首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to clarify the respiratory responses strategy of Amur sturgeon Acipenser schrenckii exposed to water temperature changes, respiratory parameters of the fish were studied under two temperature regimes: fish acclimated at 13°C for Group I, temperature was increased to 16°C, 19°C, 22°C and 25°C and then returned stepwise to 22°C, 19°C, 16°C and 13°C; and fish acclimated at 25°C for Group II, the water temperature was reduced in steps to 22°C, 19°C, 16°C and 13°C, subsequently, returned to 16°C, 19°C, 22°C and 25°C. The results showed that the respiratory frequency (fR), oxygen consumption rate (VO2) and gill ventilation (VG) of the fish were directly dependent on the acute temperature in both acclimation groups (p < .05). The initial 25°C VO2 in Group II was significantly higher than the initial 13°C VO2 in Group I (p < .05), but was significantly lower than that at 25°C in Group I (p < .05). In Group I, respiratory stroke volume (VS.R) of fish significantly increased or decreased with the acute temperature increases or decreases, respectively (p < .05); oxygen consumption efficiencies (EO2) of fish did not significantly show differences when temperature increased to 25°C from 13°C (p > .05), but the EO2 significantly declined while returning to acclimation temperature (p < .05). In Group II, the VS.R of the fish did not significantly change with acute temperature fluctuations between 25 and 13°C (p > .05), while the EO2 increased with acute temperature increases (p < .05). The Q10 values for fR, VO2, VS.R, VG and EO2 were 1.53–1.72, 1.92–2.06, 1.07–1.60, 1.78–2.44 and 1.11–1.65 at 13–25°C of temperature interval respectively. Amur sturgeon showed partial metabolic compensation to temperature changes. The study results suggest that the ability of Amur sturgeon to regulate metabolism in response to acute temperature changes makes this species good adaptability in the aquaculture rearing.  相似文献   

2.
To investigate the effects of starvation and acclimation temperature on the escape ability of juvenile rose bitterling (Rhodeus ocellatus), we measured the fast-start escape and constant acceleration swimming performance of fish fasted for 0 (control), 1 and 2 weeks and half-lethal periods (6 or 4 weeks) at two temperatures (15 and 25 °C). Fish acclimated at a high temperature exhibited shorter response latency (R), higher maximum linear velocity (V max) and longer escape distance during escape movement (D 120ms) than those at the low temperature. Starvation resulted in a significant decrease in V max and D 120ms at either low or high temperature and a significant increase in R at only the high temperature in the half-lethal period groups (P < 0.05). The relationship between V max (Y, m s?1) and starvation time (X, week) was Y 15 = ?0.062X + 1.568 (r = ?0.665, n = 36, P < 0.001) at low temperature and Y 25 = ?0.091X + 1.755 (r = ?0.391, n = 40, P = 0.013) at high temperature. The relationship between U cat (Y, cm s?1) and starvation time (X, week) was Y 15 = ?1.649X + 55.418 (r = ?0.398, n = 34, P = 0.020) at low temperature and Y 25 = ?4.917X + 62.916 (r = ?0.793, n = 33, P < 0.001) at high temperature. The slopes of equations showed a significant difference between low and high temperature (F 1,63 = 9.688, P = 0.003), which may be due to the different energy substrate utilization when faced with food deprivation at different temperatures.  相似文献   

3.
A variety of parameters associated with breathing and feeding of silver carp were measured in response to declines in dissolved oxygen (DO) levels when the fish were fed microalgae Padorina morum (PM group) and Chlorella ellipsoidea (CE group), respectively, to explore the relationship between breathing and feeding while filtering microalgae particles at different DO levels. The results indicated that (i) respiratory frequency (fR) of the fish in CE group were higher significantly than those in PM group at DO levels of 0.98–7.49 mg/L (< 0.05); respiratory stroke volume (VS.R), gill ventilation (VG) and VG/VO2 the fish in two groups began to increase sharply while DO levels declined to below 4.04 mg/L (< 0.05); oxygen extraction efficiency (EO2) of the fish in two groups increased significantly with decline of DO levels from 7.49 mg/L to 0.98 mg/L (< 0.05); (ii) the infiltration rate (FR) and filtering efficiency (E) of the fish in two groups began to decrease significantly while DO levels declined to below 4.04 mg/L (< 0.05); clearance rate (CR) of fish in PM group was sixfold higher than that in CE group at DO levels of 0.98–7.49 mg/L (< 0.05). In addition, antifiltering response appeared at DO levels of 2.21 mg/L and 0.98 mg/L in both groups. This study indicated that ‘filtration effect’ is dominant when the fish filter algae particles larger than its gill raker gaps, while the ‘food sinking effect’ is dominant when the fish filter algae particles smaller than its gill raker gaps.  相似文献   

4.
We describe a computer-operated recirculating respirometer system (ca. 140 L water) with six respirometer chambers and a reference chamber (L × W × H: 26 cm × 12 cm × 20 cm; volume 6.24 L) that simulates diurnal dissolved oxygen (DO) fluctuations normally occur in aquaculture ponds. A gas-mixing device, “Digamat” proportionately dissolves gaseous nitrogen and oxygen (and if desired, carbon dioxide) in water to achieve DO levels from 1.0 to 40.0 kPa (0.3–14.0 mg L?1) at different temperatures. A series of computer-operated valves sequentially allow water from respirometer chambers to a single oxygen probe to measure DO concentration. Oxygen consumptions of fish as the differences in DO concentrations between respirometer and reference chamber are used to calculate different metabolic rates (standard, routine, and active), and critical (P c) and recovery (P r) oxygen tensions of individually reared unfed and fed fish. An experiment was conducted to evaluate the ability of the system to measure metabolic parameters for individually reared Nile tilapia (Oreochromis niloticus L.) at three temperatures (low: 22.5, optimum: 27.5 and high: 33.5 °C). The fed fish had significantly higher P c and P r values at optimum and high temperatures than unfed fish. At low and high temperatures, both fed and unfed fish had higher P c and P r than at optimum temperature. The standard metabolic rate was significantly higher at higher temperatures (44.9, 51.7, and 77.7 mg O2 kg?0.8 h?1 at 22.5, 27.5, and 33.5 °C, respectively).  相似文献   

5.
This study examined the effects of acclimation temperature (10, 15, 20, or 25 °C) and an acute exposure to various temperatures on the routine metabolism of juvenile (~11 g) shortnose sturgeon (Acipenser brevirostrum). For the acclimation experiment, the minimum, mean, and maximum routine metabolic rates were established for sturgeon at each temperature. Mean routine metabolic rates for 10, 15, 20, and 25 °C were 134, 277, 313, and 309 mg O2 kg?1 h?1, respectively, with significant differences occurring between 10 and 15, 10 and 20, and 10 and 25 °C. For the acute exposure, similar patterns and significant differences were observed. Temperature quotient (Q 10) values indicate that the greatest effect of temperature occurred between 10 and 15 °C for both the acclimation and acute temperature experiments. In addition, the effect of temperature on the metabolic rate of sturgeon was nearly negligible between 15 and 25 °C. These results suggest that juvenile shortnose sturgeon are sensitive to temperature changes at the lower end of the range, and less sensitive in the mid-to-upper temperature range.  相似文献   

6.
The effects of acclimation temperature (15, 20, 25 °C) on routine oxygen consumption and post-exercise maximal oxygen consumption rates (MO2) were measured in juvenile shortnose sturgeon (Acipenser brevirostrum LeSueur, 1818). The routine MO2 of shortnose sturgeon increased significantly from 126.75 mg O2 h?1 kg?1 at 15 °C to 253.13 mg O2 h?1 kg?1 at 25 °C. The temperature coefficient (Q 10) values of the routine metabolic rates ranged between 1.61 and 2.46, with the largest Q 10 values occurring between 15 and 20 °C. The average post-exercise MO2 of all temperature groups increased to a peak value immediately following the exercise, with levels increasing about 2-fold among all temperature groups. The Q 10 values for post-exercise MO2 ranged from 1.21 to 2.12, with the highest difference occurring between 15 and 20 °C. Post-exercise MO2 values of shortnose sturgeon in different temperature groups all decreased exponentially and statistically returned to pre-exercise (resting) levels by 30 min at 15 and 20 °C and by 60 min at 25 °C. The aerobic metabolic scope (post-exercise maximal MO2-routine MO2) increased to a maximum value ~156 mg O2 h?1 kg?1 at intermediate experimental temperatures (i.e., 20 °C) and then decreased as the temperature increased to 25 °C. However, this trend was not significant. The results suggest that juvenile shortnose sturgeon show flexibility in their ability to adapt to various temperature environments and in their responses to exhaustive exercise.  相似文献   

7.
This study evaluated the effect of graded levels of dietary ascorbic acid (AA) (12.47, 20.27, 115.44, 475.50, 737.72, and 850.70 mg kg?1) on growth, hematology, intestinal morphometry, and phagocyte activity of hybrid sorubim Pseudoplatystoma reticulatum × Pseudoplatystoma corruscans. Fish (n = 420, 14.57 ± 2.71 g, 15.11 ± 0.90 cm) were distributed in 30 polyethylene tanks (80 l) (5 replicates per treatment with 14 fish per tank) and fed for 45 days. Dietary treatment did not have a significant effect on growth metrics (P > 0.05). Fish fed 737.72 mg AA kg?1 had a higher villi height (289.80 ± 19.96 μm) (P < 0.05) than fish fed 850.70 mg AA kg?1 (245.4 ± 18.25 μm). Hemoglobin in fish fed 850.70 mg AA kg?1 (5.34 ± 0.96 g dl?1) was higher (P < 0.05) than fish fed 12.47 mg AA kg?1 (3.42 ± 0.55 g dl?1) and 20.27 mg AA kg?1 (3.06 ± 1.26 g dl?1). The erythrocyte number of hybrid sorubim fed 115.40 mg AA kg?1 (1.73 ± 0.27 × 106 μl?1) and 475.50 mg AA kg?1 (1.70 ± 0.28 × 106 μl?1) were higher (P < 0.05) than in those fed diets containing 20.27 mg AA kg?1 (1.11 ± 0.34 × 106 μl?1). There was no significant effect (P > 0.05) of dietary AA on leukocyte and thrombocyte and on phagocyte activity and phagocyte index. Inclusion of AA in feed seems to increase the integrity of the intestinal mucosa and stimulate erythropoiesis in hybrid sorubim catfish.  相似文献   

8.
A 30-day acclimation trial was conducted using Tor putitora to elucidate its thermal tolerance, oxygen consumption, haemato-biochemical variables and selected enzymatic activities at five acclimation temperatures (AT). Juveniles of T. putitora were randomly distributed among five treatment groups (20, 23, 26, 29 and 32 ± 0.5 °C). There was a significant curvilinear increase in critical thermal maxima (CTmax) (y = ?0.0693x 2 + 1.7927x + 34.628, R 2 = 0.996) and lethal thermal maxima (LTmax) (y = ?0.1493x 2 + 2.3407x + 35.092, R 2 = 0.991) with increasing AT. The oxygen consumption rate increased significantly with increasing AT. The Q 10 values were 1.16 between 20 and 23 °C, 3.09 between 23 and 26 °C, 1.31 between 26 and 29 °C and 1.76 between 29 and 32 °C of AT. The acclimation response ratios were ranged between 0.37 and 0.59. Catalase, superoxide dismutase and ATPase activities were increased linearly in liver, gill and kidney, while brain acetylcholine esterase activity decreased linearly with increasing AT. Blood glucose remained unchanged up to AT of 26 °C and increased significantly at AT of 29 and 32 °C. Haemoglobin content was increased linearly with increasing AT. The highest WBC count was observed at 20 °C, and no significant changes found till AT of 26 °C and significantly decreased at 32 °C. Total serum protein and globulin were significantly decreased with increasing AT. Highest values were observed at 20 °C and remained consistent till 26 °C, then decreased significantly. There was no significant change in A/G ratio through the AT 20–29 °C and increased significantly at 32 °C. The increase in CTmax, LTmax and oxygen consumption rate with increasing AT may suggest that the thermal tolerance of T. putitora is dependent on its prior thermal exposure history, and it could adapt to higher AT by altering its haemato-biochemical variables.  相似文献   

9.
Six oxidized fish oil contained diets were formulated to investigate the effect of graded levels of vitamin E (VE) (α-tocopherol acetate: 160, 280, and 400 mg kg?1) associated with either 1.2 or 1.8 mg kg?1 selenium (Se) on growth, body composition, and antioxidant defense mechanism of juvenile largemouth bass. Another control diet containing fresh fish oil with 160 mg kg?1 VE and 1.2 mg kg?1 Se was also prepared. Over a 12-week feeding trial, about 5 % of Micropterus salmoide fed diet OxSe1.2/VE160 showed inflammation and hemorrhage symptoms at the base of dorsal, pectoral, and tail fin. Fish in all treatments survived well (above 90 %). Feed intakes (88.42?89.58 g fish?1) of all treatments were comparable. Growth performances (weight gain and specific growth rate) and feed utilization (feed and protein efficiency ratio) were significantly impaired by dietary oil oxidation, and they did not benefit from neither VE nor Se supplementation. Regardless of dietary VE and Se supplementation, oxidized oil ingestion resulted in markedly decreased hepatosomatic index and intraperitoneal fat ratio. Oxidized oil ingestion also induced markedly lower liver and muscle lipid contents, and these effects could be alleviated by dietary Se supplementation. Dietary oil oxidation stimulated hepatic catalase activities relative to the control, and supplementation of VE abrogated this effect. Hepatic reduced glutathione content in the control was markedly higher than that of treatment OxSe1.2/VE160, without any significant differences comparing with the other oxidized oil receiving groups. Hepatic glutathione peroxidase activity and liver Se concentration reflected dietary Se profile, whereas liver VE level reflected dietary VE profile. Compared with the control, fish fed diet OxSe1.2/VE160 obtained markedly higher serum, liver and muscle malondialdehyde contents, which droppe significantly with increasing either VE or Se supplementation. In conclusion, the overall results in this study suggested that both VE and Se inclusion could protect largemouth bass from the oxidative damage challenged by dietary oil oxidation.  相似文献   

10.
This study evaluated the effects of short-term exposure to sublethal levels of nitrite on oxidative stress parameters and histology of juvenile Brazilian flounder Paralichthys orbignyanus. An assessment of fish recovery was also performed. Fish were exposed to 0.08 (control), 5.72, 10.43, and 15.27 NO2-N mg L?1 for 10 days followed by the same recovery time. Gill, liver, and muscle samples were collected after 1, 5, and 10 days of exposure and after recovery for the measurement of antioxidant capacity against peroxyl radicals (ACAP), glutathione-S-transferase (GST) activity, content of non-protein (NPSH) and protein thiols (PSH), and lipid peroxidation levels by thiobarbituric acid-reactive substances (TBARS) content. Nitrite exposure induced alterations which compromised the overall antioxidant system (reduced ACAP and GST activity) and enhanced oxidative damage in lipids and proteins. Increases in GST activity and NPSH and PSH contents were also demonstrated. The recovery period allowed for resumption of basal levels for all (treatment 5.72 NO2-N mg L?1) or some of the evaluated parameters (other treatments). In conclusion, exposure to nitrite concentrations from 5.72 to 15.27 NO2-N mg L?1 induced oxidative stress and antioxidant responses in juvenile Brazilian flounder. The 10-day recovery period was sufficient for a complete resumption of basal physiological condition of fish exposed to concentrations of up to 5.72 NO2-N mg L?1.  相似文献   

11.
Epinephelus morio is a large carnivorous species of the Caribbean Sea under reproduction in captivity and nutritional physiology. A diet with raw cornstarch (RCS) was compared to a basal diet without starch (basal) to measure plasma glucose, liver glycogen, and intermediary metabolism. Glucose level did not change (p > 0.05) whereas liver glycogen was significantly higher in fish fed the RCS diet (137.2 ± 14.5 mg g?1) than in fish fed the basal diet (87.4 ± 14.5 mg g?1). Oral glucose administration (170 mg glucose per 100 g body weight) yielded a slight change; two peaks of plasma glucose were recorded with basal (5.6 mM L?1) 2 h after oral administration and at 12 h (6.4 mM L?1). After 24 h, with 1.7 mM L?1, fish returned to initial stage (2.4 mM L?1). RCS diet produced the highest level (6.3 mM L?1) 2 h after oral administration; lowest level observed at 24 h after oral administration (1.0 mM L?1). A significant effect was detected with the presence or absence of dietary carbohydrates (CBH) on hepatic fructose 1,6-bisphosphatase and pyruvate kinase activity. Grouper used two strategies to maintain glucose homeostasis: CBH present in the diet oriented towards gluconeogenesis, whereas no dietary CBH enhanced glycolytic route to liberate glucose and increase liver glycogen.  相似文献   

12.
Pterygoplichthys disjunctivus viscera chymotrypsin was purified by fractionation with ammonium sulfate (30–70 % saturation), gel filtration, affinity, and ion exchange chromatography. Chymotrypsin molecular weight was approximately 29 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), shown a single band in zymogram. Electrofocusing study suggested being an anionic enzyme (pI ≈ 3.9), exhibiting maximal activity at pH 9 and 50 °C, using Suc-Ala-Ala-Pro-Phe-p-nitroanilide (SAAPNA) as substrate. Enzyme was effectively inhibited by phenyl methyl sulfonyl fluoride (PMSF) (99 %), and N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) (94 %). Enzyme activity was affected by the following ions in decreasing order: Hg2+, Fe2+, Cu2+, Li1+, Mg2+, K1+, Mn2+, while Ca2+ had no effect. Chymotrypsin activity decreased continuously as NaCl concentration increased (from 0 to 30 %). K m and V max values were 0.72 ± 1.4 mM and 1.15 ± 0.06 μmol/min/mg of protein, respectively (SAAPNA as substrate). Results suggest the enzyme has a potential application where low processing temperatures are needed, such as in fish sauce production.  相似文献   

13.
Influence of nitrite on two fish species, Eurasian perch (Perca fluviatilis L.) and largemouth bass (Micropterus salmoides Lacépède), was assessed in two acute toxicity tests. In the first one, lethal concentrations (48hLC50) of nitrite were estimated at 11 mg l?1 NO2 ? for perch and 882 mg l?1 NO2 ? for bass. In the second test, fishes were exposed for 48 h to concentrations representing ¼ and ½ value of 48hLC50 for each species. This test showed that the higher nitrite concentration in the water the higher methaemoglobin content in the blood, and nitrite levels in the blood plasma were observed in both species. On the other hand, leucocyte count showed opposite trend. Activity of NADH-methaemoglobin reductase was markedly lower in largemouth bass compared to Eurasian perch and was stimulated by nitrite exposure in neither of the species.  相似文献   

14.
The effects of transporting silver catfish (Rhamdia quelen) for 6 h in plastic bags containing 0 (control), 30 or 40 µL/L of essential oil (EO) from Lippia alba leaves were investigated. Prior to transport, the fish in the two experimental groups were sedated with 200 µL/L of EO for 3 min. After transport, dissolved oxygen, carbon dioxide, alkalinity, water hardness, pH, temperature and un-ionized ammonia levels in the transport water did not differ significantly among the groups. However, total ammonia nitrogen levels and net Na+, Cl? and K+ effluxes were significantly lower in the groups transported with EO of L. alba than those in the control group. PvO2, PvCO2 and HCO3 ? were higher after transporting fish in 40 µL/L of EO of L. alba, but there were no significant differences between groups regarding blood pH or hematocrit. Cortisol levels were significantly higher in fish transported in 30 µL/L of EO of L. alba compared to those of the control group. The metabolic parameters (glycogen, lactate, total amino acid, total ammonia and total protein) showed different responses after adding EO to the transport water. In conclusion, while the EO of L. alba is recommended for fish transport in the conditions tested in the present study because it was effective in reducing waterborne total ammonia levels and net ion loss, the higher hepatic oxidative stress in this species with the same EO concentrations reported by a previous study led us to conclude that the 10–20 µL/L concentration range of EO and lack of pre-sedation before transport are more effective.  相似文献   

15.
The goldfish Carassius auratus, a freshwater fish in the family Cyprinidae, was one of the earliest fish to be domesticated for ornamental purposes. A cell line was established from goldfish heart (GH) tissue to create a biological monitoring tool for viral diseases. The GH cell line was optimally maintained at 25 °C in M199 medium supplemented with 10–20% fetal bovine serum. A chromosomal analysis indicated that the cell line remained diploid, with a mean chromosomal count of 100. In viral inoculation assays, significant cytopathic effects (CPEs) were caused by epizootic hematopoietic necrosis virus (EHNV), Andrias davidianus iridovirus (ADIV), and Bohle iridovirus (BIV) infections in the fish cells and the viral titers (average value) of EHNV, ADIV, and BIV in GH cells reached 105.0, 104.5, and 105.0 TCID50/0.1 mL, respectively, within 7 days. However, no CPE was observed in the cells infected with viral hemorrhagic septicemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV), spring viremia of carp virus (SVCV), infectious pancreatic necrosis virus (IPNV), channel catfish virus (CCV), or grass carp reovirus (GCRV). These results suggest that the GH cell line is a valuable tool for studying viral pathogenesis.  相似文献   

16.
Triplicate groups of one hundred Tra catfish (8 g?±?0.2) were fed seven test diets containing increasing levels of AFB1 (0, 50, 100, 250, 500, and 1000 μg AFB1 kg?1). Additionally Mycofix® Secure was added at 1.5% to one diet containing 500 μg AFB1 kg?1. Results showed that Tra catfish are sensitive to AFB1. Reduction in weight gain (P?<?0.05) was observed for fish fed 50 μg AFB1 kg?1 and declined further with increasing levels of AFB1 in the diets. Fish fed diets contaminated with 500 and 1000 μg AFB1 kg?1 showed increased (P?>?0.05) hepatosomatic index (HIS), while an increase in adipose somatic index (ASI) was observed in fish fed 50 μg AFB1 kg?1 and above when compared to the control and Mycofix® diets. After 12 weeks, blood serum analysis revealed higher alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in fish fed the 50, 100, and 250 μg AFB1 kg?1 suggesting occurrence of liver damage. Disease resistance of fish exposed to Edwardsiella ictaluri was also compromised by the presence of AFB1 in the feed and was directly related to the contamination level. Seven days after Edwardsiella ictaluri exposure, survival rates were 50, 41.7, 31.7, and 8.3% for fish fed control, 50, 100, and 250 μg AFB1 kg?1, respectively. This trial shows that AFB1 at a level of 50 μg AFB1 kg?1 and above can affect fish performance and disease resistance. Application of an effective mycotoxin management in the feed seems to be useful to prevent the negative effects of AFB1.  相似文献   

17.
We determined through morphological and rbcL phylogenetic analyses that a previously unidentified, but introduced species of macroalga, which has been easily cultivated in indoor tanks in Japan, is Agardhiella subulata (Solieriaceae). Additionally, the photosynthetic biology of this alga was examined by inducing photosynthetic activity under a variety of water temperatures and photosynthetic active radiation (PAR) to clarify the optimal conditions needed for its efficient cultivation. Photosynthetic activity was evaluated by using both dissolved oxygen (DO) and pulse amplitude modulated-chlorophyll fluorometric (PAM) techniques, and focused on elucidating temperature and PAR levels that would potentially maximize productivity. The DO method revealed that the net photosynthetic rates at 24 °C quickly increased as PAR increased, and approached a P max of 27.8 mg O2 g ww ?1  min?1 (95 % Bayesian credible interval, BCI 23.8–32.1). The maximum gross photosynthetic rate occurred at 26.7 °C (BCI 24.4–28.3 °C). However, PAM experiments indicated that for the maximum quantum yield, the optimal temperature was 23.7 °C (BCI 22.7–24.6) and the maximum relative electron rates occurred when the water temperature was 31.0 °C (BCI 30.6–31.5). This study suggests that the broad tolerance of maximal photosynthetic activity to temperature (22.7–31.5 °C) is one of the main reasons why this alga can be successfully cultivated year-round.  相似文献   

18.
The present study was conducted to demonstrate the dietary myo-inositol requirement and its effects on the growth, proximate composition and blood chemistry of Amur sturgeon (Acipenser schrenckii). Triplicate groups of 30 fish (initial weight 11.90?±?0.12 g) were fed different diets containing graded levels of myo-inositol (28.75, 127.83, 343.83, 565.81, 738.15 and 936.28 mg kg?1) until satiation for 56 days. The fish were weighed after a 24-h fast, and six fish were used for whole body composition analysis. Further, the liver and muscle were sampled from another six fish for lipid analysis. The blood and liver were sampled from the remaining six fish for haematology and fatty acid analysis. The weight gain of fish increased with myo-inositol content, from the 28.75- to 343.83-mg kg?1 myo-inositol treatment groups, and then stabilised. The liver lipid content and hepatosomatic index decreased significantly from 21.91 to 19.14% and from 3.20 to 2.76% with increased dietary myo-inositol supplementation, respectively. The whole body lipid content generally decreased from 6.33 to 5.55%. The content of liver-saturated fatty acids decreased significantly (28.13%) in the 936.28-mg kg?1 treatment group. The content of plasma non-esterified fatty acids increased with the increase in dietary myo-inositol supplementation from 0.77 to 1.17 mmol L?1, whereas the content of triglycerides significantly decreased from 4.62 to 3.28 mmol L?1. In conclusion, the optimum myo-inositol requirement was found to be 336.1 mg kg?1, based on weight gain in a two-slope quadratic broken-line model.  相似文献   

19.
The objective of this study was to assess the effects of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farmed tilapia (Oreochromis niloticus, GIFT). Juvenile GIFT with an average initial weight of 12.54?±?0.45 g (mean?±?SD) were randomly stocked in 16 tanks (80 L) in a recirculation aquaculture system at four densities of 10 (D1), 20 (D2), 30 (D3), and 40 (D4) fish per tank for 56 days, with quadruplicate for each density. There were no significant differences in water temperature among the four treatments (P?>?0.05). D4 had the significantly lowest dissolved oxygen content (5.52 vs 5.69–6.09 mg L?1) (P?>?0.05) and pH (6.63 vs 6.87–7.20) (P?<?0.05). NO2-N and NH4-N concentrations significantly increased with increasing stocking density (P?<?0.05). Weight gain (WG) and specific growth rates (SGR) decreased with increasing stocking density. The lowest WG (617.20 vs 660.45–747.06%), SGR (3.52 vs 3.62–3.81% day?1), and highest feed conversion ratio (1.68 vs 1.53–1.58) were observed in D4. Fish at D4 had significantly lower condition factor (3.11 vs 3.29–3.37%) and survival rate (91.25 vs 97.50%) than those from D1 and D2 (P?<?0.05). With increasing stocking density, serum total cholesterol, triglyceride, and total protein concentrations decreased (P <?0.05) and aspartate aminotransferase and alanine aminotransferase activities increased (P <?0.05). D4 fish had higher moisture content (78.80 vs 76.97%) and lower crude protein content (18.14 vs 19.39%) in muscle than D1 fish (P?<?0.05). Compared to D1 and D2, D3 and D4 had lower muscle hardness (1271.54–1294.07 vs 1465.12–1485.65 g), springiness (0.62–0.65 vs 0.70–0.72), gumminess (857.33–885.32 vs 1058.82–1079.28 g), and chewiness (533.04–577.09 vs 757.53–775.69 g) (P <?0.05). High stocking density resulted in growth inhibition, declines in flesh quality, and disturbance to several serum biochemical parameters.  相似文献   

20.
Stress has a considerable impact on welfare and productivity of fish, and blood glucose level of fish may be a factor modulating stress response. This study evaluated the effect of blood glucose level and handling on acute stress response of grass carp Ctenopharyngodon idella. Fish were intraperitoneally injected with glucose at 0, 0.2, 0.5, and 1.0 mg g?1 body mass (BM) and then were exposed to handling for 5 min. Glucose injection resulted in increase of plasma glucose level and liver glycogen content and decrease of plasma lactate level. Handling resulted in increase of plasma levels of cortisol, glucose, and lactate and plasma lactic dehydrogenase (LDH) activity and decrease of liver glycogen content. At 1 h post-stress, the plasma cortisol level was lower in the stressed fish injected with glucose at 0.5 mg g?1 BM than the stressed fish injected with glucose at 0, 0.2, and 1.0 mg g?1 BM. No significant differences were found in the activities of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) in the liver between the stressed and unstressed fish, regardless of the dose of glucose injection. At 1 h post-stress, the liver glucose-6-phosphatase (G6Pase) activity was higher in the fish without glucose injection than in the fish injected with glucose. This study reveals that blood glucose level can affect stress response of grass carp by modulating cortisol release and glucose homeostasis through glycogen metabolism and gluconeogenesis in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号