首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following clearcutting applying the conventional stem-only harvesting method in a Norway spruce (Picea abies (L.) Karst.) stand and different levels of removal of logging residue, the nutrient fluxes from the heaps of logging residue and from the O horizon were monitored over four growing seasons and the soil nutrient pools were determined. Three levels of removal of logging residue were carried out using (i) conventional stem-only harvesting (no residues removed); (ii) residues removed; and (iii) removal of branches (foliage left on site). The heaps of logging residue were a minor source of inorganic N entering the soil in the water percolating through the heaps, but they were a significant source of organic N, P, Ca, Mg, and especially K. Nutrient fluxes from the O horizon were in general greater under the heaps of logging residue as compared to soils without overlying logging residue. The leaching of inorganic N from the O horizon under the heaps of logging residue resulted in a net loss of these compounds, while the O horizon without overlying logging residue gained N. The removal of logging residue significantly decreased the extractable K pools in the soil while it or conversely, the presence of residue heaps had no significant effect on the pools of organic matter and the pools of N, P, Ca, and Mg in the O horizon and in the 0–10 cm soil layer. The results show that the short-term effects of logging residue on nutrient dynamics in the soil can be complex and difficult to interpret in terms of site productivity as there are changes in the nutrient fluxes, which imply the opposite effects on site productivity. However, the results do indicate that, in the short-term, the removal of logging residue does not impair pools of N in the soil nor site productivity on sites where the availability of N limits productivity.  相似文献   

2.
Abstract

Effects of stump harvesting on the properties of surface soil and on the density, structure and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands were estimated in a field trial in western Finland. The experiment was established in 1977 and measured in 2010. Stems and logging residues were harvested after clear-cutting, and stumps were lifted and removed from half of the experimental area. Sixteen plots were planted with pine seedlings and 16 with spruce. The main effects of stump harvesting were improved survival of planted trees and an increase in natural regeneration. No clearly negative effects were noted in the stand development. Stump harvesting had no or minimal effects on the properties of the organic layer and those of the 0- to 10-cm mineral-soil layer. Soil properties did not differ between tree species. Pine production was higher on plots with stump removal compared to plots without soil treatment.  相似文献   

3.
In Fennoscandia, logging residues (LR) are increasingly being harvested to provide fuel for renewable energy. However, the removal of LR is thought to lead to decreased growth in the next generation of trees. The effect on tree growth has generally been obtained by comparing the total removal of residues with retained residues spread evenly on the ground. With current clear-cutting practices, residues can be left with different spatial distributions, confounding the effects of residue removal. Field experiments were, therefore, established at two Norway spruce sites, comprising six treatments with varying distributions and volumes of residues. Before planting seedlings, the sites were disc-trenched. At one of the sites, seedling survival was significantly lower when all residues were removed immediately. At both sites, after 10 years there were statistically significant growth losses after removal of residues. There were no differences in plant growth if the residues were concentrated in small heaps and strings, simulating the normal distribution of LR following stem-only harvesting, compared with residues left evenly spread on the ground. To determine the duration of the observed growth effects, these study sites must be monitored more long term.  相似文献   

4.
The immediate effects of bioenergy harvesting methods on epixylic species were studied in mature managed Norway spruce dominated forests in southern Finland. The treatments included logging, residue harvesting, and soil preparation as either mounding or mounding combined with stump harvesting. Altogether, 110 logs and 440 species sample plots on logs were inventoried before and after logging, and after soil preparation treatments. Logging decreased the cover and species richness in all epixylic species groups. The soil preparation decreased the cover of macrolichens, while stump harvesting was significantly most devastating both for cover and richness in bryophytes. We suggest that bioenergy harvesting critically affects the epixylic species, and therefore the use of less devastating methods and compensation for the loss of coarse woody debris is recommended on a landscape level.  相似文献   

5.
Recently, in addition to logging residues, stumps have become an important component in energy production since there is growing global interest in the use of renewable energy sources in order to decrease anthropogenic carbon emissions. Harvesting of stumps influences the forest floor by changing vegetation and soil organic layers and exposing mineral soil across large areas. We studied whether stump harvesting after clear felling poses further short-term changes in boreal forest soil decomposer community (microbes and mesofauna) and vegetation when compared to the traditional site preparation practice (mounding). In general, stump harvesting caused decline in enchytraeid abundance but did not induce further major changes in decomposer community otherwise nor in vegetation of each soil micro-habitat (intact soil and exposed mineral soil). However, the abundances of almost all decomposer animals were lower in the exposed mineral soil than in the intact soil. Stump removal increased the area of exposed mineral soil in the clear felled areas, leading to lower amount of high quality habitat for most decomposer organisms. Hence, it is obvious that there are (or will be) differences in the decomposer community dynamics between the treatments at the forest stand level. Both species richness and coverage of plants benefitted from large-scale exposure of mineral soil. Because the stump removal procedure disturbs soil organic layers and negatively affects the decomposer community, it has the potential to alter nutrient dynamics in forests.  相似文献   

6.
This article examines alternative forest harvesting regimes when ecosystem services in terms of water quality, biodiversity conservation and climate change mitigation are included in the analysis. The harvesting regimes are whole-tree harvesting with stump removal and conventional stem-only harvesting. The harvesting regimes are evaluated under two alternative climate policy contexts. The first alternative is a carbon neutral bioenergy policy, which assumes the carbon dioxide (CO2) neutrality of bioenergy and produces substitution benefits, as bioenergy replaces fossil fuels. The second alternative climate policy, a carbon non-neutral bioenergy policy, takes into account the fact that bioenergy causes carbon dioxide emissions, producing substitution costs, and that harvested woody biomass affects the ability of a forest to act as a carbon sink. We extend the traditional Faustmann (1849) rotation model to include nutrient load damage, biodiversity benefits, and climate impacts. The empirical analysis is based on Finnish data from a catchment experiment carried out on drained peatland forests. The empirical results show that under a carbon neutral bioenergy policy, whole-tree harvesting with stump removal produces the highest net social benefits. However, if a carbon non-neutral bioenergy policy is assumed, the net social benefits are greater under stem-only harvesting.  相似文献   

7.
Forest harvesting and subsequent regeneration treatments may cause changes in soil and solution chemistry that adversely affect forest productivity and environmental quality. The objective of this study was to assess soil carbon (C), nitrogen (N), and base cation pools and fluxes, and to construct a hydrogen ion (H+) mass balance to identify major processes controlling acidity production and consumption 14 years following whole-tree harvesting and regeneration in a northern forested wetland with underlying mineral soils derived from calcareous glacial drift. Results for soil elemental and nutrient pools in the harvested/regenerated stand were compared to an adjacent non-harvested stand and a riparian zone. The riparian zone had the highest soil total C, total N, and exchangeable calcium (Ca) and magnesium (Mg) pools; however, no difference in exchangeable potassium (K) was evident among stand types. Moreover, no differences between the harvested/regenerated and uncut stands were evident in any of the soil chemical pools.Net export of base cations was minimal and the H+ mass balance indicated that net cation exchange was not a significant process in H+ production or consumption in either the uncut or harvested/regenerated stands. The most striking differences in the H+ mass balance were (1) eight times the H+ consumption from sulfate (SO42−) reduction in the harvested/regenerated stand compared to that in the uncut condition and (2) nearly twice the H+ production due to N immobilization in the harvested/regenerated stand. However, both stand types were net H+ sinks and increases in H+ export due to whole-tree harvesting were not evident.The riparian zone was a net exporter of base cations. This finding was attributed to a combination of base cation exchange and carbonate mineral weathering; data suggested the importance of the latter. More research, however, is required to isolate the contributions of cation exchange and carbonate weathering on base cation export from the riparian zone. Stream chemistry was consistent with that of the riparian zone, indicating a strong linkage between the riparian zone stream chemistry, and whole-tree harvesting had no intermediate term (i.e., 14 years) effects on stream acidification in this managed northern wetland ecosystem.  相似文献   

8.
Nutrient removal has been one of the key issues since the harvesting of logging residues started in Sweden. This study examined the actual removal of nutrients by measuring the amounts of biomass removed (from a forest products perspective) combined with their respective nutrient concentrations (N, P, Ca, K and Mg), from a clear-felled area when using the dried-stacked and fresh-stacked methods. The most important finding is that the two methods were very similar regarding nutrients remaining at the clear-felled area. Of the nutrients remaining there, most were found to be well distributed between the harvester heaps. Both methods fulfilled the requirements of the Swedish Forest Agency. A sensitivity analysis showed that even if the dried-stacked method left more needles, or the fresh-stacked method extracted more logging residues, there would only be a small impact on the levels of nutrients removed. The sensitivity analysis also showed that the amount of logging residues remaining between the harvester heaps seems to be much more important for nutrients left behind, regardless of extraction method. With this in mind, it is highly probable that improvements to the extraction of logging residues, without increasing nutrient removal, can be made.  相似文献   

9.
In the humid and temperate areas of southern Europe, forest plantations are dominated by fast-growing species (Eucalyptus globulus, Pinus radiata and Pinus pinaster), which are grown on acidic soils with low reserves of available nutrients. In this study the amounts of nutrients exported from the plantations under different regimes and intensities of harvesting were evaluated and, on the basis of the results obtained, silvicultural management methods aimed at improving the nutritional status of the plantations were proposed. We found high ratios between nutrients exported by harvesting and those available in soil stores, indicating limitation for P, Ca and Mg over the long term, which is consistent with frequently found deficiencies of these nutrients. Current harvesting practices (removal of stem wood and bark) result in high rates of export of P, K, Ca and Mg, especially in eucalypt plantations, because of the high productivity and low nutrient efficiency of this species. Comparison of the amounts of nutrients exported by harvesting, with natural inputs (rainfall and weathering) and outputs (stream water), suggests that intensive exploitation of these plantations may result in negative budgets, especially if whole tree harvesting is carried out. The application of fertilizers containing P, Ca and Mg should be encouraged in all cases to favour the return of nutrients, especially where logging residues are extracted. The cost of harvesting in terms of nutrients can also be reduced by careful selection of the tree species planted and of the tree fractions harvested and by reducing the intensity of harvesting.  相似文献   

10.

The study investigated the effects of forest residue extraction on tree growth and base cations concentrations in soil water under different climatic conditions in Sweden. For this purpose, the dynamic model ForSAFE was used to compare the effects of whole-tree harvesting and stem harvesting on tree biomass and the soil solution over time at 6 different forest sites. The study confirmed the results from experimental sites showing a temporary reduction of base cation concentration in the soil solution for a period of 20–30 years after whole-tree harvesting. The model showed that this was mainly caused by the reduced inputs of organic material after residue extraction and thereby reduced nutrient mineralisation in the soil. The model results also showed that whole-tree harvesting can affect tree growth at nitrogen-poor forest sites, such as the ones in northern Sweden, due to the decrease of nitrogen availability after residue removal. Possible ways of reducing this impact could be to compensate the losses with fertilisation or extract residue without foliage in areas of Sweden with low nitrogen deposition. The study highlighted the need to better understand the medium- and long-term effects of whole-tree harvesting on tree growth, since the results suggested that reduced tree growth after whole-tree harvesting could be only temporary. However, these results do not account for prolonged extraction of forest residues that could progressively deplete nutrient pools and lead to permanent effects on tree growth.

  相似文献   

11.
The objective of this study was to analyze soil surface disturbances resulting from logging tractors, of different types (skidder and forwarder), used for clear-cutting in natural Aleppo pine forests and their consequences on plant species and functional group diversity.

Results indicate that shallow disturbances (litter left in place or removed) were more frequent than deep disturbances (topsoil removed, subsoil exposed, rut exposed) regardless of the logging tractor used. The forests with previously cultivated terraces were the least disturbed. Moreover, with the aid of a functional group analysis we distinguished four plant species response groups to soil surface disturbance types. The mosaic created by these groups after clear-cutting and log removal probably contributes to a rapid auto-regeneration of a mixed plant community similar to that existing just prior to the clear-cutting.  相似文献   


12.
The effects on nutrient exports of a range of thinning regimes for maritime pine and radiata pine plantations in northern Spain were simulated in this study. Growth models, tree biomass equations and nutrient concentration in tree fractions were used simultaneously to calculate the amounts of N, P, K, Ca and Mg removed and left in the logging residues for five thinning intensities, five site indexes and four harvesting scenarios for each species, considering the whole rotation. A more intense thinning regime decreases the total amount of nutrients exported and increases the proportion of nutrients returned to the soil before the clearfell, being a more progressive system of extracting nutrients from the ecosystem. A substantial amount of nutrients are located in the crown fractions and the bark, making desirable the harvesting of debarked logs. The results allow the calculation of fertilization needs to avoid the depletion of soil nutrient capital in a variety of silvicultural situations.  相似文献   

13.
人工林生态系统的C储量是陆地生态系统碳库之一,皆伐炼山所造成的环境负效应值得深思.本文以华西雨屏区28 a生杉木人工林为研究对象,旨在阐明皆伐和炼山对杉木人工林生态系统C库的影响.结果如下:(1)皆伐所造成的干材C转移量为85.9(±7.6)t·hm-2、(2)炼山所造成的采伐剩余物、林下层植物和凋落物C量损失分别为8.8(±0.3)t·hm-2、0.19(±0.02)t·hm-2和2.80(±0.08)t·hm-2、(3)炼山能显著降低0 ~60 cm层的土壤有机碳含量,其C损失量为39.5(±1.0)t·hm-2.炼山造成的采伐剩余物、林下层植物、凋落物和土壤有机质燃烧所释放CO2量为188.1 t·hm-2.在全球气候变化情景下,人工林皆伐炼山所造成的环境负效应不容忽视.  相似文献   

14.
Selection logging is a principal management scheme in natural teak-bearing forests in Myanmar. Monitoring the spatial extent and intensity of selection logging is important for sustainable forest management. This study applied the normalized difference vegetation index (NDVI) image differencing method using two SPOT-5 pan-sharpened images (2.5 m spatial resolution) taken in October 2007 and January 2009 to analyze canopy changes associated with damage from forest harvesting. According to the pixel-based analysis, NDVI changes were larger in most logging road/log landing points whereas smaller NDVI changes were seen in most unlogged points. NDVI changes in teak stump areas were related to distance from a logging road and the number of stumps within the estimated crown area (a circular area with a 10 m radius from the center of each stump). A Fisher’s exact test showed that one of the main factors causing the high NDVI change in teak stump areas was the effect of road construction. The distribution pattern of teak stumps indicated that teak stumps with estimated crown areas that contained more than one stump had high mean change in NDVI. The spectral difference between before and after logging revealed that logging roads had a greater effect on canopy changes than teak stumps.  相似文献   

15.
Growing interest in the use of planted forests for bioenergy production could lead to an increase in the quantities of harvest residues extracted. We analysed the change in C and N stocks in the forest floor (LFH horizon) and C and N concentrations in the mineral soil (to a depth of 0.3 m) between pre-harvest and mid-rotation (stand age 15 years) measurements at a trial site situated in a Pinus radiata plantation forest in the central North Island, New Zealand. The impacts of three harvest residue management treatments: residue plus forest floor removal (FF), residue removal (whole-tree harvesting; WT), and residue retention (stem-only harvesting; SO) were investigated with and without the mean annual application of 190 kg N ha−1 year−1 of urea-N fertiliser (plus minor additions of P, B and Mg). Stocks of C and N in the forest floor were significantly decreased under FF and WT treatments whereas C stocks and mass of the forest floor were significantly increased under the SO treatment over the 15-year period. Averaged across all harvesting treatments, fertilisation prevented the significant declines in mass and C and N stocks of the forest floor which occurred in unfertilised plots. The C:N ratio of the top 0.1 m of mineral soil was significantly increased under the FF treatment corresponding to a significant reduction in N concentration over the period. However, averaged across all harvesting treatments, fertilisation prevented the significant increase in C:N ratio of the top 0.1 m of mineral soil and significantly decreased the C:N ratio of the 0-0.3 m depth range. Results indicate that residue extraction for bioenergy production is likely to reduce C and N stocks in the forest floor through to mid-rotation and possibly beyond unless fertiliser is applied. Forest floors should be retained to avoid adverse impacts on topsoil fertility (i.e., increased C:N ratio). Based on the rate of recovery of the forest floor under the FF treatment, stocks of C and N in the forest floor were projected to reach pre-harvest levels at stand age 18-20. While adverse effects of residue extraction may be mitigated by the application of urea-N fertiliser, it should be noted that, in this experiment, fertiliser was applied at a high rate. Assessment of the sustainability of harvest residue extraction over multiple rotations will require long-term monitoring.  相似文献   

16.
In northern Sweden, the forests are used simultaneously for both timber production and reindeer husbandry. During the winter months, lichen is the most important fodder for reindeer. Forest management operations are generally considered having a negative impact on reindeer husbandry as harvesting and dense stands remove or obscure the ground lichen cover. In this study, we simulate three different scenarios for forest management, differing in the intensity and types of harvest operations. The resulting 100-year scenarios are analyzed with respect to their estimated suitability for providing reindeer pasture areas. Suitability is determined by vegetation type, stand density and stand height. The results indicate that the current trend of a decrease in lichen area will continue if existing forestry practice prevails. Implementing continuous cover forestry as a management alternative and carrying out precommercial thinning could halt the decrease in reindeer pasture area and even lead to a future increase in pasture area, with losses of approximately 5% in the net present value of forestry.  相似文献   

17.
By considering trade-offs and complementarity between carbon removal from the atmosphere by forests and emission reduction by wood use, we developed a forest-sector carbon integrated model for Japan. We discuss mitigation measures for Japan based on model projections. The integrated model included the forest model and the wood use model. Based on three scenarios (baseline, moderate increase, and rapid increase) of harvesting and wood use, the integrated model projected mitigation effects including carbon removal by forests and emission reduction through the wider use of wood, until 2050. Results indicate that forests will not become a source of net carbon emissions under the three scenarios considered. The baseline scenario is most effective for mitigating climate change, for most periods. However, the sum total of carbon removal in forests and carbon emission reductions by wood use under the rapid increase scenario exceeded the one of the moderate increase scenario after 2043. This was because of strong mitigation activities: promoting replanting, using new high-yield varieties, and wood use. The results also indicated that increases in emission reduction due to greater wood use compensated for 67.9 % of the decrease of carbon removal in 2050, for the rapid increase scenario. The results show that carbon removal in forests is most important in the short term because of the relative youth of the planted forests in Japan, and that mitigation effects by material and energy substitution may become greater over the longer term.  相似文献   

18.
This study uses simulations to investigate the effects of implementing two different Japanese forestry subsidy systems on timber production and carbon stock, and examines the consequences for harvesting strategies. An existing Local Yield Table Construction System (LYCS), a wood conversion algorithm, and a harvesting cost model were used in the simulations to test the applicability of different subsidies to the thinning of stands. Using forest inventory data collected by local government staff, simulation output was used to calculate forestry profits, carbon stocks, subsidies, the amount of labor required, and the cost effectiveness of investing in subsidies. By comparing the output of simulations based on two scenarios, we found that both the clear-cutting area and the amount of harvested timber were larger under Scenario 2, in which the rules governing subsidy allocations are more relaxed, than under Scenario 1, in which the rules are more restrictive. Because the harvested timber under Scenario 1 was mainly produced by clear-cutting, the forestry profits and the subsidy predicted in the early period of the simulation, were larger under Scenario 1 than under Scenario 2. In contrast, the carbon stock was larger under Scenario 2 than under Scenario 1. The simulation model is likely to be useful for improving Plan-Do-Check-Act cyclesimplemented in Japanese forest management systems.  相似文献   

19.
Increased forest biomass production for bioenergy will have various consequences for landscape scenery, depending on both the landscape features present and the character and intensity of the silvicultural and harvesting methods used. We review forest preference research carried out in Finland, Sweden and Norway, and discuss these findings in relation to bioenergy production in boreal forest ecosystems. Some production methods and related operations incur negative reactions among the public, e.g. stump harvesting, dense plantation, soil preparation, road construction, the use of non-native species, and partly also harvest of current non-productive forests. Positive visual effects of bioenergy production tend to be linked to harvesting methods such as tending, thinning, selective logging and residue harvesting that enhance both stand and landscape openness, and visual and physical accessibility. Relatively large differences in findings between studies underline the importance of local contextual knowledge about landscape values and how people use the particular landscape where different forms of bioenergy production will occur. This scientific knowledge may be used to formulate guiding principles for visual management of boreal forest bioenergy landscapes.  相似文献   

20.
We investigated factors limiting the recovery of natural forest in former large-scale conifer plantations abandoned after clear-cutting in southwestern Japan. We analyzed forest recovery status (“recovered” sites covered by evergreen broad-leaved trees, and “unrecovered” sites covered by pioneer community or nonvegetated sites) using aerial photographs and field survey. We applied logistic regression analyses to evaluate the effects of topography, construction of harvesting roads, distance from remnant forest, stand condition before clear-cutting, and prior land-use history on forest recovery. Human factors, i.e., land use and clear-cutting age, were found to affect to forest recovery more than environmental factors such as topography. Harvesting roads had the strongest negative impact on forest recovery. Forest recovery after clear-cutting of young sugi plantations also took longer than after clear-cutting of old sugi plantations or evergreen broad-leaved forests. Furthermore, areas formerly utilized as meadows recovered less successfully than those that had been managed as coppices. The influences of these factors were thought to be promoted by the advance reproduction as the regeneration sources for forest recovery. The influence of stand age before logging suggested an effect of thinning, which might alter the abundance of advanced reproduction in the understory. However, distance from remnant forest appeared to be less important. An influence of topography was also detected, but this could be partly explained by the existence of advance reproduction in the understory in certain topographic positions. Thus, our analysis suggests that regeneration sources originating from advanced reproduction in plantations play a significant role for the recovery of natural forest after clear-cutting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号