首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 165 毫秒
1.
基于SegNet语义模型的高分辨率遥感影像农村建设用地提取   总被引:3,自引:2,他引:1  
针对传统分类算法、浅层学习算法不适用于高空间分辨率遥感影像中农村建筑物信息提取的问题,该文以河北省霸州市高空间分辨率遥感影像WorldView-2为数据源,利用182 064幅128×128像素大小的影像切片为训练样本,选取基于深度卷积神经网络的SegNet图像语义分割算法对遥感影像中的农村建筑物进行提取,并与传统分类算法中的最大似然法(maximum likelihood,ML)和ISO聚类、浅层学习算法中的支持向量机(support vector machine,SVM)和随机森林(random forest,RF)以及深层语义分割算法中的金字塔场景解析网络(pyramid scene parsing network,PSPNet)的试验结果作对比分析。研究结果表明:SegNet不仅能够高效利用高空间分辨率遥感影像中农村建筑物的光谱信息而且还能够充分利用其丰富的空间特征信息,最终形成较好的分类模型,该算法在验证样本中的分类总体精度为96.61%,Kappa系数为0.90,建筑物的F1值为0.91,其余5种分类算法的总体精度、Kappa系数、建筑物的F1值都分别在94.68%、0.83、0.87以下。该研究可以为高空间分辨率遥感影像农村建设用地提取研究提供参考。  相似文献   

2.
山地丘陵区地形复杂,地表辐射信号畸变严重,地物识别困难。为准确提取山区地物信息,结合多源异构数据,Stacking 集成学习和shapley addictive explanation(SHAP)方法展开土地覆被分类研究。从Sentinel-1/2影像、气候数据、土壤数据和数字高程图中提取遥感、气候、土壤和地形四类特征变量,设计多种变量组合方案,结合Stacking算法,探讨不同类型变量在山区地物识别中的效用,并对比Stacking最佳方案与支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)和极端梯度回归(eXtreme Gradient Boosting,XGBoost)算法的分类精度,评价Stacking方法在山区地物信息提取中的性能。同时,引入SHAP方法,量化Stacking模型中各特征变量的重要性。结果表明:在仅以遥感变量为基础方案时,山区土地覆被分类精度最低;在分别加入气候、土壤和地形变量后,总体精度、Kappa系数和F1分数均有所提高,其中旱地、水田和园地分类精度的提升幅度较大。基于Stacking算法结合所有类型特征变量的方案达到了最佳的分类精度,其总体精度、Kappa系数和F1分数分别为96.61%、0.96和94.81%,分类精度优于相同特征下的SVM、 RF和XGBoost。SHAP方法可量化Stacking模型中特征变量的全局以及局部重要性,明确各变量对不同地物类型识别的相对贡献,为山区土地覆被分类的变量选择及优化提供有价值的信息。该研究可为机器学习协助复杂景观地区土地覆被制图研究提供技术支持和理论参考。  相似文献   

3.
土地利用变化的监测需要高精度的土地利用分类图,遥感技术的发展为这一工作提供了便利。然而,传统分类方法往往无法针对性的利用影像中的信息,其分类结果中地物边缘信息模糊,分类精度不高且噪声较大,难以满足土地变化监测的需要。该研究针对传统方法分类结果不理想的问题,提出一种基于"残差-挤压激励"单元的混合卷积神经网络模型,采用膨胀卷积层对影像进行"光谱-空间"特征提取,并引入"残差-挤压激励"单元,实现特征重用的同时,选择性的强调信息性特征,对噪声性特征进行抑制,最后对得到的特征进行整合实现对遥感影像的分类。该研究提出的模型与k-最邻近算法(K-Nearest Neighbor, KNN)、支持向量机(Support Vector Machine, SVM)、二维卷积网络(2D- Convolutional Neural Network, 2D-CNN)以及混合卷积网络(HybridSN)相比,在试验数据集上总体精度分别提高了11.15个百分点、11.18个百分点、0.06个百分点和2.46个百分点。且有效减少了地物边缘信息的损失,验证了该方法的有效性。此外,基于该方法分类结果统计出的耕地面积与试验区真实耕地面积仅相差0.77%,误差绝对值远低于其他分类方法。  相似文献   

4.
为明确基于无人机影像的旱塬区土地利用精准分类方法,尤其是算法的选择,该研究通过获取渭北旱塬区白水县通积村不同航拍高度无人机正射遥感影像,利用多种深度学习算法和机器学习算法对土地利用分类进行研究。首先,采用大疆御2Pro获取研究区80和160 m不同高度航拍影像;然后对不同航拍高度目视解译结果和多种深度学习、机器学习模型预测结果进行对比分析;最后,基于表现最佳算法对其进行创新和改进。结果表明:深度学习算法的表现远远优于传统机器学习算法,其中深度学习算法中表现最好的DeepLabv3+像素精度为90.06%,比随机森林(Random Forest,RF)和支持向量机(Support Vector Machine,SVM)分别高出24.65和21.32个百分点。基于DeepLabv3+改进的DeepLabv3+_BA模型整体分类效果最好,其像素精度为91.37%,比FCN、SegNet、UNet和DeepLabv3+分别高出7.43、10.12、2.27和1.31个百分点。各种算法在160 m数据集上各指标精度高于80 m。改进模型DeepLabv3+_BA具有较高的地物分类精度及较强的鲁棒...  相似文献   

5.
高光谱影像存在的"休斯(Hughes)现象"是制约高光谱影像分类精度的一个重要因素。为了提高高光谱影像分类精度,提出一种基于流形光谱特征的高光谱影像分类算法。首先使用t分布随机邻域嵌入算法对高光谱影像进行降维;其次将降维后的高光谱数据作为输入层,使用卷积神经网络提取空间深层特征;最后,将提取到的深层空间-光谱特征从隐层特征空间映射到样本标记空间并进行分类。结果表明,与其他算法相比,该研究究算法的总体精度和Kappa系数最高,3个数据集总体精度分别为99.05%、99.43%和98.90%,Kappa系数分别为98.78%、98.97%和98.34%,显著提高了高光谱影像的分类精度,减少了分类用时,有效解决了传统降维方法容易忽视局部特征的缺点。将流形学习降维和深度学习分类相结合为高光谱遥感影像分类和土地利用研究研究提供了一种思路。  相似文献   

6.
准确的农作物分类图是农业监测和粮食安全评估的重要数据来源,针对传统的深度学习模型在多时相农作物遥感分类方面精度较低的问题,该研究将卷积维度单一的卷积神经网络(Convolutional Neural Networks,CNN)进行改进,提出了一种混合三维和二维卷积的神经网络识别模型(Hybrid Three Dimensional and Two Dimensional Convolutional Neural Networks,3D-2D CNN)。该模型首先通过多个三维卷积层提取时空特征,其次将输出的特征降维压缩后通过二维卷积层执行空域特征分析,最后将高层特征图展平后通过全连接层进行类别预测。试验以Landsat8多时相影像为数据源,将美国加利福尼亚州北部研究区的地块按照2:2:6分层随机划分为训练集、验证集和测试集。试验结果表明3D-2D CNN对13种农作物分类的总体精度(89.38%)、宏平均F1值(84.21%)和Kappa系数(0.881)均优于三维卷积神经网络(Three Dimensional Convolutional Neural Networks,3D-CNN)、二维卷积神经网络(Two Dimensional Convolutional Neural Networks, 2D-CNN)、支持向量机(Support Vector Machines,SVM)和随机森林(Random Forest,RF)等方法,并在参数量和收敛时间方面比3D CNN大幅度减小。同时,在较小样本训练集下3D-2D CNN仍表现最优。该模型综合利用空间-光谱-时间特征并具有较高的分类精度和较强的鲁棒性,这为解决多时相遥感农作物分类问题提供了一个有效且可行的方案。  相似文献   

7.
多尺度融合卷积神经网络的黄瓜病害叶片图像分割方法   总被引:3,自引:3,他引:0  
黄瓜病害叶片中的病斑区域分割是病害检测与类型识别的关键步骤,分割效果将直接影响病害检测和识别的精度。针对传统方法对于黄瓜病害叶片图像分割精度低和泛化能力弱等问题,提出一种基于多尺度融合卷积神经网络(Multi-Scale Fusion Convolutional Neural Networks,MSF-CNNs)的黄瓜病害叶片分割方法。MSF-CNNs由编码网络(Encoder Networks,ENs)和解码网络(Decoder Networks,DNs)两部分组成,其中ENs为一个多尺度卷积神经网络组成,用于提取病害叶片图像的多尺度信息;DNs基于九点双线性插值算法,用于恢复输入图像的尺寸和分辨率。在MSF-CNNs模型训练的过程中,使用一种渐进微调的迁移学习方法加速模型的训练,提高模型的分割精度。在复杂背景下的作物病害叶片图像数据库上进行病害叶片图像分割试验,并与现有的分割方法全卷积网络(Fully Convolutional Networks,FCNs)、SegNet、U-Net、DenseNet进行比较。结果表明,该MSF-CNNs能够满足复杂环境下的黄瓜病害叶片图像分割需求,像素分类精度为92.38%、平均分割准确率为93.12%、平均交并比为91.36%、频率加权交并比为89.76%。与FCNs、SegNet、U-Net、DenseNet相比较,MSF-CNNs的平均分割精度分别提高了13.00%、10.74%、10.40%、10.08%和6.40%。使用渐进学习训练方式后,训练时间缩短了0.9 h。该方法为进一步的黄瓜病害检测和识别方法研究提供了参考。  相似文献   

8.
基于无人机RGB影像的玉米种植信息高精度提取方法   总被引:3,自引:3,他引:0  
为探究易获取且成本低的超高分辨率无人机(Unmanned Aerial Vehicle,UAV)航拍 "红-绿-蓝"(Red-Green-Blue,RGB)彩色影像提取作物种植信息的方法,该研究选取植被指数、"色度-色饱和度-亮度"(Hue-Saturation-Intensity,HSI)色彩特征和纹理特征等3种特征,通过比较贝叶斯(Bayes)、K最邻近分类(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)、决策树(Decision Tree,DT)和随机森林(Random Forest,RF)共5种监督分类算法及不同特征组合的分类效果,以实现玉米种植信息的高精度提取。结果表明,使用单一种类特征或使用全部3种特征均不能获得最优的分类精度;将植被指数与HSI色彩特征或与纹理特征进行组合获得的总体分类精度(5种算法平均值)比仅使用植被指数获得的总体分类精度分别提高了4.2%和8.3%;在所有特征组合中,HSI色彩特征和纹理特征组合为最优选择,基于该特征空间的RF算法获得了最高的分类精度,总精度为86.2%,Kappa系数为0.793;基于RF算法进行降维并不能显著提高或降低分类精度(SVM除外),但所保留的特征因子可给出符合实际背景和意义的解释,并可提高分类结果的稳定性。研究结果可为基于无人机RGB影像的作物种植信息高精度提取提供方法参考。  相似文献   

9.
基于无人机可见光影像与OBIA-RF算法的城市不透水面提取   总被引:2,自引:0,他引:2  
不透水面是一种重要的城市地物类型,及时准确地获取城市不透水面信息对城市的合理规划、生态环境保护及可持续发展具有重要意义。低空无人机(Unmanned Aerial Vehicle,UAV)作为新型的遥感平台,具有操作灵活、时空分辨率高、受云雾影响小等优点,为中小尺度城市不透水面遥感监测提供了新的技术手段。以无人机可见光影像作为数据源,通过使用面向对象与随机森林算法相结合的方法开展对城市不透水面信息提取研究。首先,根据最佳尺度对影像进行分割并提取分割对象的不同特征,以光谱特征为基础,分别引入指数与地形特征建立方案S1~S4,以光谱、指数和地形特征为基础,分别加入纹理与几何特征构建方案S5~S7,以此来分析不同类型特征对不透水面提取效果的影响;同时,基于优选特征子集(13个)构建方案S8,基于上述8种方案,利用随机森林(Random Forest,RF)算法进行分类并确定最佳方案。然后,通过比较随机森林、支持向量机(Support Vector Machine,SVM)和 K-最邻近法(K-Nearest Neighbors,KNN)算法在最佳方案的特征子集下的分类效果,评价随机森林算法对于不透水面的分类性能。结果表明:地形特征中的归一化数字表面模型(normalized Digital Surface Model,nDSM)对不透水面提取精度的提升作用最大,多个方案通过引入nDSM后分类精度均有较大幅度的提升(22.49~39.67个百分点);基于特征优选子集的S8方案分类精度最高,其总体精度达96.18%,Kappa系数为0.95,可见特征优选能够将高维度特征进行降维和优化,大幅减少特征数的同时还能一定程度提高分类效果;随机森林算法在最优特征子集下的分类效果优于SVM与KNN,总体精度比二者分别提升了1.35和14.18个百分点。可见面向对象和随机森林相结合的方法可有效开展城市不透水面精细化提取。该研究为基于无人机可见光影像的不透水面提取提供了一种新方法,也可为城市其他类别地物监测提供技术参考。  相似文献   

10.
高精度监测土地利用对实现可持续发展有重要意义。然而,由于遥感传感器成像的限制和地物的复杂性,单一的高光谱和多光谱图像已经不能满足高精度土地利用分类的要求,充分利用高光谱和多光谱遥感图像的互补信息能克服仅采用单一遥感图像分类的不足。该研究设计双分支卷积神经网络协同高光谱和多光谱遥感图像进行土地利用分类。针对高光谱图像设计3维-1维卷积神经网络(3D-1D Convolutional Neural Networks,3D-1D CNN)分支自动提取高光谱图像的空间-光谱特征;针对多光谱图像,设计3维卷积神经网络(3D Convolutional Neural Networks,3D CNN)分支提取多光谱图像的空间-光谱特征;设计融合层将从高光谱和多光谱图像提取的特征进行融合,最后通过全连接层输出土地利用类别。研究表明,与决策树(Decision Tree,DT)、支持向量机(Support Vector Machine,SVM)以及1D、2D和3D CNN方法相比,该文提出的基于双分支卷积神经网络的方法在两个数据集上Kappa系数平均分别提升了15.9、8.1、5.4、5.4和2.7个百分点。  相似文献   

11.
基于多特征提取和Stacking集成学习的金线莲品系分类   总被引:5,自引:5,他引:0  
针对传统中药鉴定、分子鉴定、生物技术鉴定及光谱检测技术的主观性强、耗时、操作复杂等不足,以及金线莲整个叶片形态区分度小、单一分类器鉴别精度不高的问题,该研究提出了基于机器视觉的叶片子区间多特征提取方法和基于多模型融合的Stacking集成学习算法实现金线莲的品系分类。试验采集6个品系的金线莲叶片图像数据,进行图像预处理后提取叶片子区间内纹理、颜色共114个特征,基于这些特征,构建堆叠式两阶段集成学习框架,以逻辑回归、K最近邻、随机森林和梯度提升决策树(Gradient Boosting Decision Tree,GBDT)作为基分类器,GBDT作为元分类器进行学习。试验结果表明,Stacking集成学习模型的整体识别综合评价指标F值达93.91%,分类正确率达94.49%,分别比逻辑回归、K最近邻、随机森林和GBDT这4个单一分类模型高出4.40、11.87、11.01、12.94个百分点和5.36、11.34、6.93、12.13个百分点。因此,该研究能够有效识别金线莲品系,为形状大小相似、形状特征难以利用的植物叶片识别提供参考。  相似文献   

12.
为实现高分辨率遥感影像特征的有效组织优化,以及提高特征的可判别性,该文提出了基于中层特征学习的多特征软概率级联模型实现场景级土地利用分类。首先,提取影像的密集尺度不变转换特征(dense scale invariant feature transform,DSIFT)、光谱特征(spectral feature,SF)以及局部二值模式特征(local binary pattern,LBP)作为低层特征;然后由局部约束线性编码(locality-constraint linear coding,LLC)分别对DSIFT特征、SF特征以及LBP特征进行稀疏编码得到3种低层特征的稀疏系数,并结合空间金字塔匹配(spatial pyramidal matching,SPM)模型、最大空间平滑方法对稀疏系数进行优化,获得影像的中层特征表达;最后,利用SVM分类器,分别对3种低层特征的中层特征表达进行分类,并分别计算3种低层特征分类的软概率,级联3种特征的软概率将其作为图像最终的特征表达,利用SVM分类器进行第2次分类得到最终分类结果。采用UC-Merced Land Use数据集对该方法进行了验证,试验结果表明:1)该方法总体精度达到88.6%,相较于传统稀疏编码空间金字塔匹配(sparse coding and spatial pyramidal matching,Sc SPM),局部约束线性编码(locality-constraint linear coding,LLC)等分类方法,总体精度分别提高了12.7%,9.9%;2)相较于提取单一低层特征的场景分类方法,该文算法更有利于实现对影像中复杂且不易区分的地物的表达,可有效提高土地利用分类精度。  相似文献   

13.
基于多源数据的南方丘陵山地土地利用随机森林分类   总被引:5,自引:5,他引:0  
针对南方丘陵山地因地形破碎和山体阴影而导致的分类精度低问题,该研究以东江源地区为例,通过结合多源数据,以Sentinel-1、Sentinel-2A卫星影像和DEM作为数据源提取27个指标,构建了6种特征变量集,并设计了9种方案,探讨加入红边特征、雷达特征和地形特征对南方丘陵山地土地利用分类信息提取的作用.同时结合随机...  相似文献   

14.
基于GF-1 WFV数据的玉米与大豆种植面积提取方法   总被引:4,自引:4,他引:4  
准确掌握农作物的空间种植分布情况,对于国家宏观指导农业生产、制定农业政策有重要意义。针对黑龙江省玉米与大豆生育期接近、光谱特征相似,较难区分的问题,以多时相16 m空间分辨率高分一号(GF-1)卫星宽覆盖(wide field of view,WFV)影像为数据源,选择归一化植被指数(normalized difference vegetation index,NDVI)、增强植被指数(enhanced vegetation index,EVI)、宽动态植被指数(wide dynamic range vegetation index,WDRVI)、归一化水指数(normalized difference water index,NDWI)4个特征,结合实地调查样本点,采用随机森林分类算法,提取黑龙江省黑河市嫩江县玉米与大豆种植面积。研究表明,区分玉米与大豆的最佳时段为9月下旬至10月上旬,即大豆已收获而玉米未收获的时段,在4个待选特征中,NDVI、NDWI与WDRVI指数组合表现最佳;随机森林算法与最大似然算法、支持向量机算法相比,分类精度更高,其总体分类精度为84.82%,Kappa系数为77.42%。玉米制图精度为91.49%,用户精度为93.48%;大豆制图精度为91.14%,用户精度为82.76%。该方法为大区域农作物的分类提供重要参考和借鉴价值。  相似文献   

15.
利用Stacking集成学习估算柑橘叶片氮含量   总被引:2,自引:2,他引:0  
准确估算柑橘叶片氮含量对于科学合理的施肥具有重要的指导作用,该研究利用Landsat8OLI卫星遥感影像和地面采样实测数据,以K-近邻(K-Nearest Neighbors,KNN),随机森林(Random Forest,RF)和自适应增强(Adaptive boosting,Adaboost)模型为基础,构建Stacking集成学习框架,实现对柑橘叶片氮含量(Leaf Nitrogen Content,LNC)的估算。首先分析不同氮含量下的光谱反射特征,构建植被指数(Vegetation Indices,VIs)并计算其与柑橘LNC的相关系数;接着利用格网搜索、交叉验证训练模型,最后将Stacking模型与包括Bagging(Bootstrap Aggregating,Bagging)、人工神经网络(Artificial Neural Network,ANN)在内的多个经典机器学习模型试验结果进行对比分析,并生成柑橘果园的氮含量分布图。结果表明:1)构建的光谱指数与LNC具有较好的相关性,大部分指数相关系数在0.55以上;2)相比KNN、RF、Adaboost等多个单一模型,Stacking模型的估算效果最佳,决定系数达到0.761,均方根误差为1.366 g/kg,平均绝对百分比误差为3.494%;同时,Stacking模型的赤池信息准则(Akaike Information Criterion,AIC)值最低,是观测期内LNC估算的最优模型;3)研究区内LNC值整体上处于30.5~31.5 g/kg左右,接近柑橘种植的理想区间,模型估算与实测值趋于一致。总体上,该研究采用的光谱特征能够有效表征柑橘冠层叶片氮含量,并证明Stacking集成学习能综合多个基模型的优点,提高模型的准确性,为利用卫星遥感展开作物参数估算提供新的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号