首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

To evaluate the carbon budget in soils under different cropping systems, the carbon dioxide (CO2) flux from soils was measured in a total of 11 upland crop fields within a small watershed in central Hokkaido over the no snow cover months for 3 years. The CO2 flux was measured using a closed chamber method at bare plots established in each field to estimate soil organic matter decomposition. Temporal variation in instantaneous soil CO2 fluxes within the sites was mainly controlled by soil temperature and moisture. Annual mean CO2 fluxes and cumulative CO2 emissions had no significant relationship with soil temperature and moisture (P > 0.2). However, there was a significant quadratic relationship between annual mean CO2 flux or cumulative CO2 emission and soil clay plus silt content (%) (R2 = 0.72~0.74, P < 0.0003). According to this relationship, the optimum condition for soil CO2 emission is at a clay plus silt content of 63%. The cumulative CO2 emission during the no snow cover season within each year varied from 1,159 to 7,349 kg C ha?1 at the different sites. The amount of crop residue carbon retained in the soils following a cropping season was not enough to offset the CO2 emission from soil organic matter decomposition at all sites. As a consequence, the calculation of the soil carbon budget (i.e. the difference between the carbon added as crop residues and compost and the carbon lost as CO2 from organic matter decomposition) ranged from –7,349 to –785 kg C ha?1, except for a wheat site where a positive value of 4,901 kg C ha?1 was observed because of a large input of organic carbon with compost. The negative values of the soil carbon budget indicate that these cropping systems were net sources of atmospheric CO2.  相似文献   

2.
Soil water content, θ, is a major factor affecting residue decomposition, but simple formulation of this factor is often lacking. We observed that θ significantly (P < 0.001) affected the residue decomposition constant, k d. When θ varied from 0.09 g g?1 to 0.23 g g?1, k d ranged from 0.009 to 0.013 d?1 and from 0.009 to 0.022 d?1 for residues with carbon to nitrogen ratio (C/N) > 30 and C/N < 25, respectively. A θ factor was formulated in terms of the field capacity θ FC and the air‐dry θ d in the form f w = (θ ? θ d) / (θ FC ? θ d), and this was used to modify the potential k d as θ varied. Coupling f w with a first‐order residue decomposition equation resulted in the prediction of the decomposition of four residue types in the greenhouse (R2 = 0.94; relative root mean square error, RRMSE, = 0.06) and in the field (R2 = 0.93; RRMSE = 0.11).  相似文献   

3.
Continuous half-hourly measurements of soil CO2 efflux made between January and December 2001 in a mature trembling aspen stand located at the southern edge of the boreal forest in Canada were used to investigate the seasonal and diurnal dependence of soil respiration (Rs) on soil temperature (Ts) and water content (θ). Daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 in February to a maximum of 9.2 μmol m−2 s−1 in mid-July. Daily mean Ts at the 2-cm depth was the primary variable accounting for the temporal variation of Rs and no differences between Arrhenius and Q10 response functions were found to describe the seasonal relationship. Rs at 10 °C (Rs10) and the temperature sensitivity of Rs (Q10Rs) calculated at the seasonal time scale were 3.8 μmol m−2 s−1 and 3.8, respectively. Temperature normalization of daily mean Rs (RsN) revealed that θ in the 0–15 cm soil layer was the secondary variable accounting for the temporal variation of Rs during the growing season. Daily RsN showed two distinctive phases with respect to soil water field capacity in the 0–15 cm layer (θfc, 0.30 m3 m−3): (1) RsN was strongly reduced when θ decreased below θfc, which reflected a reduction in microbial decomposition, and (2) RsN slightly decreased when θ increased above θfc, which reflected a restriction of CO2 or O2 transport in the soil profile.Diurnal variations of half-hourly Rs were usually out of phase with Ts at the 2-cm depth, which resulted in strong diurnal hysteresis between the two variables. Daily nighttime Rs10 and Q10Rs parameters calculated from half-hourly nighttime measurements of Rs and Ts at the 2-cm depth (when there was steady cooling of the soil) varied greatly during the growing season and ranged from 6.8 to 1.6 μmol m−2 s−1 and 5.5 to 1.3, respectively. On average, daily nighttime Rs10 (4.5 μmol m−2 s−1) and Q10Rs (2.8) were higher and lower, respectively, than the values obtained from the seasonal relationship. Seasonal variations of these daily parameters were highly correlated with variations of θ in the 0–15 cm soil layer, with a tendency of low Rs10 and Q10Rs values at low θ. Overall, the use of seasonal Rs10 and Q10Rs parameters led to an overestimation of daily ranges of half-hourly RsRs) during drought conditions, which supported findings that the short-term temperature sensitivity of Rs was lower during periods of low θ. The use of daily nighttime Rs10 and Q10Rs parameters greatly helped at simulating ΔRs during these periods but did not improve the estimation of half-hourly Rs throughout the year as it could not account for the diurnal hysteresis effect.  相似文献   

4.
Abstract

The study aimed at quantifying the rates of soil CO2 efflux under the influence of common tillage systems of moldboard plow (PT), chisel plow (CT), rotary tiller (RT), heavy disc harrow (DT), and no-tillage (NT) for 46 days in October and November in a field left fallow after wheat harvest located in southern Turkey. The NT and DT plots produced the lowest soil CO2 effluxes of 0.3 and 0.7 g m?2 h?1, respectively, relative to the other plots (P < 0.001). Following the highest rainfall amount of 87 mm on the tenth day after the tillage, soil CO2 efflux rates of all the plots peaked on the 12th day, with less influence on soil CO2 efflux in the NT plot than in the conventional tillage plots. Soil evaporation in NT (64 mmol m?2 s?1) was significantly lower than in the PT (85 mmol m?2 s?1) and RT (89 mmol m?2 s?1) tillage treatments (P < 0.01). The best multiple-regression model selected explained 46% of variation in soil respiration rates as a function of the tillage treatments, soil temperature, and soil evaporation (P < 0.001). The tillage systems of RT, PT, and CT led, on average, to 0.23, 0.22, and 0.18 g m?2 h?1 more soil CO2 efflux than the baseline of NT, respectively (P≤0.001).  相似文献   

5.
Soil respiration (Rs) is a combination of autotrophic and heterotrophic respiration, but it is often modeled as a single efflux process, influenced by environmental variables similarly across all time scales. Continued progress in understanding sources of variation in soil CO2 efflux will require development of Rs models that incorporate environmental influences at multiple time scales. Coherence analysis, which requires high temporal frequency data on Rs and related environmental variables, permits examination of covariation between Rs and the factors that influence it at varying temporal frequencies, thus isolating the factors important at each time scale. Automated Rs measurements, along with air, soil temperature and moisture were collected at half hour intervals at a temperate forest at Harvard Forest, MA in 2003 and a boreal transition forest at the Howland Forest, ME in 2005. As in other temperate and boreal forests, seasonal variation in Rs was strongly correlated with soil temperature. The organic and mineral layer water contents were significantly related to Rs at synoptic time scales of 2–3 days to weeks, representing the wetting and drying of the soils as weather patterns move across the region. Post-wetting pulses of Rs were correlated with the amount of precipitation and the magnitude of the change from pre-wet-up moisture content to peak moisture content of the organic horizon during the precipitation events. Although soil temperature at 8–10 cm depth and Rs showed strong coherence at a 24-h interval, calculated diel Q10 values for Rs were unreasonably high (6–74) during all months for the evergreen forest and during the growing season for the deciduous forest, suggesting that other factors that covary with soil temperature, such as canopy assimilatory processes, may also influence the diel amplitude of Rs. Lower diel Q10 values were obtained based on soil temperature measured at shallower depths or with air temperature, but the fit was poorer and a lag was needed to improve the fit (peak Rs followed peak air temperature by several hours), suggesting a role for delayed substrate supply from aboveground processes to affect diel patterns of Rs. High frequency automated Rs datasets afford the opportunity to disentangle the temporal scales at which environmental factors, such as seasonal temperature and phenology, synoptic weather events and soil moisture, and diel variation in temperature and photosynthesis, affect soil respiration processes.  相似文献   

6.
研究自然降雨对干化土壤水分恢复的有效性,有利于合理利用降水资源,加强干化土壤水分管理,促进土壤干层得到有效恢复。在陕北米脂试验站设置野外地下大型土柱,通过2014—2019年连续定位监测降雨、土壤含水率状况,分析自然降雨对干化土壤水分恢复的有效性。结果表明:(1)从深层干化土壤水分恢复角度考虑,黄土丘陵半干旱区降雨可以分为3种类型:表层入渗快速蒸发型、浅层入渗缓慢蒸发型和深层入渗补给型。其中深层入渗补给型降雨为有效降雨,该类型雨量>26 mm,能够对深层干化土壤产生有效水分补给。2014—2019年发生深层入渗补给型降雨仅16次,累积雨量791.8 mm,降雨次数、降雨量的有效率分别为4.64%和35.19%。(2)月尺度条件下,降雨量(P月)与逐月入渗深度(Z逐月)、月累积入渗深度(Z累积)均呈二次函数关系变化,Z逐月=-0.0102P月2+3.955P月-6.7335(R^2=0.9639),Z累积=-0.0003P月2-0.1331P月+191.71(R^2=0.9208)。(3)年尺度条件下,2014—2019年雨量分别为187.6,391.6,590.8,337.6,342.4,400.0 mm,降雨逐年引发的入渗深度依次为160,220,400,260,260,120 cm,累积入渗深度依次可达180,220,400,700,1000,1400 cm。研究结果对揭示自然降水恢复干化土壤机理,加强土壤干层人工蓄水保墒技术,合理选择保墒措施,以及促进当地生态环境建设具有积极的推动作用。  相似文献   

7.
Hierarchical Bayesian (HB) methods are useful tools for modeling multifaceted, nonlinear phenomena such as those encountered in ecology, and have been increasingly applied in environmental sciences, e.g., to estimate soil gas flux from different soil textures or sites. We have developed a model of soil carbon dioxide (CO2) flux based on soil temperature (T, 5 cm depth) and water-filled pore space (WFPS, 5 cm depth) using HB theory. The HB model was calibrated using a dataset of CO2 flux measured from bare soils belonging to four texture classes in 14 upland field sites in a watershed in central Hokkaido, Japan, in the nonsnow-cover season from 2003 to 2011. The numerical software HYDRUS-1D was used to simulate daily WFPS, and the estimated values were significantly correlated with the measured WFPS (R2 = 0.68, P < 0.001). Compared to a nonhierarchical Bayesian model (Bayesian pooled model), the CO2 predictions with the HB model more accurately represented texture-specific observations. The simulation–observation fit of the CO2 flux model was R2 = 0.64 (P < 0.001). More than 90% of the observed daily data were within the 95% confidence interval. The HB model exhibited high uncertainty for high CO2 flux values. The HB model calibration revealed differing sensitivity of CO2 flux to T and WFPS in different soil texture classes. CO2 flux increased with an increase in T, and it increased to a lesser degree with a finer texture, possibly because the clay and silt facilitated soil aggregation, thus reducing temperature fluctuations. WFPS values between 0.48 and 0.64 resulted in optimal conditions for CO2 flux. The minimum WFPS value increased with an increase in clay content (P < 0.05). Although only a small number of soil types were studied in only one season in this study, the HB model may provide a method for predicting how the effects of soil temperature and moisture on CO2 flux change with texture, and soil texture could be regarded as an upscaling factor in future research on regional extrapolation.  相似文献   

8.
Shrub is one of the major vegetation types distributed mostly in the mountainous area in China, and its vegetation carbon storage is approximately one-third of both forests and grasslands. It is essential to investigate how soil temperature (Ts) and soil water content (Ws) affect soil respiration (Rs) in this ecosystem. The purpose of this study was to understand the correlations of Rs with Ts, Ws, and other factors in the shrubs. In the current study, Rs was characterized in three shrublands (hereafter, shrub 1, shrub 2, and shrub 3, respectively) located in different elevations over a 4-year period at a biweekly interval in the eastern Loess Plateau (Shanxi province) of China. Our results showed that the trend of seasonal change of Rs was controlled mainly by Ts and Ws. The measured mean Rs over 4 years was 3.64 ± 2.83 (mean ± S.D.), 2.69 ± 2.05, and 4.41 ± 3.28 μmol carbon dioxide (CO2) m?2 s?1 for shrubs 1, 2, and 3, respectively, exhibiting an increase trend with elevation increment. Over the season, Rs illustrated a significant change depending on the variation of Ts and Ws, with larger values appearing in summer when both Ts and Ws were high, and smaller values in winter or in summer whenever Ws was low. An exponential model (Rs = a e bTs) fitted well the relation between Rs and Ts for shrub 3, whereas linear (Rs = a Ws + b) and power (Rs = a Ws b) models of Rs to Ws fitted well for shrub 1. This indicated that at a lower elevation, Ws had a greater effect on Rs than that at a higher elevation. The reverse trend was true between Rs and Ts, i.e., at a higher elevation Ts had a greater effect on Rs than that at a lower elevation. The calculated Q10 values of 1.61, 3.03, and 3.73 for shrubs 1, 2, and 3 increased to 2.25, 3.63, and 4.07, respectively (when the data in low Ws conditions were excluded from the analysis), showing that Q10 increased with elevation increment. Furthermore, three two-variable models, one linear (Rs = a (Ts Ws) + b), and two nonlinear (Rs = a Ts b Ws c and Rs = a ebTs Ws c), were also well developed to predict the dependency of Rs on both Ts and Ws. Our research results might have important implications for the estimation of soil carbon emissions of the shrublands in this region.  相似文献   

9.
Soil respiration (Rs) is the second-largest source of CO2 to the atmosphere in terrestrial systems. In tropical savannas seasonal moisture availability and frequent fires drive ecosystem dynamics and may have a considerable impact on soil carbon (C) cycling, including Rs. In order to test the effect of fire on soil C cycling we measured Rs in annually burnt and unburnt plots in wet and dry seasons at a long-term fire experiment established in savanna woodlands of northern Australia. There was a significant interaction between season and fire, with highest rates of daily Rs (722 mmol CO2 m−2 d−1) observed in the wet season on unburnt, leaf litter patches. The three fold higher Rs rate on unburnt plots in the wet season was due to greater root-derived respiration (Rroot: 356 mmol CO2 m−2 d−1), while smaller changes to soil-derived respiration (Rsoil: 51 mmol CO2 m−2 d−1) were simply the result of C moving through decomposition rather than combustion pathways. Relationships between instantaneous Rs and soil temperature showed hysteresis with variable direction, suggesting that season and fire treatment also influence the soil depth at which CO2 is produced. We suggest that (1) changes to fire regimes, through active management or climate change, in tropical savannas could have an impact on Rs, and (2) the direct effect of fire on soil C cycling is limited to the removal of aboveground litter inputs.  相似文献   

10.
Soil moisture condition is essential to regulate the release of soil carbon from a drained peatland since aerobic microbial activities can be encouraged through oxygen supply associated with dewatering the soil layer while they may be discouraged under too dry conditions. Aiming to characterize the soil moisture condition in a reclaimed tropical peatland, we monitored the volumetric water content at 5?cm depth (θ 5?cm), groundwater level (GWL) and rainfall for 20 months from March 2010 to November 2011 in an oil palm field in Nakhon-Si-Thammarat, Thailand. We also measured the soil water retention curve and the unsaturated hydraulic conductivity (k) for a series of matric potential (h) to simulate the moisture condition monitored in the field by using the Buckingham-Darcy's flux law. During the dry season in 2010, the θ 5?cm consistently stayed lower than 0.35?m3?m–3 with the GWL lower than a depth of 30?cm. In the transition from the dry season to the rainy season in 2010, the GWL rose to the land surface with peaks and dips across the time for about one month with the θ 5?cm increasing toward saturation. During the rainy season where the GWL stayed near or above the land surface, the θ 5?cm remained the field-saturated value of 0.58?m3?m–3 on average, less than the laboratory-saturated value of 0.63?m3?m–3, suggesting the development of a significant amount of entrapped air-phase. Hysteretic behavior in the measured θ 5?cm–GWL relation also supported that the top soil layer refuses to absorb water in wetting processes. The simulated θ 5?cm based on the measured k(h) and soil water retention curves demonstrated that the ease with which the top soil dries during a dry season was due mainly to the low k(h) value in the dried condition, while the slope of the θ(h) curve was so moderate that the soil layer could retain moisture for maintaining liquid water supply to the surface from the dropped GWL. Sensitivity analyses while varying the magnitude of both k(h) and evaporation rate (E) suggested that the k(h) function was more deterministic than the value of E in making the land surface easily dried. As the GWL stayed lower than 30?cm in depth for a total of 187 days out of the year monitored, while surface-ponding conditions took place for 120 days of the year, it was concluded that either the extremely dried condition or the saturated-moisture condition had dominantly occurred in the study site through a year and, thus, there may only be a limited time when soil organic matter near the land surface is in favorable moisture conditions for aerobic decomposition.  相似文献   

11.
14C‐labelled fresh organic matter (FOM) was homogeneously incorporated into an agricultural topsoil of small total organic carbon (TOC) content in order to perform decomposition batch experiments at temperatures (T) ranging from 5 to 45°C and soil gravimetric water contents (w) ranging from 7 to 35%. After 4–6‐month incubation (tend), the residual 14C (Dend) was measured in bulk soil (0–2000 µm) and soil particle size fractions of 0–53, 53–200 and 200–2000 µm by chemical dispersion and sieving. The 14C‐FOM decomposition kinetics from soil were fitted either by a single first‐order reaction (rate constant, k0–2000) assuming only a one‐pool model in the bulk soil or by consecutive first‐order reactions (rate constants, k0–53 and k53–2000) assuming a two‐pool model in the bulk soil aggregate structure. In the latter case, a two‐step reaction mechanism involving a FOM particle‐size decrease along the soil fractions was considered where k0–53 was assumed to be a limiting rate constant. The 14C‐FOM decomposition kinetics was described for the experimental temperature and water ranges by Arrhenius and Michaelis‐Menten relationships, respectively. Additionally, the results obtained by the adapted Arrhenius physicochemical relationship were compared with the function proposed by Kirschbaum (1995) . Scaling functions Tm and wm were established and can be used to simulate FOM decomposition rates under different temperature and moisture level conditions. Modelling based on consecutive first‐order reactions supported the hypothesis that the circulation (inflow and outflow) of C into the soil particle small‐size fractions (<53 µm) controls the total C mineralization.  相似文献   

12.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

13.
Temporal and spatial variability of soil respiration (Rs) was measured and analyzed in a 74-year-old, mixedwood, boreal forest in Ontario, Canada, over a period of 2 years (August 2003–July 2005). The ranges of Rs measured during the two study years were 0.5–6.9 μmol CO2 m−2 s−1 for 2003–2004 (Year 1) and 0.4–6.8 μmol CO2 m−2 s−1 for 2004–2005 (Year 2). Mean annual Rs for the stand was the same for both years, 2.7 μmol CO2 m−2 s−1. Temporal variability of Rs was controlled mainly by soil temperature (Ts), but soil moisture had a confounding effect on Ts. Annual estimates of total soil CO2 emissions at the site, calculated using a simple empirical RsTs relationship, showed that Rs can account for about 88 ± 27% of total annual ecosystem respiration at the site. The majority of soil CO2 emissions came from the upper 12 to 20 cm organic LFH (litter–fibric–humic) soil layer. The degree of spatial variability in Rs, along the measured transect, was seasonal and followed the seasonal trend of mean Rs: increasing through the growing season and converging to a minimum in winter (coefficient of variation (CV) ranged from 4 to 74% in Year 1 and 4 to 62% in Year 2). Spatial variability in Rs was found to be negatively related to spatial variability in the C:N ratio of the LHF layer at the site. Spatial variability in Rs was also found to depend on forest tree species composition within the stand. Rs was about 15% higher in a broadleaf deciduous tree patch compared to evergreen coniferous area. However, the difference was not always significant (at 95% CI). In general, Rs in the mixedwood patch, having both deciduous and coniferous species, was dominated by broadleaf trees, reflecting changing physiological controls on Rs with seasons. Our results highlight the importance of discerning soil CO2 emissions at a variety of spatial and temporal scales. They also suggest including the LFH soil layer and allowing for seasonal variability in CO2 production within that layer, when modeling soil respiration in forest ecosystems.  相似文献   

14.
为揭示亚热带森林土壤N2O排放对林分类型和氮添加的响应特征,选取位于福建省三明市的中亚热带米槠次生林、杉木人工林和马尾松人工林土壤为研究对象,分别设置无氮添加(N0 mg/kg)、低氮添加(N10 mg/kg)、中氮添加(N25 mg/kg)和高氮添加(N50 mg/kg)4个氮添加水平,进行微宇宙培养试验,测定土壤N2O排放。结果表明:与无氮添加处理相比,氮添加整体上降低3种林分土壤pH,增加土壤NH4+-N和NO3--N含量。无氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量分别为9.67和9.62 mg/kg,显著高于米槠次生林土壤N2O累积排放量6.81 mg/kg。低氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量显著高于米槠次生林。但在中氮和高氮添加处理中,3种林分土壤N2O累积排放量均无显著性差异。不同氮添加处理均促进3种林分土壤N  相似文献   

15.
Continuous half-hourly measurements of soil (Rs) and bole respiration (Rb), as well as whole-ecosystem CO2 exchange, were made with a non steady-state automated chamber system and with the eddy covariance (EC) technique, respectively, in a mature trembling aspen stand between January 2001 and December 2003. Our main objective was to investigate the influence of long-term variations of environmental and biological variables on component-specific and whole-ecosystem respiration (Re) processes. During the study period, the stand was exposed to severe drought conditions that affected much of the western plains of North America. Over the 3 years, daily mean Rs varied from a minimum of 0.1 μmol m−2 s−1 during winter to a maximum of 9.2 μmol m−2 s−1 in mid-summer. Seasonal variations of Rs were highly correlated with variations of soil temperature (Ts) and water content (θ) in the surface soil layers. Both variables explained 96, 95 and 90% of the variance in daily mean Rs from 2001 to 2003. Aspen daily mean Rb varied from negligible during winter to a maximum of 2.5 μmol m−2 bark s−1 (2.2 μmol m−2 ground s−1) during the growing season. Maximum Rb occurred at the end of the aspen radial growth increment and leaf emergence period during each year. This was 2 months before the peak in bole temperature (Tb) in 2001 and 2003. Nonetheless, Rb was highly correlated with Tb and this variable explained 77, 87 and 62% of the variance in Rb in the respective years. Partitioning of Rb between its maintenance (Rbm) and growth (Rbg) components using the mature tissue method showed that daily mean Rbg occurred at the same time as aspen radial growth increment during each growing season. This method led, however, to systematic over- and underestimations of Rbm and Rbg, respectively, during each year. Annual totals of Rs, Rb and estimated foliage respiration (Rf) from hazelnut and aspen trees were, on average, 829, 159 and 202 g C m−2 year−1, respectively, over the 3 years. These totals corresponded to 70, 14 and 16%, respectively, of scaled-up respiration estimates of Re from chamber measurements. Scaled Re estimates were 25% higher (1190 g C m−2 year−1) than the annual totals of Re obtained from EC (949 g C m−2 year−1). The independent effects of temperature and drought on annual totals of Re and its components were difficult to separate because the two variables co-varied during the 3 years. However, recalculation of annual totals of Rs to remove the limitations imposed by low θ, suggests that drought played a more important role than temperature in explaining interannual variations of Rs and Re.  相似文献   

16.
为探究南方红壤区经长期水土流失治理小流域的水沙特征,该研究收集长汀县朱溪河小流域2017—2020年降雨及洪水水沙数据,通过冗余分析、多元逐步回归方程、含沙量-流量滞回曲线等方法进行分析。结果显示:(1)流域年洪水径流深和泥沙量分别为282.30~892.50 mm和35.80~179.50 t/km2,洪水事件的产沙模数集中在0~20.0 t/km2,但总泥沙量由大于5.0 t/km2的少数事件决定;(2)降雨量、30 mim的最大雨强和降雨侵蚀力是影响洪水径流泥沙的主要降雨特征,对径流、泥沙变化的解释度分别为68.99%和49.28%,通过主要径流特征估算泥沙量、平均含沙量和最大含沙量,拟合优度达0.624~0.870;(3)洪水事件共出现6种含沙量-流量滞回关系,其中线型出现频率(55%)最高,该类事件中含沙量随流量的变化具有分阶段特征,临界含沙量约为0.1 g/L。经过长期的水土流失治理,红壤区小流域的洪水泥沙量普遍较低,且主要受径流量影响,洪水事件的滞回关系表明流域的泥沙供应通常处于持续少量的状态,研究结果有助于揭示红壤区土壤侵蚀的发展趋势。  相似文献   

17.
Extensive research has focused on the temperature sensitivity of soil respiration. However, in Mediterranean ecosystems, soil respiration may have a pulsed response to precipitation events, especially during prolonged dry periods. Here, we investigate temporal variations in soil respiration (Rs), soil temperature (T) and soil water content (SWC) under three different land uses (a forest area, an abandoned agricultural field and a rainfed olive grove) in a dry Mediterranean area of southeast Spain, and evaluate the relative importance of soil temperature and water content as predictors of Rs. We hypothesize that soil moisture content, rather than soil temperature, becomes the major factor controlling CO2 efflux rates in this Mediterranean ecosystem during the summer dry season. Soil CO2 efflux was measured monthly between January 2006 and December 2007 using a portable soil respiration instrument fitted with a soil respiration chamber (LI-6400-09). Mean annual soil respiration rates were 2.06 ± 0.07, 1.71 ± 0.09, and 1.12 ± 0.12 μmol m−2 s−1 in the forest, abandoned field and olive grove, respectively. Rs was largely controlled by soil temperature above a soil water content threshold value of 10% at 0-15 cm depth for forest and olive grove, and 15% for abandoned field. However, below those thresholds Rs was controlled by soil moisture. Exponential and linear models adequately described Rs responses to environmental variables during the growing and dry seasons. Models combining abiotic (soil temperature and soil rewetting index) and biotic factors (above-ground biomass index and/or distance from the nearest tree) explained between 39 and 73% of the temporal variability of Rs in the forest and olive grove. However, in the abandoned field, a single variable - either soil temperature (growing season) or rewetting index (dry season) - was sufficient to explain between 51 and 63% of the soil CO2 efflux. The fact that the rewetting index, rather than soil water content, became the major factor controlling soil CO2 efflux rates during the prolonged summer drought emphasizes the need to quantify the effects of rain pulses in estimates of net annual carbon fluxes from soil in Mediterranean ecosystems.  相似文献   

18.
Abstract

Forest fires can change the greenhouse gase (GHG) flux of borea forest soils. We measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes with different burn histories in black spruce (Picea mariana) stands in interior Alaska. The control forest (CF) burned in 1920; partially burned (PB) in 1999; and severely burned (SB1 and SB2) in 2004. The thickness of the organic layer was 22 ± 6 cm at CF, 28 ± 10 cm at PB, 12 ± 6 cm at SB1 and 4 ± 2 cm at SB2. The mean soil temperature during CO2 flux measurement was 8.9 ± 3.1, 6.4 ± 2.1, 5.9 ± 3.4 and 5.0 ± 2.4°C at SB2, SB1, PB and CF, respectively, and differed significantly among the sites (P < 0.01). The mean CO2 flux was highest at PB (128 ± 85 mg CO2-C m?2 h?1) and lowest at SB1 (47 ± 19 mg CO2-C m?2 h?1) (P < 0.01), and within each site it was positively correlated with soil temperature (P < 0.01). The CO2 flux at SB2 was lower than that at CF when the soil temperature was high. We attributed the low CO2 flux at SB1 and SB2 to low root respiration and organic matter decomposition rates due to the 2004 fire. The CH4 uptake rate was highest at SB1 [–91 ± 21 μg CH4-C m?2 h?1] (P < 0.01) and positively correlated with soil temperature (P < 0.01) but not soil moisture. The CH4 uptake rate increased with increasing soil temperature because methanotroph activity increased. The N2O flux was highest [3.6 ± 4.7 μg N2O-N m?2 h?1] at PB (P < 0.01). Our findings suggest that the soil temperature and moisture are important factors of GHG dynamics in forest soils with different fire history.  相似文献   

19.
A field experiment was conducted during the 2010 to 2011 winter wheat–growing season to understand the soil respiration (Rs ), nitrification, and denitrification rates in winter wheat farmland soil under no-tillage (NT) treatment with rice straw incorporation. The experimental treatments include NT, NT with rice straw covers on the surface (NTS), conventional tillage (CT), and CT with straw incorporation (CTS). No-tillage and straw incorporation treatments did not change the seasonal patterns of Rs , gross nitrification (Gn), and denitrification (D) rates compared with CT. Compared with the CT treatment, the NT, NTS, and CTS treatments significantly reduced Rs (P < 0.01), and the NT and NTS treatments significantly increased Gn and D (P < 0.01). CTS also significantly increased Gn (P < 0.01) but had no significant effect on D (P > 0.05). Further analysis showed that the temperature sensitivity of soil respiration (Q 10) of CT, NT, NTS, and CTS were 4.26, 1.86, 3.25, and 2.36, respectively. Our findings suggest that, compared with CT, the NT and straw incorporation treatments reduced Rs and Q 10 and increased Gn and D.  相似文献   

20.
Abstract

Soil microbial biomass (Cmic) is an important factor regulating a number of ecosystem processes. In this study, we investigated seasonal variations in soil microbial biomass in natural climax beech (Fagus crenata) forests in a typical cold-temperate mountain region of Japan. Four permanent tower sites along an altitudinal gradient were selected and soil samples were collected once every month during the growing season of 2007. Soil microbial biomass (by fumigation-extraction method) and soil properties were later measured in the laboratory, while environmental factors (soil temperature, soil moisture) were continuously recorded in the field. Our results indicated large seasonal variations (130.4 ~ 5558.0 µg g?1) in soil microbial biomass in beech forests – a range that is much larger than previously reported. Statistically significant correlations are noted between soil properties with Cmic, but largely due to spatial linkages. On the other hand, the environmental factors of soil temperature and especially soil moisture largely control seasonal variations in Cmic. Furthermore, pH could be an important factor influencing seasonal change in Cmic at the 20–30 cm deep soil layer. The study suggests no direct correlation between plant eco-physiology and soil microbial biomass in seasonal courses of the forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号