soil blocks of 240 cm3 and soil cores of 28.6 cm3 we found polynomial and exponential relationships, respectively, with thresholds separating shrinkage and nearly non‐shrinkage domains, and larger shrinkage values for the soil cores than for the soil blocks. For a given sample size, shrinkage was more pronounced in the most weathered and most porous Andosol horizons, rich in Al‐humus, than in the less weathered and less porous Andosol horizons, poor in Al‐humus. The Bw horizons, being more weathered and more porous, shrank more than the Ah horizons. We showed that the structural approach combining drying kinetics under vacuum, soil water analysis and mercury porosimetry is useful for relating water loss and shrinkage to soil structure and its dynamics. We also found that the more shrinkage that occurred in the Andosol horizon, the more pronounced was its irreversible mechanical change.  相似文献   

15.
Black Mollisols are typically rich in charred organic matter, however, little is known about the zonal distribution of black C (BC) in steppe soils. In this study, we used benzene polycarboxylic acids (BPCA) as specific markers for BC in particle‐size fractions of depth profiles in several zonal soils (Greyzem, Phaeozem, Chernozem, Kastanozem) of the Russian steppe. In addition, liquid‐state 13C‐NMR spectra were obtained on the alkaline‐soluble soil organic matter (SOM). The results showed that both the content and depth distribution of BC varies in the different soil types; the concentration of BC in the bulk top soils being closely related to the aromaticity of the SOM (r2 = 0.98 for the native topsoils, 0.83 for top‐ and subsurface soils). Especially the Chernozems were rich in aromatic SOM, which partly contained more than 17% BC of total C, most of which being allocated in the mineral fractions. Long‐term arable cropping did not reduce the BC contents of the surface soil, though it did promote the enrichment of BC in the silt fractions. The same shift was detected as soil depth increased. We conclude that BC is not fully inert in these soils, but apparently can be preserved in the silt as decomposition of SOM increased, i.e., it accumulates exactly in that fraction, which has been formerly assigned to contain old, aromatic C.  相似文献   

16.
In situ studies on soil shrinkage has been limited so far to highly swelling soils due to the limited precision of the in situ measurements. We present a new experimental set-up for the in situ measurement of the vertical linear shrinkage curve (LSC) of soils that uses electronic linear displacement transducers to measure soil layer thickness variations. We used block kriging, instead of arithmetic averaging as done by former authors, to estimate locally the water content of the soil layers at the same spot where the thickness measurements are done. We tested this in situ LSC measurement method in the borderline case of two weakly swelling soils from Senegal. The precision of the soil layer thickness measurements are better than or equal to ±10 μm. With block kriging, the gravimetric water content of the soil could be estimated with a precision less than ±0.02 kg kg−1, in average, from only 3 samples. The global in situ shrinkage of the two weakly swelling soils ranged from 0.02%–0.36% in relative values, which is two orders of magnitude less than that measured on highly swelling soils. Owing to the precision of the measurements, LSCs of both soils could be drawn. They had a shape similar to that of highly swelling soils, with a structural shrinkage phase followed by an uncompleted basic shrinkage phase. Residual shrinkage was never observed, except for the sandy top layer of the ferrallitic soil.  相似文献   

17.
The adsorption kinetics and adsorption parameters of metolachlor, atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA) and hydroxyatrazine (HA) were investigated in a soil profile in a maize field formed from recent alluvial deposits in a river basin in Greece. We used the batch equilibrium method modified to simulate field conditions as closely as possible for the use and practices related to soil applied pre‐emergence herbicides. Pseudo‐equilibrium times, determined by kinetic studies, were achieved after 16, 16, 24, 24 and 48 hours for metolachlor, DIA, DEA, HA and atrazine, respectively. At pseudo‐equilibrium the percentage of the adsorbed amount increased in the order of DEA (10%) < DIA (14%) < atrazine (27%) < metolachlor (43%) ≪ HA (94%) which indicates that more than 57% of all compounds except for HA are in solution and available for transport to deeper soil layers when conditions similar to those simulated in the laboratory exist in the field. Adsorption isotherms of all compounds and in most of the cases correlated well with the Freundlich model and adsorption coefficients (Kf) decreased with increased soil depth. Principal component and multiple regression analyses confirmed the importance of the soil organic carbon content on the adsorption capacity of soils for all compounds except HA in the plough layers (0–40 cm). In the subsurface soils (40–110 cm) variables such as clay content and pH were more important. For HA, the Kf values determined for the plough and subsurface soil layers were better correlated with clay content and pH. Also in the subsurface soils, the variation in organic carbon content was not correlated with the variation of Kf values. Thus calculated Koc‐f‐values misrepresent the adsorptive capacity of these soils towards the compounds studied.  相似文献   

18.
Variation in soil texture has a profound effect on soil management, especially in texturally complex soils such as the polder soils of Belgium. The conventional point sampling approach requires high sampling intensity to take into account such spatial variation. In this study we investigated the use of two ancillary variables for the detailed mapping of soil texture and subsequent delineation of potential management zones for site‐specific management. In an 11.5 ha arable field in the polder area, the apparent electrical conductivity (ECa) was measured with an EM38DD electromagnetic induction instrument. The geometric mean values of the ECa measured in both vertical and horizontal orientations strongly correlated with the more heterogeneous subsoil clay content (r = 0.83), but the correlation was weaker with the homogenous topsoil clay content (r = 0.40). The gravimetric water content at wilting point (θg(?1.5 MPa)) correlated very well (r = 0.96) with the topsoil clay content. Thus maps of topsoil and subsoil clay contents were obtained from 63 clay analyses supplemented with 117θg(?1.5 MPa) and 4048ECa measurements, respectively, using standardized ordinary cokriging. Three potential management zones were identified based on the spatial variation of both top and subsoil clay contents. The influence of subsoil textural variation on crop behaviour was illustrated by an aerial image, confirming the reliability of the results from the small number of primary samples.  相似文献   

19.
ROTHAMSTED STUDIES OF SOIL STRUCTURE III   总被引:2,自引:0,他引:2  
The response of three pairs of soils having contrasting management behaviour to changes in water content was investigated by measuring moisture characteristics, shrinkage, and pore size distributions by mercury porosimetry. Sample preparation for mercury porosimetry was by direct drying, or water replacement by methanol and liquid CO2 followed by evaporation above the critical temperature. In heavy textured horizons, water release on shrinkage between -0.05 and -15 bar matric potentials occurs when pores of 10–200 nm equivalent plate separation contract. Structure development is dependent on the stability and regeneration of pores in the size range 200 nm-30 μm during cycles of wetting and drying. Soils with little stable porosity in this size range show nearly normal shrinkage and have coarse structural units, whereas soils with stable or regenerating porosity depart more from normal shrinkage and structure in the profile tends towards a finer per unit. The application of mercury porosimetry shows promise for determining possible porosity limitations in soil profiles.  相似文献   

20.
Depending on the top and subsoil textures, semi-arid soils exhibit cohesive and frictional properties that are associated with the relatively high soil strength, bulk density and penetration resistance. The objective of this study was to gain the knowledge of mechanical properties of the compacting chromic luvisols in order to improve the design of tillage tools. Therefore, we applied critical state soil mechanics to study the stress–strain behaviour of the luvisols using triaxial tests under laboratory conditions. Field investigations involved random collection of undisturbed soil samples which were subjected to triaxial testing first by isotropic consolidation and compression and then triaxial shearing. Plots of deviatoric stress against axial strain were made to determine the soil shear strengths at the critical states over different soil water levels and the two soil depths of 0–20 cm for the plough and 20–40 cm for the hard pan layers, respectively. An exponential model used to fit the deviatoric stress–axial strain test data accurately predicted the trends. Soil water significantly influenced the shear strength, cohesion (c′) and internal angle of friction (′) and hence the mechanical behaviour of the luvisols. The regression equations developed showed that c′ and ′ have quadratic relationships with soil water. The very high clay bonding strength in the subsoil (hard pan) layer resulted in high shear strength, bulk density and penetration resistance values for this soil layer. The increase in shear strength with decreasing water content affected the deviatoric stress–axial strain relationships between the upper and lower plastic limits of the sandy soil. Thus, as the soil dried, the soil ceased to behave in the plastic (ductile flow) manner and thus began to break apart and crumble. The crumbling was indicative of brittle failure. The transition stage from an increase to a decrease in c′ and ′ values with soil water occurred in the soil water content range of 6–10%. Knowledge of stress–strain behaviour of compacting soils is of practical significance in the design of appropriate tillage tools for the specific soil type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号