首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sixty years of individual tree crown class records were used to elucidate the influence of crown class (dominant, codominant, intermediate, or suppressed), shade tolerance (intolerant, midtolerant, or tolerant), and their interactions on the probability of individual tree movement among crown classes. Trees were measured at 10 year intervals between 1927 and 1987, excluding 1947, on 364 nominal 0.01 ha plots. A total of 14 154 individual tree records were used in this analysis. The transition rates among crown classes for 30 year intervals (1927–1957 and 1957–1987) were examined for all combinations of antecedent crown classes and tolerance rankings. The distribution of ingrowth among tolerance rankings was also examined.

Mortality rates increased with decreasing crown class for all tolerance rankings, and mortality rates increased with decreasing tolerance. Compared with tolerant trees, midtolerant and intolerant trees had higher rates of ascension into dominant and codominant crown classes and exhibited higher persistence rates in the dominant crown class. These factors suggest that midtolerant and intolerant trees have an advantage over tolerant trees in the higher crown classes, In contrast, tolerant trees had the advantage in suppressed and intermediate crown classes, with lower mortality rates, higher persistence, and higher rates of crown class ascension than for midtolerant or intolerant trees. Crown class stratification was driven by the change in relative advantage of each tolerance ranking among the crown class.

Results of this study suggest that the canopy stratum (upper canopy, lower canopy, or mixed) affected by disturbance is as important as disturbance scale, intensity, and frequency in influencing the composition of the suppressed crown class. Because the suppressed crown class is in a constant state of high flux, with fewer than 30% of the suppressed trees remaining in the suppressed crown class for any 30 year period, a small change in the relative persistence or ascension rates among tolerance rankings, whether by a different disturbance or climate regime, could alter the proportion of tolerance rankings in the suppressed crown class and ultimately result in an alternative succession.  相似文献   


2.
常绿和落叶阔叶树叶中N和P的变化及转移   总被引:3,自引:0,他引:3       下载免费PDF全文
薛立  罗山 《林业科学研究》2003,16(2):166-170
从叶完全展开到生长季结束对常绿阔叶树种铁冬青、红楠和海桐及落叶阔叶树种日本朴、银杏和木叶的N和P浓度进行了定期测定。结果表明,常绿阔叶树种新叶的N和P浓度从5—7月急剧下降,然后小幅波动,而老叶的N和P浓度变化缓慢。落叶阔叶树种的N和P浓度随着季节的推移而明显下降。大多数树种的P转移率大于N转移率。常绿阔叶树种的N和P的转移率大于落叶阔叶树种。  相似文献   

3.
We studied the distribution and retranslocation of N in 11-year-old Pinus contorta Dougl. trees following a winter application of N at 100 kg ha(-1) as (15)N-urea, (15)NH(4)NO(3) or NH(4) (15)NO(3). In all treatments, there was little uptake of (15)N after the first growing season although labeled N was still present in the soil. In subsequent years, (15)N in the trees was partly retranslocated, and, at the same time, it was diluted by uptake of unlabeled N from the soil. Between Years 1 and 8 after N fertilization, net retranslocation of (15)N from the lower crown (branches formed before fertilization) was 14%, and 18-25% of the (15)N in the trees was translocated to the upper and mid-crown. Overall, uptake of (15)N from nitrate was less than from urea or ammonium. However, when compared with the urea- and ammonium-N sources, (15)N from the nitrate source initially moved as rapidly into the foliage, but a greater proportion of it was retranslocated from the foliage during the second growing season. Nitrogen in foliage and wood formed in the growing season following fertilization was more highly labeled (measured as % N derived from the fertilizer) than in recently formed tissues. Labeling was substantially higher in foliage formed before fertilization than in wood of a similar age. In contrast, N in foliage formed after fertilization had only slightly higher labeling than wood of a similar age, indicating a relatively stable labeling throughout the trees once (15)N uptake had ceased. The concentrations of total and labeled N were substantially higher in foliage than in either wood or bark. There was evidence of N movement into wood tissues formed before fertilization, presumably along rays, and also of N retranslocation out of xylem cells as they matured. This study of internal N cycles was facilitated by the use of (15)N labeling because there was little uptake of labeled N after the first growing season, whereas interpretation based on total N was obscured by substantial uptake of N from the soil. We conclude that retranslocation studies based on measurements of total N content should be avoided.  相似文献   

4.
Leaf and crown morphology of shade-tolerant sugar maple (Acer saccharum Marsh.) were examined to test the hypotheses (1) that leaf area exhibits significant plasticity both within and between crown classes and individual tree crowns and (2) that leaf area is accurately predicted from estimates of crown volume. A total of 18 trees, ranging from 3.3 to 43.4 cm dbh, were felled and dissected into upper, middle, lower, and below-crown layers, for measurements of leaf, bark, and xylem dimensions. For dominant trees only, bark thickness and xylem radii were higher within the crown than below the crown. Cumulative leaf area index increased with decreasing stratum height at similar rates in all trees, except for two trees that were located in the understory. Area leaf weight declined with decreasing stratum height within the crown of all except four overstory trees. These four trees showed an increase with decreasing stratum height, i.e., leaves were heavier per unit area in the lower crown stratum and below the crown than they were at mid-crown. Within-tree leaf area density was usually higher in the upper crown of overstory trees and in the lower crown of understory trees. Total crown volume was the best predictor of whole-tree leaf area, but it was only slightly better than dbh.  相似文献   

5.
Carbon (C), nitrogen (N), and phosphorous (P) levels and their stoichiometry in plant components (leaves, branch trunks, roots) of trees in a karst forest and non-karst forest are compared. The results show that the C contents, C:N and C:P ratios of dominant species in the karst forest were lower than those in the non-karst forest, but the N and P and the N:P ratio were higher;C:N:P ratios in plant organs of trees in the karst forest were in the order of trunks>roots>branches>leaves. However, C:N:P ratio in the non-karst forest trees were trunks>branches>roots>leaves. Moreover, ratio of C:N:P in trunks was highest and lowest in leaves in both forests. In non-karst forest trees, N:P was in the order of leaves> roots>branches>trunks. There were no significant differences in the ratio of N:P in different plant components of trees in the karst forest. However, in karst and non-karst forest trees, the ratio of N:P in leaves was highest;positive correlations between N and P contents, and N and N:P ratios were observed in both karst and non-karst forests (p<0.001). Negative correlations between P and N:P ratios (p<0.05) were observed in karst forest trees, while positive correlations were observed in non-karst forest trees.  相似文献   

6.
Seasonal variations in leaf nitrogen, phosphorus and potassium concentrations were studied in a mature carob (Ceratonia siliqua L. cv "Mulata") orchard subjected to a 4-year irrigation and fertilization experiment. Three irrigation regimes (0, 50 and 100%), based on the evaporation values obtained from a class A pan, were tested in combination with two nitrogen (N) supply regimes in which 21 kg ha(-1) year(-1) (low-N) and 63 kg ha(-1) year(-1) (high-N) were supplied as ammonium nitrate. Leaf nitrogen concentration increased throughout the experiment, independently of treatments. There were no significant differences in leaf N concentration between trees in the high-N and low-N treatments. Irrigation regimes had no effect on leaf mineral concentration but influenced the amount of leaves shed and slightly modified the pattern of leaf shedding that occurred during the summer drought period. Nutritional balances between N and P and N and K were both closely and significantly correlated. Potassium was translocated from leaves to fruits during spring, independently of treatments. Severe water stress periods occurring during spring or autumn induced shedding of leaves leading to nutrient mobilization. Nutrient retranslocation during these drought periods may represent an adaptive mechanism. Nitrogen retranslocation was higher for trees in the high-N treatments than for trees in the low-N treatments, whereas phosphorus retranslocation was independent of the irrigation and fertilization treatments.  相似文献   

7.
We examined the vertical profiles of leaf characteristics within the crowns of two late-successional (Fagus crenata Blume and Fagus japonica Maxim.) and one early-successional tree species (Betula grossa Sieb. et Zucc.) in a Japanese forest. We also assessed the contributions of the leaves in each crown layer to whole-crown instantaneous carbon gain at midday. Carbon gain was estimated from the relationship between electron transport and photosynthetic rates. We hypothesized that more irradiance can penetrate into the middle of the crown if the upper crown layers have steep leaf inclination angles. We found that such a crown has a high whole-crown carbon gain, even if leaf traits do not change greatly with decreasing crown height. Leaf area indices (LAIs) of the two Fagus trees (5.26-5.52) were higher than the LAI of the B. grossa tree (4.50) and the leaves of the F. crenata tree were more concentrated in the top crown layers than were leaves of the other trees. Whole-crown carbon gain per unit ground area (micromol m(-2) ground s(-1)) at midday on fine days in summer was 16.3 for F. crenata, 11.0 for F. japonica, and 20.4 for B. grossa. In all study trees, leaf dry mass (LMA) and leaf nitrogen content (N) per unit area decreased with decreasing height in the crown, but leaf N per unit mass increased. Variations (plasticity) between the uppermost and lowermost crown layers in LMA, leaf N, the ratio of chlorophyll to N and the ratio of chlorophyll a to b were smaller for F. japonica and B. grossa than for F. crenata. The light extinction coefficients in the crowns were lower for the F. japonica and B. grossa trees than for the F. crenata tree. The leaf carbon isotope ratio (delta(13)C) was higher for F. japonica and B. grossa than for F. crenata, especially in the mid-crown. These results suggest that, in crowns with low leaf plasticity but steep leaf inclination angles, such as those of F. japonica and B. grossa trees, irradiance can penetrate into the middle of the crowns, thereby enhancing whole-crown carbon gain.  相似文献   

8.
Saur E  Nambiar EK  Fife DN 《Tree physiology》2000,20(16):1105-1112
We measured patterns of change in concentrations and contents of nitrogen, phosphorus, potassium, magnesium and calcium in fully expanded leaves of young Eucalyptus globulus (Labill.) trees growing in a plantation in southeastern Australia, over a 12-month period beginning at the onset of spring. There was significant net retranslocation of mobile nutrients on a seasonal basis from green leaves, coinciding with continued growth and production of foliage. There was a close positive relationship between initial nutrient content (N, P and K) of the leaf and amount retranslocated, and a tight coupling between N and P retranslocated from leaves. Net retranslocation was significantly correlated with basal area growth increments. Artificial shading of leaves resulted in senescence and reduction in leaf mass. It also induced retranslocation of N, P and K from leaves of different ages and from different position in the canopy. Although the mechanisms underlying the effects of shading intensity on these changes were not elucidated, shading provided an experimental tool for studying retranslocation. Comparison of the results with published data for Pinus radiata (D. Don) grown in the same environment indicated a similarity between the species in patterns of change in foliar nutrient contents and in factors governing foliar nutrient retranslocation, giving rise to unifying principles.  相似文献   

9.
Stem sapwood hydraulic permeability, tree leaf area, sapwood basal area, earlywood to latewood ratio of annual rings, radial variation in hydraulic permeability and stem hydraulic capacity were examined in dominant (D), codominant (CD) and suppressed (SP) lodgepole pine (Pinus contorta Dougl. ex Loud.) trees growing on medium and poor sites. Hydraulic permeability on a sapwood area basis (ks) was lower in suppressed trees (0.71 x 10(-12) m2) compared to dominants (1.97 x 10(-12) m2) and codominants (1.79 x 10(-12) m2), and higher on medium than on poor sites. The leaf/sapwood area ratio (S) varied with crown dominance position (D > CD > SP) but not by site type. Leaf specific conductivity (kL) did not vary between crown classes or site types. The relationship between leaf area and stem hydraulic supply capacity (Q*) was strong, but differed among crown classes. Dominant trees and trees from the medium sites had a greater proportion of earlywood in outer rings of sapwood than suppressed trees. Sapwood permeability declined from the cambium to the sapwood-heartwood boundary in all samples, but the decline was more gradual in dominant trees compared to codominant and suppressed trees; differences in the radial variation in sapwood permeability may be related to differences in S. Sapwood permeability is positively related to crown dominance, whereas subdominant (CD and SP) trees have greater Q* in relation to leaf area, leading us to propose that this may give subdominant trees a survival advantage, slowing self-thinning.  相似文献   

10.
We investigated changes in sapling growth and morphology of Thujopsis dolabrata var. hondai (hiba) for 7 years after release from suppressed lighting by selection cutting. We examined changes in aboveground biomass, elongation of stems and lateral branches, and annual diameter increment at the stem base. Vertical distributions of leaves per branch and per individual were also measured for morphological analysis. Under the suppressed condition before cutting, the crown consisted of orthotropic lateral branches, elongating up to the top of the stem or farther, and no branch was aborted. This crown type with large crown depth and concavity of the upper part had a bowl-like appearance. After the selection cutting, relative light intensity on the saplings increased from 4% to 26%. The increment enhanced aboveground biomass and stem elongation 7 years after the cutting. Diameter growth at the stem base was particularly accelerated 2 years after the cutting. While crown shape transformation of the saplings was not conspicuous at 7 years after the cutting, some released saplings showed a superior stem elongation ratio to that of the lateral branches. Thus, the upper part of the crown of these saplings changed from a bowl-like shape to a convex shape like that of a dome. Our study suggested that suppressed hiba saplings with the unique bowl-shaped crown enhanced their growth rates rapidly in response to improved light conditions, but required much more than 7 years for the full process of crown transformation for us to identify future trees in this stand. An erratum to this article is available at.  相似文献   

11.
Internal nutrient recycling through retranslocation (resorption) is important for meeting the nutrient demands of new tissue production in trees. We conducted a comparative study of nutrient retranslocation from leaves of five tree species from three genera grown in plantation forests for commercial or environmental purposes in southern Australia--Acacia mearnsii De Wild., Eucalyptus globulus Labill., E. fraxinoides H. Deane & Maiden, E. grandis W. Hill ex Maiden and Pinus radiata D. Don. Significant amounts of nitrogen, phosphorus and potassium were retranslocated during three phases of leaf life. In the first phase, retranslocation occurred from young leaves beginning 6 months after leaf initiation, even when leaves were physiologically most active. In the second phase, retranslocation occurred from mature green leaves during their second year, and in the third phase, retranslocation occurred during senescence before leaf fall. Nutrient retranslocation occurred mainly in response to new shoot production. The pattern of retranslocation was remarkably similar in the leaves of all study species (and in the phyllodes of Casuarina glauca Sieber ex Spreng.), despite their diverse genetics, leaf forms and growth rates. There was no net retranslocation of calcium in any of the species. The amounts of nutrients at the start of each pre-retranslocation phase had a strong positive relationship with the amounts subsequently retranslocated, and all species fitted a common relationship. The percentage reduction in concentration or content (retranslocation efficiency) at a particular growth phase is subject to many variables, even within a species, and is therefore not a meaningful measure of interspecific variation. It is proposed that the pattern of retranslocation and its governing factors are similar among species in the absence of interspecies competition for growth and crown structure which occurs in mixed species stands.  相似文献   

12.
We investigated the seasonal variation in the gas exchange of current and 1-year-old needles in the upper sun and lower shade crown of adult Pinus canariensis trees. In general, current year needles displayed lower gas exchange rates than the 1-year-old needles. In both needle age classes, gas exchange was significantly lower in the shade than in the sun crown. However irrespective of crown position and needle age, maximum daily net photosynthesis, transpiration, and stomatal conductance for water vapour were generally higher during the wet and cold winter as compared to the dry and hot summer. These higher gas exchange values obtained during the cold and wet season can mainly be explained by higher soil-water availability and lower evaporative demand as compared to the warm and dry seaon. In addition, we also observed a displacement in the temperature optimum of net photosynthesis towards lower temperatures during the cold and wet season as compared to the warm and dry season. The observed gas exchange characteristics indicate a conservative water saving strategy and thus allowing P. canariensis needles to maintain a positive carbon gain even at periods of high evaporative demand and low soil-water availability.  相似文献   

13.
2008年1月至2月,我国南方发生了严重的冰雪灾害,受害的森林地面达2.09×106km2。为了了解冰雪灾害对杉木的损害和由此引起的林地养分分布特点,作者调查粤北一个杉木林地的受害情况。冻雨在杉木枝叶上形成冰柱,造成所有的林木折冠。林木折断的高度和胸径呈显著相关。树冠残体的养分总浓度随残体组分而变化,呈理叶>皮>枝>干。树冠残体的干重达19.11t·hm-2,枝、树干、叶和皮分别占37%、28%、27%和8%。2008年树冠残体的养分分布随组分而急剧变化,其中叶的养分量占残体养分总量的70%,枝、干和皮分别占13%、7%和10%。2008年杉木林地的N、P、K 的积累量为105067.9 t·hm-2,杉木残体、凋落物和土壤分别占0.18%、0.03%和99.79%。养分积累量在树冠残体各组分和凋落物中的排序为N>K>P,而在土壤中为K>N>P。2009年的凋落物中N和P浓度大于2008年的凋落物,而K浓度小于后者。2009年的干和皮残体中N和P浓度略大于2008年的干和皮残体,而K浓度正好相反。2009年的干和皮残体中的N和P储量与2008年接近,K储量略小于后者。2009年的凋落物中N、P和K储量大于20...  相似文献   

14.
Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash(Fraxinus mandshurica) and a Larch(Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements(Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13,25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.  相似文献   

15.
ABSTRACT

Forest thinning, using cut-to-length and whole-tree harvesting systems with subsequent underburning were assessed for their influence on stand structure, health, and fire resilience in uneven-aged Jeffrey pine (Pinus jeffreyi Grev. & Balf). Stand attributes, derived from measuring trees ≥ 10.2 cm diameter at breast height (DBH), were collected from permanent plots. Trees were divided into three size classes that generally corresponded to dominant/codominant, intermediate, and suppressed crown classes. Comparisons of post- to pre-burning mortality revealed significant thinning and fire main treatment effects as well as significant interaction between these two treatments in the two larger size classes. Mortality increased by 250% in the intermediate crown class within the burned stand portion of the whole-tree treatment, whereas among dominant/codominant trees mortality rose by 160% in the burned cut-to-length treatment combination. Pre- to post-burning shifts in live crown, expressed as a percentage of total tree height, were significantly influenced by both thinning and fire main treatments in the two larger size classes, while the interaction of these treatments was also significant among the largest trees. Within both of these size classes, decreases in live crown percentage were greatest in the burned portion of the unthinned treatment, where intermediate crown class trees lost over 20% of their crowns, while reductions in dominant/codominant trees averaged nearly 25%. The second highest losses for both size classes occurred within the burned cut-to-length treatment. In the smallest trees, mortality rose sharply and live crown decreased substantially after burning in both thinning treatments and in the unthinned control. Within the two larger size classes, preburn live crown size was negatively correlated with changes in crown size subsequent to underburning while DBH was negatively correlated with postburning changes in mortality, but only in intermediate crown class trees. These results present land managers with outcomes of differing management practices presently being evaluated for their potential to enhance forest health and reduce wildfire risk in the Sierra Nevada and similar dry forest regions.  相似文献   

16.
To examine physiological responses to thinning, fertilization, and crown position, we measured net photosynthesis (P(n)), transpiration (E), vapor pressure difference (VPD), stomatal conductance (g(s)), and xylem pressure potential (Psi(1)) between 0930 and 1130 h under ambient conditions in the upper and lower crowns of a 13-year-old loblolly pine (Pinus taeda L.) plantation six years (1994) after the treatments were applied. Photosynthetic photon flux density (PPFD) and air temperature (T(a)) within the canopy were also recorded. Needle P(n) of thinned trees was significantly enhanced by 22-54% in the lower crown, because canopy PPFD increased by 28-52%. Lower crown foliage of thinned plots also had higher E and g(s) than foliage of unthinned plots, but thinning had no effect on needle Psi(1) and predawn xylem pressure potential (0430-0530 h; Psi(pd)). Tree water status did not limit P(n), E and g(s) during the late-morning measurements. Fertilization significantly decreased within-canopy PPFD and T(a). Needle Psi(1) was increased in fertilized stands, whereas P(n), E and g(s) were not significantly altered. Upper crown foliage had significantly greater PPFD, P(n), VPD, g(s), E, and more negative Psi(1) than lower crown foliage. In both crown positions, needle P(n) was closely related to g(s), PPFD and T(a) (R(2) = 0.77 for the upper crown and 0.82 for the lower crown). We conclude that (1) silvicultural manipulation causes microclimate changes within the crowns of large trees, and (2) needle physiology adjusts to the within-crown environmental conditions.  相似文献   

17.
Nutrient retranslocation in trees is important in nutrient budgets and energy flows in forest ecosystems. We investigated nutrient retranslocation in the fine roots of a Manchurian Ash (Fraxinus mandshurica) and a Larch (Larix olgensis) plantation in northeastern China. Nutrient retranslocation in the fine roots was investigated using three methods, specifically, nutrient concentration, the ratio of Ca to other elements (Ca/other elements ratio) and nutrient content. The method based on nutrient content proved most suitable when investigating nutrient retranslocation from fine roots of the two species. The nutrient-content-based method showed that there were retranslocations of N, P, K and Mg from the fine roots of Manchurian Ash, with retranslocation efficiencies of 13, 25, 65, and 38 %, respectively, whereas there were no Ca retranslocations. There were retranslocations of N, P, K, Ca and Mg from the fine roots of Larch, with retranslocation efficiencies of 31, 40, 52, 23 and 25 %, respectively.  相似文献   

18.
【目的】为探究不同造林密度条件下西南桦Betula alnoides幼林冠层光合生理特征,进而为西南桦造林密度和修枝强度的合理配置提供理论依据。【方法】以6年生西南桦无性系密度试验林为对象,每个密度处理选取3株优势木,将每个单株6 m以下树冠按每段1 m划分为2~4个冠层(2~3m、3~4m、4~5m、5~6m),每个冠层选择一位于阳面中间位置的平均枝,测定位于枝近顶端的4片发育完满叶光响应曲线。【结果】1)西南桦幼林冠层间最大光合速率、光饱和点和光补偿点均差异显著(P<0.05),这些指标均随冠层的升高而显著增大,表明上部冠层光合能力较强,且对强光的利用能力高。2)西南桦幼林冠层暗呼吸速率随冠层上升虽有降低趋势,但不同冠层间未达显著差异水平(P≥0.05)。3)相同冠层条件下,造林密度显著影响西南桦幼林冠层的表观量子效率、最大光合速率及光饱和点,三者均随造林密度增加呈显著下降趋势,特别是冠层3~4 m和5~6 m规律更明显。但是造林密度对于西南桦幼光补偿点和树暗呼吸速率无显著的影响。【结论】总体而言,西南桦幼林上部树冠表现出更大的光合潜力,冠层对于西南桦幼林光合能力的影响要高于造林密度,且两者存在明显的交互作用。研究将为珍贵树种通过合理修枝调控林木生长提供理论支撑。  相似文献   

19.
Carbon isotope composition (delta13C) of branchlet tissue at nine canopy positions, and nitrogen concentration (N(mass)) at four canopy positions, were assessed in 8-year-old hoop pine (Araucaria cunninghamii Ait. ex D. Don) trees from 23 half-sib families, grown in six blocks of a progeny test in southeastern Queensland, Australia. There was considerable variation among sampling positions, families and blocks in both delta13C and N(mass). The delta13C was positively related to N(mass) only for samples from the upper outer crown (P < 0.005). Phenotypic correlations existed between tree growth and canopy delta13C. Branchlet delta13C of the inner and lower outer crown was positively related (P < 0.037) to tree height, but delta13C in branchlets of the upper outer crown was not related to tree height, or was related negatively (P < 0.045). There were significant differences in delta13C between hoop pine families for six canopy positions (upper canopy positions as well as lower canopy positions on the northern side), with heritabilities greater than 0.40. The significance of these findings is discussed in relation to water and light competition within the tree canopy of hoop pine.  相似文献   

20.
Scaling leaf-level measurements to estimate carbon gain of entire leaf crowns or canopies requires an understanding of the distribution of photosynthetic capacity and corresponding light microenvironments within a crown. We have compared changes in the photosynthetic light response and nitrogen (N) content (per unit leaf area) of Pinus contorta Dougl. ssp. latifolia Engelm. (lodgepole pine) leaves in relation to their age and light microenvironment. The vertical gradient in integrated daily photosynthetic photon flux density (PPFD) from the upper to the lower crown of lodgepole pine was similar in magnitude to the horizontal gradient in daily PPFD along shoots from young to old leaves. The relationship between light-saturated net photosynthesis (A(max)) and daily PPFD was significant for both young and old leaves. However, old leaves had a lower A(max) than young leaves in a similar daily irradiance regime. For leaves of all ages from throughout the crown, A(max) was linearly related to the estimated daily net carbon gain that leaves could achieve in their natural PPFD environment (estimated A(day)) (r(2) = 0.84, P < 0.001, n = 39), indicating that estimated A(day) may be dominated by carbon fixed when leaves are light-saturated and operating at A(max). Comparison of the PPFD required to achieve A(max) and the PPFD available to the leaves showed that all of the measured leaves (n = 39), regardless of their position in the crown or age, were in light environments that could light-saturate photosynthesis for a similar proportion of the day. For all data pooled, foliar N was weakly correlated with daily PPFD. Analyzing each leaf age class separately showed that foliar N was significantly related to daily PPFD, A(max), and estimated A(day) for the youngest leaves but not for middle-aged or old leaves. Therefore, the general theory that foliar N is allocated within a crown according to total daily light availability was supported only for young (1-4 years old) leaves in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号