首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

The main aim of this study was to assess critically the effects of binucleate Rhizoctonia (BnR) inoculation on Scots pine (Pinus sylvestris L.) seedling and hypocotyl root architecture and early plant growth in tree seedling nursery soil, Sphagnum peat and forest humus. The BnR isolates (251, 266, 268, 269) stimulated early seedling growth in the nitrogen-limited nursery soil 86 days postinoculation (p.i.). These seedlings exhibited significantly higher root length and reduced root width, although percentage root infection levels were <6%. At a harvest 240 days p.i., no significant plant and root growth differences were identified, although short root numbers were significantly increased. BnR infection detected in roots was characterized by the presence of intercellular fungal hyphae and subtending intracellular monilioid fungal cells located in outer cortical cells of long roots. Similar endophytic infection morphology was detected in adventitious roots generated in prerooted hypocotyl cuttings [Kaparakis, G. & Sen, R. (2006). Scandinavian Journal of Forest Research, 21] exposed to all BnR isolates in nursery peat and forest humus, although isolate-specific cutting growth was detected. In conclusion, these BnR isolates, known to be genetically related to orchid mycorrhizal Ceratorhiza spp., are non-pathogenic and have the capacity to stimulate significantly early Scots pine root development in nursery soils and forest humus.  相似文献   

2.
Production of free and conjugated polyamines by two ectomycorrhizal fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Paxillus involutus (Batsch) Fr., was studied in vitro. Spermidine was the main polyamine in the mycelium of both fungi. Paxillus involutus also produced large amounts of the diamine putrescine, whereas Pisolithus tinctorius contained traces of the diamine cadaverine and released into the culture medium an unknown compound probably related to cadaverine or N-methylputrescine. Both fungi accelerated adventitious root formation and increased subsequent root growth of Scots pine (Pinus sylvestris L.) hypocotyl cuttings in vitro. Exogenous cadaverine enhanced rooting caused by Pisolithus tinctorius and also promoted mycorrhiza formation by the fungus. Putrescine and Paxillus involutus had a synergistic effect on root initiation, but not on subsequent root growth. We conclude that specific diamines may be involved in the interaction between ectomycorrhizal fungi and adventitious root formation in Scots pine, and that the effects of specific exogenous polyamines are dependent on the fungal strain and its ability to produce these compounds. The finding that Paxillus involutus enhanced rooting and root growth without mycorrhiza formation indicates that fungal-induced rooting is not necessarily related to visible mycorrhiza formation.  相似文献   

3.
4.
We studied the effects of broad-spectrum light quality on the interaction between the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch and Scots pine (Pinus sylvestris L.) seedlings and hypocotyl cuttings cultured in vitro. The light sources were cool white (CW), warm white (WW) and red-rich daylight (RD) fluorescent lamps. Inoculation with P. tinctorius enhanced adventitious root formation of the cuttings in all light treatments. Rooting of the inoculated cuttings was highest in WW light (89%), followed by CW (73%) and RD light (66%). During 6 weeks of in vitro culture, rooted cuttings formed only a few lateral roots. The fungus grew over lateral roots, but the Hartig net was absent in all light treatments. In non-inoculated cuttings, neither root formation nor subsequent root growth was affected by light quality. In the seedling experiment, inoculation in the WW treatment resulted in a significantly (P < 0.05) greater number of lateral roots than inoculation in the RD treatment. The percentage of lateral roots covered with fungal hyphae was also highest in WW light (62%), followed by CW (50%) and RD (27%) light. A similar pattern was observed in the intensity of Hartig net formation. We conclude that effects of broad-spectrum light quality on the ectomycorrhizal fungus-root interaction are dependent on the developmental stage of the root.  相似文献   

5.
We studied the ability of the ectomycorrhizal (ECM) fungi, Pisolithus tinctorius (Pers.) Coker and Couch and Paxillus involutus (Batsch) Fr. (Strain H), to produce indole-3-acetic acid (IAA) and to affect the formation and growth of roots on Scots pine (Pinus sylvestris L.) hypocotyl cuttings in vitro. Effects of indole-3-butyric acid (IBA) and the auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA), on rooting and the cutting-fungus interaction were also studied. Both fungi produced IAA in the absence of exogenous tryptophan, but the mycelium and culture filtrate of Pisolithus tinctorius contained higher concentrations of free and conjugated IAA than the mycelium and culture filtrate of Paxillus involutus. Inoculation with either fungus or short-term application of culture filtrate of either fungus to the base of hypocotyl cuttings enhanced root formation. Inoculation with either fungus was even more effective in enhancing root formation than treatment of the hypocotyl bases with IBA. Fungal IAA production was not directly correlated with root formation, because rooting was enhanced more by Paxillus involutus than by Pisolithus tinctorius. This suggests that, in addition to IAA, other fungal components play an important role in root formation. Treatment with 5 microM TIBA increased the rooting percentage of non-inoculated cuttings, as well as of cuttings inoculated with Pisolithus tinctorius, perhaps as a result of accumulation of IAA at the cutting base. However, the marked reduction in growth of Pisolithus tinctorius in the presence of TIBA suggests that the effects of TIBA on rooting are complicated and not solely related to IAA metabolism. The high IAA-producer, Pisolithus tinctorius, formed mycorrhizas, and the IBA treatment increased mycorrhizal frequency in this species, whereas TIBA decreased it. Paxillus involutus did not form mycorrhizas, indicating that a low concentration of IAA together with other fungal components were sufficient to stimulate formation and growth of the roots, but not the formation of ECM symbiosis.  相似文献   

6.
The ectomycorrhizal fungus Laccaria bicolor S238 N and the bacterium Pseudomonas fluorescens BBc6 were used separately and in combination to induce in vitro rooting of de-rooted shoot hypocotyls of Norway spruce (Picea abies (L.) Karst.). When the culture medium was supplemented with tryptophan, a precursor of indole-3-acetic acid (IAA) synthesis, the presence of the ectomycorrhizal fungus increased the percentage of hypocotyls forming roots; furthermore, both the fungal and bacterial inoculations enhanced the number of roots formed per rooted hypocotyl. Similar results were obtained by adding exogenous IAA (5 and 10 &mgr;M) to the rooting medium. After the rooting phase, the fungal inoculation enhanced adventitious root elongation and branching as well as the aerial growth of the cuttings. Pseudomonas fluorescens BBc6 had no effect on these parameters. The production of IAA by pure cultures of L. bicolor S238 N and P. fluorescens BBc6 was estimated by immunochemical analysis using specific anti-IAA antibodies. Both L. bicolor S238 N and P. fluorescens BBc6 synthesized IAA in pure culture and synthesis was stimulated in the presence of tryptophan. Thus, the effect of the fungus in stimulating adventitious root formation and subsequent elongation and branching can be attributed, at least partially, to the synthesis of IAA by the fungus. The finding that P. fluorescens BBc6 had no effect on root elongation and branching although it produced IAA suggests that either IAA was not the only parameter involved in the stimulation of these processes by L. bicolor S238 N or the bacterium produced other compounds that counteracted the stimulatory effects of IAA on root elongation and branching.  相似文献   

7.
Many plantation tree species are cloned to achieve the growth, disease resistance and wood quality characteristics required for a successful economic venture. However, clonal propagation is limited by declines in adventitious root formation with increasing stock plant age. We examined the effects of immediate or delayed IBA application on adventitious root formation and subsequent root and shoot development of cuttings harvested from 8-year-old clonal hedge plants of Pinus elliottii var. elliottii × P. caribaea var. hondurensis. IBA applied at the time of setting accelerated root formation, elevating the percentage of cuttings with roots at 13 weeks post-setting from 45 to 78% and from 83 to 93% for a low- and a high-rooting clone, respectively. Final rooting percentages for the same treatments and clones (78 and 85%, and 88 and 100%, respectively, at 20 weeks post-setting) were not significantly affected by IBA application. IBA increased the root:shoot ratio of rooted cuttings by decreasing shoot weight compared with untreated cuttings, without affecting root weight, root length, root surface area or root volume. IBA was only effective when applied at the time of setting. A simple IBA treatment for cuttings from 8-year-old clonal hedges, by accelerating root production, has potential for reducing nursery costs and increasing the root system quality of containerised pine cuttings.  相似文献   

8.
Adventitious rooting is essential for vegetative propagation of woody species. We studied the effects of auxin and light on the development of adventitious roots in cuttings obtained from seedlings of Eucalyptus saligna Smith and E. globulus Labill in an attempt to characterize the adventitious rooting process and identify factors controlling rhizogenesis. Root development was scored as rooting percentage, root density (roots per rooted cutting), mean rooting time and root length. In both species, rooting time was reduced in the presence of auxin. Cuttings from 2-month-old E. saligna seedlings were responsive to lower auxin concentrations than comparable cuttings from E. globulus seedlings. Cuttings from 3-month-old E. saligna seedlings rooted promptly and rooting was not significantly affected by light conditions. In contrast, rooting of cuttings from 3-month-old E. globulus seedlings exhibited recalcitrant behavior and no roots were formed if illuminated during the root formation phase. Effective root regeneration of E. globulus cuttings was obtained by a 4-day exposure to 10 mg l(-1) IBA and culture in darkness during the root formation step. Loss of rooting capacity with seedling age was more pronounced in E. globulus than in E. saligna. The possibility of switching adventitious rooting off and on by manipulating light regime and exogenous auxin supply in E. globulus, and the constitutive nature of rooting in E. saligna may provide useful models for examining the rooting process at the biochemical and molecular levels in Eucalyptus.  相似文献   

9.
After about 20 days, hypocotyl cuttings from 20-day-old loblolly pine (Pinus taeda L.) seedlings rooted easily in the presence of the auxin indole-3-butyric acid (IBA), with roots forming directly from xylem parenchyma. In contrast, woody cuttings from 1-2-year-old hedged seedlings formed roots indirectly from callus tissue in 60-90 days, but IBA had little effect on rooting. Variation in rooting among hypocotyls from both half- and full-sib families was highly significant in response to IBA, and rooting did not occur within 20 days unless IBA was applied. Hypocotyls from poor rooting families tended to produce fewer roots per cutting than hypocotyls from good rooting families. Rooting by woody cuttings and hypocotyl cuttings from the same nine full-sib families was weakly correlated, raising the possibility that at least some common genetically controlled processes were affecting rooting by both types of cutting. The phytotropin N-1-naphthylphthalamic acid (NPA), supplied at 1 micro M with 10 micro M IBA, significantly inhibited rooting by hypocotyl cuttings from both good and poor rooting families, but there was no significant family x treatment interaction. Family variation in rooting ability may be a function of the frequency of occurrence of auxin-responsive cells in the hypocotyls.  相似文献   

10.
为了解无患子硬枝扦插生根机制,以1年生无患子硬枝作为扦插材料,在扦插第0—80天调查愈伤组织发育和根系形成情况,测定插穗的腋芽(嫩叶)以及基部2cm长度的韧皮部内源激素和多酚类物质的含量。结果表明,无患子硬枝扦插第10天开始出现愈伤组织,第50天愈伤率达到最高值83.33%;第40天开始出现生根插穗,生根率为6.67%,随后不定根数量迅速增加,第70天生根率达到86.67%,此时平均有5.33条。之后生根数量不变,根系仍然在生长,且扦插后根系效果指数持续增高。插穗韧皮部内源激素含量变化较复杂。整体来看,高含量赤霉素(GA3)抑制愈伤组织和不定根形成,且在根原基发生期和不定根形成关键期达到峰值,在不定根速生期持续下降;高含量生长素(IAA)促进不定根的形成,且在扦插后第20天,即根原基发生期,达到峰值(92.7μg/g);玉米素核苷(ZR)对无患子硬枝扦插过程的生理作用较复杂,低含量的ZR有利于根原基的发生和不定根速生,但高含量的ZR促进不定根形成。韧皮部ZR/IAA在扦插后第20—40天呈下降趋势,第40—60天快速上升,促进不定根生长;GA3/IAA整体呈现抛物线形下降趋势,特别是在根原基发生期和不定根速生期,下降速率更快,以促进不定根的生长。无患子硬枝插穗生根进程中,多数多酚类物质对愈伤组织形成、根原基发生及不定根形成有极显著抑制作用,没食子酸抑制效果稍弱;插穗内多种激素和多酚类物质的含量均发生了变化,且对插穗生根产生重大影响。总之,插穗根原基发生和不定根形成等关键时期,IAA含量升高,GA3、ZR以及多酚类物质含量降低,植物体内多种内源物质此消彼长,达到动态平衡,共同促进插穗生根。  相似文献   

11.
以思茅松1 a生母树不同质量穗条为材料进行扦插对比试验,分析不同穗条长度、穗条有无次生叶和不同采条位置及木质化程度穗条等对其生根率、不定根数量及不定根平均长度的影响。结果表明:思茅松穗条生根基本属于愈伤组织生根型;8 cm穗条生根效果较理想,生根率28.2%;无次生叶的为19.0%;半木质化萌条生根率为73.7%。  相似文献   

12.
采用1年生滇杨扦插苗枝条作为插穗,研究了不同浓度紫茎泽兰鲜叶和冻害叶片浸提液对插穗抽梢和生根的影响。结果表明,滇杨在各处理条件下均能抽梢和生根,抽梢率和生根率在98%以上,生根类型为皮部生根。各处理条件下的平均梢长和平均不定根数达极显著水平,平均不定根长和根系效果指数差异不显著。紫茎泽兰鲜叶和冻害叶片浸提液对插穗抽梢及生根的化感作用表现一致,对梢长及不定根长有微弱的化感促进或抑制作用,对不定根数均表现出较强的化感抑制作用。  相似文献   

13.
‘Zhongqiusucui’ jujube secondary shoots were treated with 3-indolebutyric acid (IBA) at three concentrations, 500, 1000 and 1500 mg/L. Results show that IBA could significantly enhance rooting and root characteristics of cuttings and were best with IBA at 1500 mg/L. In the rooting process, the formation of adventitious roots was related to the consumption and accumulation of nutrients (soluble sugars and proteins) and the changes in endogenous hormones in phloem, leaf tips and leaf bases. The rooting of cuttings had a positive correlation with the consumption of soluble sugars during the period of callus formation and with the accumulation of soluble sugars during adventitious root formation and growth. Rooting was positively related to the breakdown of soluble proteins in the phloem when the callus formed, and had a positive correlation with its accumulation during adventitious root formation and growth. Leaf tips and leaf bases showed a reverse trend in changes of soluble protein. However, together with the phloem, leaf tips and leaf bases regulated and controlled the formation and development of adventitious roots. The main activities of soluble proteins exist in the leaf tips as this was the main source of soluble proteins. The relation between rooting and IAA (indole-3-acetic acid) content in phloem was positive and thus a high concentration of IAA could benefit the induction and formation of adventitious roots. However, rooting was negatively related with ABA (abscisic acid) and GA (gibberellic acid) and a high concentration of both could inhibit the induction and formation of adventitious roots. Rooting had a positive correlation with phloem IAA/ABA ratios, and higher ratios could improve rooting. Low concentrations of ZR (zeatin riboside) triggered the induction of adventitious roots, while higher concentrations promoted root growth. Endogenous hormones in leaf tips and bases had an impact on rooting. The activities of endogenous hormones mainly existed in leaf tips because they play a major role in the production and consumption of IAA and its ABA content increased during rooting. The ZR in leaf tips influenced the rooting of cuttings, especially in the callus formation and rooting stage. Leaf tips were the main source of GA.  相似文献   

14.
以广东省野生油茶母树嫩枝或1 a插穗为试验材料,探讨不同基质、激素溶液和浸穗时间对油茶扦插育苗效果的影响.研究结果表明:以100%细沙为扦插基质时,生根率、侧根数和侧根长,分别为66.84%、2.88条和2.78 cm,显著大于其它处理(P<0.05);3种激素(IAA、NAA、ABT6)处理中,采用ABT6溶液处理的生根率和侧根长最大,侧根数较多,均显著大于CK (P <0.05);浸穗处理中,25 mg/L ABT6溶液浸泡2h处理的生根率最高,为84.37%,侧根数和侧根长也较多,分别为3.49条和2.31 cm.因此进行油茶秋季扦插繁殖时,插穗宜采用25 mg/L ABT6溶液浸泡2h后,扦插于100%细沙基质上.  相似文献   

15.
杂种落叶松连续繁殖与插穗生根关系的生理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
观察了日×长杂种落叶松连续繁殖插穗不定根发育进程,研究了连续繁殖对插穗生根力衰退的阻滞效应,并分析了一轮采穗圃与原株采穗圃插穗不定根发育期内源激素含量的动态变化。结果表明:扦插后13 31 d是愈伤组织形成和不定根原始体分化发育的关键期,此时一轮分生株愈伤组织形成和不定根发育均优于原株。连续繁殖对插穗生根性状有显著作用,尤其是生根率很低的原株,经过一轮繁殖后,生根性状有极显著提高。连续繁殖影响插穗自身激素含量,尤其是IAA,经过一轮繁殖后,含量明显高于原株。从不定根发育过程中激素的动态变化看,一轮分生株插穗(IAA+GA3+ZR)/ABA比值在不定根发育前期明显高于原株,与生根率的变化一致,可用来衡量不同繁殖次数插穗生根性状的优劣。  相似文献   

16.
A study was conducted on the twelve clones of shisham (Dalbergia sissoo Roxb.). These clones were obtained from India and Nepal. Single-node leafy cuttings were prepared from the vegetative multiplication garden to examine the clonal variation, effect of IBA treatment on rooting response and associated metabolic changes during adventitious root formation. A remarkable and significant variation was observed due to treatment of 2,000 ppm IBA in the rooting parameters. Clonal variations were also significant for root and shoot growth while length of root was insignificant. Among the twelve clones studied; C3 (Tulsipur, Gonda, Uttar Pradesh, India) and C4 (Laxmipur, Gonda, Uttar Pradesh, India) clone cuttings have given the highest rooting response. Interaction (clone × IBA) was significant only for production of number of roots per cutting. Periodic sampling for clone C3 was performed at 0, 7, 14, 21, 28 and 35 days to examine the contents of total soluble sugars, starch, protein and peroxidase (PER) activity in the rooting zone of cuttings (∼0.5 cm) during adventitious root primordium development. A significant increase in all the metabolic activities was noted due to IBA. Total soluble sugars and starch contents of cuttings decreased with the passage of time. Protein content and PER-activity started to increase in the early stage and reached the highest level on day 21, followed by a decline at the 35th day of sampling. These trends were common for both IBA treated and untreated cuttings. Protein content and PER-activity remained higher in the rooting zone of IBA treated cuttings. Overall these findings suggested that exogenous application of IBA may have activated carbohydrate metabolism for release of energy, while protein and PER-activity were necessary for cell division and differentiation during adventitious root primordium initiation and development in the rooting zone of cuttings.  相似文献   

17.
Interactions between two isolates (Avondhu and CBS) of Tricholomopsis rutilans and ectomycorrhizal fungi (Hebeloma crustuliniforme, Laccaria laccata and Paxillus involutus) were examined on agar medium in the presence or absence of woodchips. The CBS isolate showed more competitiveness than the Avondhu isolate, when paired with ectomycorrhizal fungi. There was an inhibition of the growth of mycelium of the ectomycorrhizal fungi ranging from overgrowth to avoidance. The ectomycorrhizal fungi exhibited hyphal abnormalities such as discoloration, excessive vacuolation and curling. Formation of mycorrhizas by H. crustuliniforme in Pinus contorta and Picea abies was unaffected by the presence of the CBS isolate, whereas a reduction occurred in the presence of the Avondhu isolate. In non‐mycorrhizal seedlings of both conifers, the Avondhu isolate reduced root and shoot dry mass and number of root laterals and caused a lower number of short roots in lodgepole pine. The significance of these interactions between T. rutilans and ectomycorrhizal fungi in paired culture and during symbiosis is discussed.  相似文献   

18.
The influence of seasonal variation, indole-3-butyric acid (IBA) and type of cuttings was examined on induction and growth of adventitious roots in Bambusa nutans Wall. and Bambusa tulda Roxb. Singlenode culm and culm-branch cuttings from the mature culms were provided with immersion treatment for 24 h of either water (control) or 2 mM IBA in four different seasons, i.e., spring (mid February), summer (mid May), rainy (mid July), and winter (mid November) and maintained for two months in the mist chamber at the relative humidity of (70±5)% and the temperature of (30±2)°C. In B. nutans, adventitious rooting occurred in both types of cuttings in all the seasons with the best rooting in the summer season i.e., May (88% in culm cuttings) and the least in winter. On the contrary, adventitious rooting was recorded only in culm cuttings in spring and summer season in B. tulda. IBA treatment significantly enhanced rooting, root number and root length; registering 14 to 17 times improvement over control in the best rooting season. Three factor-interactions (season × cutting type × IBA treatment) were significant for rooting in B. nutans and all characteristics, except sprouting in B. tulda. Thus, single-node culm and culm-branch cuttings in B. nutans and culm cuttings in B. tulda treated with 2 mM IBA during spring (February) to summer (May) season are recommended for their clonal multiplication.  相似文献   

19.
To improve the propagation of Japanese cedar (Cryptomeria japonica D. Don), we investigated the effects of apical and basal temperatures during a water soaking treatment on the adventitious root formation of 70-mm long shoot tip cuttings which have an apical bud. The basal portion of the cuttings was soaked for 28 days in water with temperatures ranging from 10 to 35 °C, at an air temperature of 5 or 10 °C. Control cuttings were soaked in water at 25 °C, with an air temperature of 25 °C. Treated cuttings were then planted in vermiculite rooting medium and grown at an air temperature of 25 °C for 35 days. Adventitious roots initiated earlier and developed more in the cuttings treated with apical temperatures of 5 or 10 °C and basal temperatures of 20–30 °C than in the control cuttings. The rooting percentage was greatest (93 %) in the cuttings treated with a 10/25 °C apical/basal temperature, whereas few control cuttings rooted (13 %). This suggests that the temperature gradient created by warming the basal portion of the cuttings while cooling their apical end stimulates adventitious root formation. When we tested seasonal variation of rootability at 10/25 °C, the rooting percentage increased from early autumn to winter, and decreased from winter to summer. The soluble sugar contents did not directly affect the formation of adventitious roots in the present study.  相似文献   

20.
三种杨树扦插生根期间内源激素水平的比较研究   总被引:13,自引:0,他引:13  
用高效液相色谱(HPLC)和气相色谱(GC)法,分析银白杨、毛白根和山杨的对照、NAA处理和NAA+BA处理硬枝插穗(芽、皮)的内源ABA、IAA和玉米素含量在扦插生根期间的变化。试验表明,硬枝扦插生根是潜伏根原基存在与否和皮部内源激素平衡两方面的原因决定的。银白杨皮部的IAA/ABA比值和玉米素含量高,潜伏根原基有迅速恢复生长的条件,能自发生根成活。毛白杨的IAA/ABA比值和玉米素含量都低,需  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号