首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The establishment of biomass plantations with short-rotation forestry principles is one of the after-use options for cutaway peatlands. We studied biomass production and carbon sequestration in the above- and below-ground biomass of 25 naturally afforested, 10–30 years old downy birch (Betula pubescens Ehrh.) stands located in peat cutaway areas in Finland. Self-thinning reduced the stand density from 122,000 trees ha?1 (stand age of 10 years) to 10,000 trees ha?1 (25–30 years), while the leafless above-ground biomass increased from 17?Mg ha?1 up to 79–116?Mg ha?1. The total leafless biomass (including stumps and roots) varied from 46 to 151?Mg ha?1. The mean annual increment (MAI) of the above-ground biomass increased up to the stand age of 15 years, after which the MAI was on the average 3.2?Mg ha?1a?1. With below-ground biomass, the MAI of the stands older than 15 years was 4.7?Mg ha?1. The organic matter accumulated in the O-layer on the top of the residual peat increased linearly with the stand age, reaching 29.3?Mg ha?1 in the oldest stand. The O-layer contributed significantly to the C sink, and the afforestation with downy birch converted most of sites into C sinks.  相似文献   

2.
Determining the magnitude of carbon (C) storage in forests and peatlands is an important step towards predicting how regional carbon balance will respond to climate change. However, spatial heterogeneity of dominant forest and peatland cover types can inhibit accurate C storage estimates. We evaluated ecosystem C pools and productivity in the Marcell Experimental Forest (MEF), in northern Minnesota, USA, using a network of plots that were evenly spaced across a heterogeneous 1-km2 mosaic composed of a mix of upland forests and peatlands. Using a nested plot design, we estimated the standing C stock of vegetation, coarse detrital wood and soil pools. We also estimated aboveground net primary production (ANPP) as well as coarse root production. Additionally we evaluated how vegetation cover types within the study area differed in C storage. The total ecosystem C pool did not vary significantly among upland areas dominated by aspen (160 ± 13 Mg C ha−1), mixed hardwoods (153 ± 19 Mg C ha−1), and conifers (197 ± 23 Mg C ha−1). Live vegetation accounted for approximately 50% of the total ecosystem C pool in these upland areas, and soil (including forest floor) accounted for another 35–40%, with remaining C stored as detrital wood. Compared to upland areas, total C stored in peatlands was much greater, 1286 ± 125 Mg C ha−1, with 90–99% of that C found in peat soils that ranged from 1 to 5 m in depth. Forested areas ranged from 2.6 to 2.9 Mg C ha−1 in ANPP, which was highest in conifer-dominated upland areas. In alder-dominated and black spruce-dominated peatland areas, ANPP averaged 2.8 Mg C ha−1, and in open peatlands, ANPP averaged 1.5 Mg C ha−1. In treed areas of forest and peatlands, our estimates of coarse root production ranged from 0.1 to 0.2 Mg C ha−1. Despite the lower production in open peatlands, all peatlands have acted as long-term C sinks over hundreds to thousands of years and store significantly more C per unit area than is stored in uplands. Despite occupying only 13% of our study area, peatlands store almost 50% of the C contained within it. Because C storage in peatlands depends largely on climatic drivers, the impact of climate changes on peatlands may have important ramifications for C budgets of the western Great Lakes region.  相似文献   

3.
Biomass and nutrient transfer (N, P, K, Ca, Mg) of bilberry (Vaccinium myrtillus L.) leaf litter fall, as well as decomposition and nutrient release, were studied in four mature forest stands situated in Central and South Sweden. Bilberry leaf litter fall amounted to between 33 and 55 kg ha‐1 yr‐1 in the four stands. Only minor differences between sites were noted for litter concentrations of N, P and Ca, whereas K and Mg showed somewhat larger variability. Relative amounts of the five nutrient elements in the litter fall were generally in the order N > Ca > K > Mg > P. The amounts of nutrients returned to the forest floor by the annual leaf litter fall in the stands ranged from 0.4 to 0.8 kg ha‐1 for N, 0.4 to 0.6 kg ha‐1 for Ca, 0.2 to 0.7 kg ha‐1 for K, 0.1 to 0.2 kg ha‐1 for Mg and 0.04 to 0.08 kg ha‐1 for P.

The decomposition of the local bilberry leaf litter was followed by means of litterbags during three years. At all sites there was an extremely rapid mass loss from the litter (between 45% and 54%) during the first four to five months of decomposition. After this initial phase, the decomposition rates decreased markedly and after three years the accumulated mass losses of the litters varied between 64% and 78% at the studied sites. After two and three years of decomposition, three of the sites exhibited almost similar litter mass losses whereas at the fourth site the litter was decomposed to a significantly lower degree. The pattern of nutrient release from the decomposing bilberry leaf litter differed somewhat from site to site. Minor differences were, however, noted for P, Ca and Mg while N and K were more strongly retained in the litter at one of the sites.  相似文献   

4.
Macro- (C, N, P, K, Ca and Mg) and micronutrient (Fe, Mn, Cu and Zn) reservoirs were estimated in the O (Oi+Oe+Oa) and in the A (0–10 cm depth) soil horizons of four stands of Nothofagus pumilio (lenga) from Tierra del Fuego which differ in their forestry characteristics. The type of soil layer (O and A) and the forest structure, as related to above-ground biomass storage, were assessed as a factor of variation in the nutrient reservoirs of both soils layers. Nutrient reservoirs showed similar ranges in both soil layers for total organic C (34–65 Mg ha?1), total N (1.5–3.5 Mg ha?1), rapidly available Ca (1.3–2.7 Mg ha?1) and Mg (0.18–0.36 Mg ha?1). Rapidly available K, available P, and medium-term available Fe and Cu were accumulated preferentially in A the horizons, whereas medium-term available Mn and Zn were mainly stored in the O horizons. The forest structure was not a statistically significant factor of variation on the nutrient reservoirs in the O horizons, although a legacy effect of the accumulated above-ground biomass on nutrient reservoirs in this soil layer can not be discarded. On the contrary, the pools of total organic C, total N, rapidly available K and medium-term available Cu and Zn in the A horizons varied significantly with the different forest structure. In terms of lenga forests sustainability, uppermost soils layers should be preserved as they accumulate most of the soil fertility which is essential for lenga regeneration after logging. The inclusion of the assessment of soil fertility in the management plans of the lenga forests in the ecotone of the Argentinean Tierra del Fuego is strongly recommended, as it will contribute to ensure a successful regeneration of lenga in logged areas.  相似文献   

5.
Large amounts of plant litter deposited in cacao agroforestry systems play a key role in nutrient cycling. Organic matter, nitrogen and phosphorus cycling and microbial biomass were investigated in cacao agroforestry systems on Latosols and Cambisols in Bahia, Brazil. The objective of this study was to characterize the microbial C and N, mineralizable N and organic P in two soil orders under three types of cacao agroforestry systems and an adjacent natural forest in Bahia, Brazil and also to evaluate the relationship between P fractions, microbial biomass and mineralized N with other soil attributes. Overall, the average stocks of organic C, total N and total organic P across all systems for 0?C50?cm soil depth were 89,072, 8,838 and 790?kg?ha?1, respectively. At this soil depth the average stock of labile organic P was 55.5?kg?ha?1. For 0?C10?cm soil depth, there were large amounts of microbial biomass C (mean of 286?kg?ha?1), microbial biomass N (mean of 168?kg?ha?1) and mineralizable N (mean of 79?kg?ha?1). Organic P (total and labile) was negatively related to organic C, reflecting that the dynamics of organic P in these cacao agroforestry systems are not directly associated with organic C dynamics in soils, in contrast to the dynamics of N. Furthermore, the amounts of soil microbial biomass, mineralizable N, and organic P could be relevant for cacao nutrition, considering the low amount of N and P exported in cacao seeds.  相似文献   

6.
The risk of environmental contamination by pesticides is not well known in container production of forest seedlings. Leaching of propiconazole (Tilt 250 EC®) and chlorothalonil (Bravo 500®) from peat container medium into the ground was monitored during three growing seasons in nursery production of Scots pine (Pinus sylvestris L.) seedlings. Fungicides were applied at about 20 day intervals from the end of July until November. The annual load of leached propiconazole (25–183 g active ingredients ha‐1) was greater than that of chlorothalonil (5 to 82 g active ingredients ha‐1). The proportion of leached to applied propiconazole was large, 4–29%, but less than 1% of the applied chlorothalonil was detected in leachates. The downstream percolation of water in the soil beneath the container area was small. After extra irrigation into the ground, the detected concentrations of chlorothalonil in soil water 0.5 m beneath the ground surface were 0.4–2.4 μg 1‐1.  相似文献   

7.
Juntunen  Marja-Liisa  Hammar  Taina  Rikala  Risto 《New Forests》2003,25(2):133-147
Leaching of nitrogen (N) and phosphorus (P) through container peatmedium and N and P uptake by seedlings were determined in commercial productionof birch grown with three different types of fertilization. Half of the amountof nutrients was premixed into the peat medium and the other half was appliedasliquid (=fertigated) in the treatment (PF) commonly used in Finland. In twoother treatments all nutrients, either totally (P-VN) or partly (P-N) inslow-release form, were premixed into the peat. Independently of the treatment,the largest proportion (60 to 80%) of total N leached during May and June.During two growing seasons, the amounts of N leached from PF treatments (9 to36kg ha–1) were as large as the amounts of Nleachedfrom P-VN and P-N treatments (24 to 46 kg ha–1).Due to fertigations between container trays, however, the total N load perhectare was greatest in the PF treatments. In the soil water 0.5meter beneaththe container area, the N concentration varied from 10 to 60 mgl–1. The morphological and chemical properties of theseedlings did not differ greatly between treatments.  相似文献   

8.
The growth, technical quality and nutritional status of pure and mixed silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh.) plantations were studied 21 and 22 years after planting on afforested organic soil arable land and on upland forest soil. In mixtures, 50% of both birch species was planted. Silver birch trees grew better, but had higher mortality than downy birch trees on both sites. Mortality of both species was highest, and the difference in their growth smallest, on organic soil. In pure stands on organic soil, downy birch dominant height, diameter and mean volume were 96%, 92% and 82% of those of silver birch and on mineral soil 87%, 84% and 60%, correspondingly. On mineral soil, silver birch had a higher mean annual increment (MAI) (5.8 m3 ha?1a?1) than downy birch (3.9 m3 ha?1a?1), but on organic soil the MAI of both species was similar (3.3–3.4 m3 ha?1 a?1). Planting birches in mixture did not affect the growth of the trees on organic soil. On mineral soil, the mean diameter and mean volume of silver birch trees were higher in mixed than in pure plantations. The technical stem quality of both tree species was low. On mineral soils, pure silver birch is more productive than mixture, but on peat soil the higher growth of silver birch could contribute to increased productivity and downy birch would ensure sufficient survival for future timber production.  相似文献   

9.
Afforestation of degraded croplands by planting N2-fixing trees in arid regions is highly recognized. However, fixation of atmospheric nitrogen gas (N2) by woody perennials is often limited on phosphorus (P) poor soils, while any factor limiting N nutrition inhibits tree growth. In a two-factorial field experiment, the effect of three P amendments was examined during 2006–2008 on N2 fixation, biomass production, and foliage feed quality of actinorhizal Elaeagnus angustifolia L. and leguminous Robinia pseudoacacia L. With the 15N natural abundance method, N2 fixation was quantified based on foliar and whole-tree sampling against three non-N2-fixing reference species: Gleditsia triacanthos L., Populus euphratica Oliv., and Ulmus pumila L. The P applications, in March 2006 and April 2007 only, included (i) high-P (90 kg P ha?1), (ii) low-P (45 kg P ha?1), and (iii) 0-P. After 3 years, the average proportion of N derived from atmosphere (Ndfa, %) increased from 78 % with 0-P to 87 % with high P when confounded over both N2-fixing species. With the used density of 5,714 trees ha?1, the total amount of N2 fixed (Ndfa, kg N ha?1) with high-P increased from 64 kg N ha?1 (year 1) to 807 kg N ha?1 (year 3) in E. angustifolia and from 9 kg N ha?1 (year 1) to 155 kg N ha?1 (year 3) in R. pseudoacacia. Total above-ground biomass increases were too variable to be significant. Leaf N content and therewith also leaf crude protein content, which is an indicator for feed quality, increased significantly (24 %) with high-P when compared to 0-P for E. angustifolia. Overall findings indicated the suitability of the two N2-fixing species for afforestating salt-affected croplands, low in soil P. With P-applications as low as 90 kg P ha?1, the production potential of E. angustifolia and R. pseudoacacia, including the supply of protein-rich feed, could be increased on salt-affected croplands.  相似文献   

10.

Lime and wood ash may be useful to improve acidic forest soils. A field experiment was conducted in a pine stand on a sandy podzol at Fuhrberg, Germany, which involved an application of dolomitic lime (3 t ha-1) with three replications or wood ash (4.8 t ha-1) without replications on the forest floor. During the 2 yr study period, lime affected the soil solution composition only slightly. Ash had a marked effect on solution chemistry of the mineral soil at 10 cm and the pH values dropped temporarily from 3.7 to 3.1. Nineteen months after the treatments, exchangeable calcium in the organic layer and mineral soil increased by 222 (lime addition) or 411 kg ha-1 (ash addition) and exchangeable magnesium increased by 101 (lime addition) or 39 kg ha-1 (ash addition). After ash addition, no marked change in heavy metal content was found below 4 cm of the organic layer. In the ash treatment, the potassium concentration of the 1-yr-old pine needles increased from 5.6 to 5.9 g kg-1. This study suggests that ash from untreated wood may be recommended for amelioration of forest soils.  相似文献   

11.
The effects of wood-ash fertilisation on tree stands, soil characteristics and ground vegetation were studied on a drained pine mire in Finland (64°51′N, 26°04′E, 62 m a.s.l.). The original site type was a treeless, mesotrophic Sphagnum papillosum fen. The site was drained in 1933 and the wood-ash fertilisation experiment was started in 1947. The treatments were: (i) unfertilised, (ii) wood-ash 8 t ha−1, and (iii) wood-ash 16 t ha−1.Drainage and ash application had radical and long-lasting consequences on the biological activity on the site and the vegetation compartments studied. The understorey vegetation had been profoundly affected by the ash with almost complete transformation of the species and other life forms. Even 50 years after the ash treatment the changes in vegetation/site type and the tree stand were clearly visible. On the unfertilised plot, the biomass of ground vegetation consisted mostly of mosses and dwarf shrubs, but on the ash-treated plots it consisted mostly of herbs and grasses typical of upland forests.Ash treatment had promoted stem volume growth of Scots pine (Pinus sylvestris L.) substantially and for a long time. The total wood production on the ash plots during 1947–1994 was 13 and 17 times over that of the control plot. Unfertilised pine trees suffered from P and K deficiency throughout the study period. The concentrations of some plant nutrients (P, K) decreased during the past years on Ash8. No nutrient shortage afflicting the tree stand was observed on Ash16 during the study period.Ash application has also led to increased concentration of nutrients in the peat. A sizeable proportion of the mineral nutrients applied were still in the 0–20 cm peat layer. On the ash-treated plots the amount of soil nitrogen (0–20 cm) was 18 and 29 times and the amount of soil phosphorus 9 and 13 times over the amount bound by the tree stand and the ground vegetation (Ash8 and Ash16, respectively). The stock of potassium was generally small in the surface peat—only 60–90% of the amount of potassium bound in the tree stand and the ground vegetation.It was concluded that wood-ash had powerfully influenced the biological processes in surface peat. The decomposition of cellulose was significantly accelerated by both ash treatments. Ash fertilisation also increased the emissions of CO2. The intensified decomposition rate in the litter, vegetation and peat explained to a large extent the accelerated growth of the Scots pine stands studied.  相似文献   

12.
The objective of this study was to quantify the effects of high nitrogen (N) inputs on N cycling in a 35–45-yr-old Scots pine (Pinus sylvestris L.) forest. Nitrogen was added annually (single doses) as NH4NO3 in doses of 0 (N0), 30 (N1) and 90 (N2) kg N ha?1 yr?1. The only N input to the N0 plots was atmospheric deposition of 10 kg N ha?1 yr?1. The N cycle in these plots was tight, with almost complete retention of the incoming N. In the N1 plots the N retention was 83% after 9 yrs of N addition. The trees were the major sink, but the soil also contributed to the N retention. In the N2 plots the N retention was 63%, being mainly accounted for by accumulation in the soil. The leaching of N from the N2 stands was as high as 35 kg N ha?1 yr?1. The N2 system was N saturated.  相似文献   

13.
The study describes effects of clear‐felling and soil scarification on the N concentration and pH of soil water in experimental plots previously supplied with different doses of N. The experiment is situated in central Sweden in a former Pinus sylvestris L. stand. Over a 20‐yr period, plots were fertilized three times with ammonium nitrate, resulting in total doses of 360, 720, 1080, 1440 and 1800 kg N ha‐1. Soil water was sampled at a depth of 40–50 cm using suction lysimeters, and analysed for N and pH. The study covers one growing season before clear‐felling and six and four growing seasons after clear‐felling and soil scarification, respectively. Statistically significant (p < 0.05) elevations in total N and nitrate‐N concentrations were noted in the fourth to the sixth growing seasons after clear‐felling in the plots that had received 1800 kg N ha‐1, and in the fifth and sixth seasons in the plots that had received 1440 kg N ha‐1. Ammonium‐N concentrations were not significantly affected. After clear‐felling, total N and nitrate‐N increased with time at a higher rate in the plots that had received 1440 and 1800 kg N ha‐1 doses compared with the control. In the sixth post‐cutting season, the nitrate‐N concentration was 0.26 mg l‐1 in the control and between 0.51 and 4.0 mg l‐1 in the various fertilized plots. Before clear‐felling, a linear relationship between pH and fertilizer dose was absent. After clear‐felling, negative relationships prevailed, but they differed significantly from the pre‐cutting relationship only during the fourth, fifth and sixth post‐cutting seasons. In the sixth post‐cutting season, the pH was 6.0 in the control, and 6.1, 5.7, 5.6, 5.2 and 4.3 in the plots supplied with 360, 720, 1080, 1440 and 1800 kg N ha‐1 doses, respectively. The absolute difference in pH between the sixth growing season after clear‐felling and period before clear‐felling increased linearly with increasing fertilizer dose (p < 0.05, R 2 = 0.79). Before clear‐felling, nitrate‐N was elevated only in the plots that had received 1800 kg N ha‐1. After clear‐felling, nitrate‐N seemed to increase in all fertilized plots, but the increase began first in the plots receiving the highest fertilizer dose. It was not until the fifth and sixth growing seasons after clear‐felling that nitrate‐N concentrations appeared elevated in all fertilized plots compared with the control. It seems likely that nitrification caused the increases in nitrate‐N because nitrate‐N accounted for most of the variation in pH in the fourth to the sixth growing seasons. Disc trenching was simulated around some of the lysimeters so that 50% of the soil was disturbed. This did not significantly affect the N concentration or pH of the soil water during the first 4 yrs after scarification.  相似文献   

14.
Abstract

Pools of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were examined in the soil and above-ground plant biomass at the end of a 7 year rotation at two E. tereticornis lowland sites and two E. grandis highland sites in Kerala, India. Potential export rates of these nutrients were also examined for different biomass removal scenarios from the plantations. Pools of nutrients were measured in the above-ground components of the tree crop, forest floor and understorey, and in soil down to 1 m depth. At harvest, large quantities of biomass and nutrients are removed from eucalypt plantation sites, with the quantities of nutrients exported unlikely to be replaced through natural atmospheric and weathering inputs. Between 24 Mg ha-1 and 115 Mg ha-1 of biomass was exported in stem wood across the sites, and this increased to 40-145 Mg ha-1 in scenarios where all of the branches, bark and understorey were also exported. Stem wood had the lowest concentration of nutrients and had a relatively low export of nutrient per kg of biomass. On average, 54 kg, 12 kg and 65 kg of N, P and K were removed per hectare in stem wood only, equivalent to 0.46%, 0.17%, and 6.7%, respectively, of above- and below-ground (to 1 m depth) site pools. Export increased to 194 kg, 30 kg, and 220 kg of N, P and K per hectare if the branches, bark and understorey were also removed (equivalent to 1.6%, 0.5% and 24.7% of above- and below-ground site pools down to 1 m depth). Export of Ca and Mg was also high, with an average of 88 kg and 11 kg of Ca and Mg removed per hectare if only the stem wood was taken (3.12% and 1.34% of total above-ground and exchangeable below-ground to 1 m depth), increasing to 501 kg ha-1 and 66 kg ha-1 if the branches, bark and understorey were also removed (21.7% and 11.3% of total above-ground and available below-ground to 1 m depth). Removals of this magnitude represent a significant proportion of site nutrient pools and have the potential to reduce future plantation productivity unless steps are taken to promote retention of biomass and nutrients on site and/or replacement of nutrients through fertilizer application.  相似文献   

15.
Planted fallow systems under ‘slash and mulch’ management were compared with natural fallow systems at two farms (BM1 and BM2) in the Colombian Andes. The BM1 site was relatively more fertile than the BM2 site. Planted fallow systems evaluated included Calliandra calothyrsus CIAT 20400 (CAL), Indigofera constricta (IND) or Tithonia diversifola (TTH). During each pruning event slashed biomass was weighed, surface-applied to the soil on the same plot and sub-samples taken for chemical analyses. While Indigofera trees consistently showed significantly greater (p < 0.05) plant height and collar diameter than Calliandra trees at both study sites, only collar diameter in Indigofera was significantly affected at all sampling times by differences between BM1 and BM2. After 27 months, TTH presented the greatest cumulative dry weight biomass (37 t ha–1) and nutrient accumulation in biomass (417.5 kg N ha–1, 85.3 kg P ha–1, 928 kg K ha–1, 299 kg Ca ha–1 and 127.6 kg Mg ha–1) among planted fallow systems studied at BM1. Leaf biomass was significantly greater (P < 0.05) for CAL than IND irrespective of site. However, CAL and IND biomass from other plant parts studied and nutrient accumulation were generally similar at BM1 and BM2. At both sites, NAT consistently presented the lowest biomass production and nutrient accumulation among fallow systems. Planted fallows using Calliandra and Indigofera trees had the additional benefit of producing considerable quantities of firewood for household use. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
This study evaluated the effects of site-specific, soil-testing-based fertiliser recommendations on maize yields using the transdisciplinary (TD) process. The TD process utilizes knowledge from science and practice. Farmers, extension officers, local financial institutions, and other practitioners collaborated with local scientists from the University of Eldoret in the process of financing, purchasing, and applying fertilisers in adequate amounts and composition. A total of 144 farmers participated in the study, which lasted for two seasons. The data sampling was based on a randomized 2?×?3?×?4?×?2 factorial complete block design, including the following factors: TD (non-participation vs participation in the TD process); ST (soil testing in the following categories: fertiliser application with no soil testing, fertiliser application following government recommendations, and application of site-specific, soil-testing-based fertiliser recommendations), and location (Kapyemit, Kipsomba, Ng’enyilel, and Ziwa). The “no soil testing” (ST1) category refers to farmers’ own practices at an average fertilisation of about 60?kg?N?ha?1 and 15?kg?P?ha?1. The government recommendation (ST2) calls for 75?kg?N?ha?1, 25?kg?P?ha?1, and 6?t?ha?1 manure, and site-specific fertiliser recommendations (ST3) were based on actual soil-testing results; generally, this resulted in the recommendation of 90?kg?N?ha?1, 30?kg?P?ha?1, 25 kg K ha?1, 2?t?ha?1 lime, and 1?t?ha?1 manure. Highly significant effects were seen where farmers participated in the TD process (TD) for soil testing (ST). The farmers’ yields in Uasin Gishu County of 4.5?t?ha?1 increased by approximately 1.5?t?ha?1 based on site-specific, soil-testing fertilisation recommendations and by approximately 1.0?t?ha?1 based on participation in the transdisciplinary process. However, as indicated by a significant interaction of the variables ST and TDand while there is a significant main effect of participating in a TD process—the latter increase occurs only if site-specific, soil-testing-based recommendations can be used in the transdisciplinary process with farmers.  相似文献   

17.
Yields under alley cropping might be improved if the most limiting nutrients not adequately supplied or cycled by the leaves could be added as an inorganic fertilizer supplement. Three historic leaf management strategies had been in effect for 3 years ina Leucaena leucocephala alley cropping trial on the Lilongwe Plain of central Malawi : 1) leaves returned; 2) leaves removed; and 3) leaves removed, with 100 kg inorganic N ha−1 added. An initial soil analysis showed P status to be suboptimal under all strategies. A confounded 34 factorial experiment was conducted with the following treatments: leaf management strategy (as above), N fertilizer rate (0, 30, and 60 kg N ha−1), P fertilizer rate (0, 18, and 35 kg P ha−1), and maize population (14,800, 29,600, and 44,400 plants ha−1). Both N and P were yield limiting, and interacted positively to improve yields. The addition of 30 kg N and 18 kg P ha−1 improved yields similarly under all leaf management strategies by an average of 2440 kg ha−1. Increasing the rates to 60 kg N and 35 kg P ha−1 improved yields an additional 1990 kg ha−1 in the ‘leaves returned’ and leaves removed + N’ strategies, but did not improve yields under the ‘leaves removed’ strategy. Lower yields were related to lack of P response at the highest P rate in this treatment, which may have induced Zn deficiency. Plots receiving leaves had higher organic C, total N, pH, exchangeable Ca, Mg, K, and S, and lower C/N ratios in the 0–15 cm soil layer than did plots where leaves had been removed. Leaf removal with N addition was similar to leaf removal alone for all soil factors measured except for organic C and total N, which were higher where N had been added. The results show that N and P were the primary yield-limiting nutrients. Historic N application maintained the soil's ability to respond to N and P on par with leaf additions.  相似文献   

18.
Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha?1) than in parkland (36 Mg C ha?1) and rangeland (29 Mg C ha?1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha?1) than in rangeland (30 Mg C ha?1) and parkland (15 Mg C ha?1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha?1) followed by rangeland (68 Mg C ha?1) and parkland (52 Mg C ha?1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.  相似文献   

19.
Phosphorus (P) in soil exists both in organic and inorganic forms and their relative abundance could determine P supplying capacity of soil. Differential input of exogenous and plant-mediated phosphorus and carbon in soil under different land-uses could influence P availability and fertilizer P management. While the effect of land-use on soil organic carbon (SOC) is fairly well-documented, its effect on soil P fractions is relatively less known. We investigated the effect of different land-uses including rice–wheat, maize–wheat, cotton–wheat cropping systems and poplar-based agroforestry systems on soil P fractions and organic carbon accrual in soils. Total P concentration was the highest under agroforestry (569 mg P kg?1) and the lowest under maize–wheat (449 mg P kg?1) cropping systems. On the contrary, soils under rice–wheat had significantly higher available P concentration than the agroforestry systems, probably because of higher fertilizer P application in rice–wheat and prevailing wetland conditions during rice growth. In soils under sole cropping systems viz. rice–wheat, maize–wheat and cotton–wheat, inorganic P was the dominant fraction and accounted for 92.2–94.6% of total P. However, the soils under agroforestry had smaller proportion (73%) of total P existing as inorganic P. Among soil P fractions, water soluble inorganic P (0.13–0.26%) represented the smallest proportion inorganic P in soils under different land-uses. Agroforestry showed significantly (p < 0.05) higher concentrations of SOC than the other land-uses. Soil organic C was significantly correlated with soil P fractions. It was concluded that poplar-based agroforestry systems besides leading to C accrual in soil result in build-up of organic P and the P supplying capacity of soil.  相似文献   

20.
杉林红壤的供P缓冲性与P肥需要量研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用等温吸附试验方法对福建杉木林下红壤的供P缓冲性与P肥需要量进行研究。结果表明 :杉林红壤对P的吸附作用强、吸附量大 ,当土壤加P量为 6 0 0mg·kg- 1时 ,P的吸附量为 4 5 1.2 5 5 0 .8mg·kg- 1,吸附率高达 75 .2 %  91.8%。土壤P的吸附反应自由能 (△G)和最大缓冲容量 (Mb)是评价土壤供磷缓冲性状的重要参数 ,它们与土壤理化性质关系较为密切 ,一般与pH、吸湿水及粘粒含量呈正相关 ,而与有机质、有效P及全P含量呈负相关。根据土壤P的吸附和供P缓冲性预测土壤需P量 ,对合理施用P肥更具意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号