首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Community forests of developing countries are eligible to participate in the Reducing Emissions from Deforestation and Forest Degradation (REDD+) scheme. For this, estimation of carbon stock and the sequestration is essential. The carbon stock in the living biomass of nine community managed Shorea robusta forests of the mid hill regions of central Nepal (managed for 4–29 yr) were estimated. The carbon stock of trees and shrubs was estimated using an allometric equation while the biomass of herbaceous vegetation was estimated by the harvest method. The carbon stock in the living biomass of the studied forests ranged from 70–183 Mg ha?1(mean: 120 Mg ha?1) and it increased with increasing soil organic carbon. However, the carbon stock did not vary significantly with species richness and litter cover. The biomass and carbon stock in the forests managed for >20 yr were significantly higher than in the forests managed for < 20 yr. The carbon stock increased with the management duration (p < .05) with sequestration rate of 2.6 Mg C ha?1 yr?1. The local management has had positive effects on the carbon stock of the forests and thus the community forests have been acting as a sink of the atmospheric CO2. Therefore, the community managed forests of Nepal are eligible to participate in the REDD+ scheme.  相似文献   

2.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

3.
Efforts are needed in order to increase confidence for carbon accounts in the land use sector, especially in tropical forest ecosystems that often need to turn to default values given the lack of precise and reliable site specific data to quantify their carbon sequestration and storage capacity. The aim of this study was then to estimate biomass and carbon accumulation in young secondary forests, from 4 and up to 20 years of age, as well as its distribution among the different pools (tree including roots, herbaceous understory, dead wood, litter and soil), in humid tropical forests of Costa Rica. Carbon fraction for the different pools and tree components (stem, branches, leaves and roots) was estimated and varies between 37.3% (±3.3) and 50.3% (±2.9). Average carbon content in the soil was 4.1% (±2.1). Average forest plant biomass was 82.2 (±47.9) Mg ha−1 and the mean annual increment for carbon in the biomass was 4.2 Mg ha−1 yr−1. Approximately 65.2% of total biomass was found in the aboveground tree components, while 14.2% was found in structural roots and the rest in the herbaceous vegetation and necromass. Carbon in the soil increased by 1.1 Mg ha−1 yr−1. Total stored carbon in the forest was 180.4 Mg ha−1 at the age of 20 years. In these forests, most of the carbon (51-83%) was stored in the soil. Models selected to estimate biomass and carbon in trees as predicted by basal area had R2 adjustments above 95%. Results from this study were then compared with those obtained for a variety of secondary and primary forests in different Latin-American tropical ecosystems and in tree plantations in the same study area.  相似文献   

4.
We studied variations in tree biomass and carbon sequestration rates of Chir Pine(Pinus roxburghii. Sarg.) forest in three categories of forest disturbance, protected, moderately disturbed, and highly disturbed. In the first year, total biomass was 14.7 t?ha-1 in highly disturbed site, 94.46 t?ha-1 in moderately disturbed forest, and 112.0 t?ha-1 in protected forest. The soil organic carbon in the top 20 cm of soil ranged from 0.63 to 1.2%. The total rate of carbon sequestration was 0.60(t/ha)·a-1on the highly disturbed site, 1.03(t/ha)·a-1 on the moderately disturbed site, and 4.3(t/ha)·a-1 on the protected site.  相似文献   

5.
The present study suggests that the impact of human-induced small-scale disturbances (lopping of branches and leaf litter removal) adversely impacts the functioning of banj oak (Quercus leucotrichophora, A. Camus) forests of Central Himalaya. Significantly higher (p < .001) biomass stocks, carbon sequestration rates, soil carbon, leaf area index (LAI), litter fall, and faster litter decomposition rates were observed in least human influenced (LHI) forests as compared to moderately human influenced (MHI) forests and highly human influenced (HHI) forests. Three replicate forest stands of each category were selected for the observation. The study is used as a background to suggest alternative strategies to conserve the forests, taking into account the social and economic concerns of the village community.  相似文献   

6.
Carbon sequestration is important in studying global carbon cycle and budget. Here, we used the National Forest Resource Inventory data for China collected from 2004 to 2008 and forest biomass and soil carbon storage data obtained from direct field measurements to estimate carbon (C) sequestration rate and benefit keeping C out of the atmosphere in forest ecosystems and their spatial distributions. Between 2004 and 2008, forests sequestered on average 0.36 Pg C yr?1 (1 Pg = 1015g), with 0.30 Pg C yr?1 in vegetation and 0.06 Pg C yr?1 in 0–1 meter soil. Under the different forest categories, total C sequestration rate ranged from 0.02 in bamboo forest to 0.11 Pg C yr?1 in broadleaf forest. The southwest region had highest C sequestration rate, 30% of total C sequestration, followed by the northeast and south central regions. The C sequestration in the forest ecosystem could offset about 21% of the annual C emissions in China over the same period, especially in provinces of Tibet, Guangxi, and Yunnan, and the benefit was similar to most Annex I countries. These results show that forests play an important role in reducing the increase in atmospheric carbon dioxide in China, and forest C sequestration are closely related to forest area, tree species composition, and site conditions.  相似文献   

7.
ABSTRACT

This paper examined the potential of dry north western woodlands of Ethiopia (Adi Goshu, Lemlem Terara, and Gemed) for carbon stocks. Allometry equations were used to determine the aboveground, belowground, and dead woods biomasses; litter and herbaceous biomasses were determined using direct harvesting method. The result showed the estimated mean carbon stocks of the aboveground, belowground, and the dead wood biomass for the Untapped Boswellia Papyrifera Woodland (UW) in Lemlem Terara site were significantly higher (P < 0.05) than that of the Adi Goshu site. In the Gemed site, the mean Herb Biomass Carbon (HBC) stock was 1.2 Mg ha?1, which is significantly highest (P < 0.05) than the other two study sites (Lemlem Terara, 0.42 Mg ha?1 and Adi Goshu, 0.45 Mg ha?1) for the Tapped Boswellia Papyrifera Woodland (TW). In UW, the mean soil carbon stock of the Lemlem Terara site (58.19 Mg ha?1) was significantly (P < 0.05) higher than that of Adi Goshu (33.61 Mg ha?1). In the case of the total carbon stocks in UW stratum, for the Adi Goshu site, the carbon stock was estimated to be about 55.26 Mg ha?1 while 96.74 Mg ha?1 for Lemlem Terara. Therefore, Carbon stock in different carbon pools (aboveground and belowground biomass, dead wood, litter, herbaceous biomass, and soil) has a potential to decrease the rate of enrichment of atmospheric concentration of carbon dioxide.  相似文献   

8.
Accumulation of carbon (C) in biomass and soil, and using forest residues for bioenergy are examples of forestry’s contribution to reducing the enhanced concentration of greenhouse gases in the atmosphere. The aim of this report was to study the effect of rotation length on carbon accumulation in biomass and soil, and on the amount of forest residues that could substitute fossil fuel during 2000–2100. Two models, based on inventory data from the Swedish National Forest Inventory, were used to simulate the effects of a changed rotation length in the region of Dalarna (1.8 × 106 ha), in central Sweden. During the studied period, the accumulation of carbon in biomass was 32 kg C ha?1 yr?1 larger for the prolonged rotation period and 105 kg C ha?1 yr?1 smaller for the shortened rotation period compared with the base scenario. The build-up of carbon in forest soil was 23 kg C ha?1 yr?1 larger for the prolonged rotation than for the base scenario, whereas the shortened rotation was 24 kg C ha?1 yr?1 smaller than the base scenario. The potential to substitute fossil fuel was 37 kg C ha?1 yr?1 larger for the shortened rotation and 17 kg C ha?1 yr?1 smaller for the prolonged rotation compared with the base scenario. The annual accumulation of carbon in biomass decreased in all scenarios, which resulted in a prolonged rotation scenario possibly being a poor long-term solution (> 100 yrs). The amount of forest residues that could substitute fossil fuel increased in all scenarios during the studied period.  相似文献   

9.
To better understand the effect of forest succession on carbon sequestration, we investigated carbon stock and allocation of evergreen broadleaf forest, a major zonal forest in subtropical China. We so...  相似文献   

10.
Modern alley cropping designs, with trees aligned in rows and adapted to operating farming machinery, have been suggested for Europe. This paper explores the potential for adoption of cork oak (Quercus suber L.) agroforestry in Portugal and estimates the potential carbon sequestration. Spatial modeling and Portuguese datasets were used to estimate target areas where cork oak could grow on farmland. Different implementation scenarios were then modeled for this area assuming a modern silvoarable agroforestry system (113 trees ha?1 thinned at year 20 for establishing 50 trees ha?1). The YieldSAFE process-based model was used to predict the biomass and carbon yield of cork oak under low and high soil water holding capacity levels. Approximately 353,000 ha are available in Portugal for new cork oak alley cropping. Assuming implementation rates between 10 % of the area with low soil water capacity (60 mm: 15 cm depth, coarse texture) and 70 % of the area with high soil water holding capacity (1,228 mm: 200 cm depth, very fine texture), then carbon sequestration could be 5 × 106 and 123 × 106 Mg CO2 respectively. Due to higher yields on more productive land, scenarios of limited implementation in high productivity locations can sequester similar amounts of carbon as wide implementation on low productivity land, suggesting that a priori land classification assessments can improve the targeting of land and financial incentives for carbon sequestration.  相似文献   

11.
Grewia optiva Drummond is one of important agroforestry tree species grown by the farmers in the lower and mid-hills of western Himalaya. Different models viz., monomolicular, logistic, gompetz, allometric, rechards, chapman and linear were fitted to the relationship between total biomass and diameter at breast height (DBH) as independent variable. The adjusted R2 values were more than 0.924 for all the seven models implying that all models are apparently equally efficient. Out of the six non-linear models, allometric model (Y = a × DBH b ) fulfils the validation criterion to the best possible extent and is thus considered as best performing. Biomass in different tree components was fitted to allometric models using DBH as explanatory variable, the adjusted R2 for fitted functions varied from 0.872 to 0.965 for different biomass components. The t values for all the components were found non-significant (p > 0.05), thereby indicating that model is valid. Using the developed model, the estimated total biomass varied from 6.62 Mg ha?1 in 4 year to 46.64 Mg ha?1 in 23 year old plantation. MAI in biomass varied from 1.66–2.05 Mg ha?1 yr?1. The total biomass carbon stocks varied from 1.99 Mg ha?1 in 4 year to 15.27 Mg ha?1 in 23 year old plantation. Rate of carbon sequestration varied from 0.63–0.81 Mg ha?1 yr?1. Carbon storage in the soil up to 30 cm soil depth varied from 25.4 to 33.6 Mg ha?1.  相似文献   

12.
In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconiferous boreal taiga. We compared measured carbon pools to those calculated from the forest inventory records containing volume stock and species composition data. The inventory data heavily underestimated the pools in the study area(Stolby State Nature Reserve, central Krasnoyarsk Territory, Russian Federation). The carbon pool estimated from the forest inventory data varied from 25(t ha-1)(low-density stands) to 73(t ha-1)(highly stocked stands). Our estimates ranged from 59(t ha-1)(lowdensity stands) to 147(t ha-1)(highly stocked stands). Our values included living trees, standing deadwood, living cover, brushwood and litter. We found that the proportion of biomass carbon(living trees): soil carbon varied from99:1 to 8:2 for fully stocked and low-density forest stands,respectively. This contradicts the common understanding that the biomass in the boreal forests represents only16–20 % of the total carbon pool, with the balance being the soil carbon pool.  相似文献   

13.
Abstract

The National Forest Inventory (NFI) is an important resource for estimating the national carbon (C) balance. Based on the volume, biomass, annual biomass increment and litterfall of different forest types and the 6th NFI in China, the hyperbolic relationships between them were established and net primary production (NPP) and net ecosystem production (NEP) were estimated accordingly. The results showed that the total biomass, NPP and NEP of China's forests were 5.06 Pg C, 0.68 Pg C year?1 and 0.21 Pg C year?1, respectively. The area-weighted mean biomass, NPP and NEP were 35.43 Mg C ha?1, 4.76 Mg C ha?1 year?1 and 1.47 Mg C ha?1 year?1 and varied from 13.36 to 79.89 Mg C ha?1, from 2.13 to 9.15 Mg C ha?1 year?1 and from ?0.16 to 5.80 Mg C ha?1 year?1, respectively. The carbon sequestration was composed mainly of Betula and Populus forest, subtropical evergreen broadleaved forest and subtropical mixed evergreen–deciduous broadleaved forest, whereas Pinus massoniana forest and P. tabulaeformis forest were carbon sources. This study provides a method to calculate the biomass, NPP and NEP of forest ecosystems using the NFI, and may be useful for evaluating terrestrial carbon balance at regional and global levels.  相似文献   

14.
Forest ecosystems play a major role in atmospheric carbon sequestration and emission. Comparable organic carbon stock estimates at temporal and spatial scales for all forest pools are needed for scientific investigations and political purposes. Therefore, we developed a new carbon stock (CS) estimation procedure that combines forest inventory and soil and litter geodatabases at a regional scale (southern Belgium). This procedure can be implemented in other regions and countries on condition that available external carbon soil and litter data can be linked to forest inventory plots. The presented procedure includes a specific CS estimation method for each of the following forest pools and subpools (in brackets): living biomass (aboveground and belowground), deadwood (dead trees and snags, coarse woody debris and stumps), litter, and soil. The total CS of the forest was estimated at 86 Tg (185 Mg ha?1). Soil up to 0.2 m depth, living biomass, litter, and deadwood CSs account, respectively, for 48, 47, 4, and 1 % of the total CS. The analysis of the CS variation within the pools across ecoregions and forest types revealed in particular that: (1) the living biomass CS of broadleaved forests exceeds that of coniferous forests, (2) the soil and litter CSs of coniferous forest exceed those of broadleaved forests, and (3) beech stands come at the top in carbon stocking capacity. Because our estimates differ sometimes significantly from the previous studies, we compared different methods and their impacts on the estimates. We demonstrated that estimates may vary highly, from ?16 to +12 %, depending on the selected methods. Methodological choices are thus essential especially for estimating CO2 fluxes by the stock change approach. The sources of error and the accuracy of the estimates were discussed extensively.  相似文献   

15.
Carbon pools in two Quercus petraea (sessile oak) dominated chronosequences under different forest management (high forest and coppice with standards) were investigated. The objective was to study temporal carbon dynamics, in particular carbon sequestration in the soil and woody biomass production, in common forest management systems in eastern Austria along with stand development. The chronosequence approach was used to substitute time-for-space to enable coverage of a full rotation period in each system. Carbon content was determined in the following compartments: aboveground biomass, litter, soil to a depth of 50 cm, living root biomass and decomposing residues in the mineral soil horizons. Biomass carbon pools, except fine roots and residues, were estimated using species-specific allometric functions. Total carbon pools were on average 143 Mg ha−1 in the high forest stand (HF) and 213 Mg ha−1 in the coppice with standards stand (CS). The mean share of the total organic carbon pool (TOC) which is soil organic carbon (SOC) differs only marginally between HF (43.4%) and CS (42.1%), indicating the dominance of site factors, particularly climate, in controlling this ratio. While there was no significant change in O-layer and SOC stores over stand development, we found clear relationships between living biomass (aboveground and belowground) pools and C:N ratio in topsoil horizons with stand age. SOC pools seem to be very stable and an impact of silvicultural interventions was not detected with the applied method. Rapid decomposition and mineralization of litter, indicated by low O-horizon pools with wide C:N ratios of residual woody debris at the end of the vegetation period, suggests high rates of turnover in this fraction. CS, in contrast to HF benefits from rapid resprouting after coppicing and hence seems less vulnerable to conditions of low rainfall and drying topsoil.  相似文献   

16.
India launched National Agroforestry Policy on 10th February, 2014 which has the potential to substantially reduce poverty in rural India and revive wood based industry, besides integrating food production with environmental services. The policy is not only crucial to India’s ambitious goal of achieving 33 per cent forest and tree cover but also to mitigate GHG emissions from agriculture sector. Dynamic CO2FIX-v3.1 model has been used to estimate the carbon sequestration potential (CSP) of existing agroforestry systems (AFS) for simulation period of 30 years in twenty six districts from ten selected states of India. The observed number of trees on farmers’ field in these districts varied from 1.81 to 204 per hectare with an average value of 19.44 trees per hectare. The biomass in the tree component varied from 0.58 to 48.50 Mg DM ha?1, whereas, the total biomass (tree and crop) ranged from 4.96 to 58.96 Mg DM ha?1. The soil organic carbon ranged from 4.28 to 24.13 Mg C ha?1. The average estimated carbon sequestration potential of the AFS, representing varying edapho-climatic conditions, on farmers field at country level was 0.21 Mg C ha?1yr?1. At national level, existing AFS are estimated to mitigate 109.34 million tons CO2 annually, which may offsets one-third (33 %) of the total GHG emissions from agriculture sector.  相似文献   

17.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

18.
ABSTRACT

Plantation forests play a critical role in forest management due to their high productivity and large contribution to carbon sequestration (CSE). The purpose of this study was to assess the CSE of plantations containing four important conifer species distributed across Taiwan, namely, the China fir (Cunninghamia lanceolata), Japanese cedar (Cryptomeria japonica), Taiwania (Taiwania cryptomerioides) and Taiwan red cypress (Chamaecyparis formosensis). Data regarding the plantations were obtained from a survey of permanent sample plots (PSPs). We used these data to calculate the CSE in each PSP and adopted CSEmean and CSEperiod as indicators to assess the CSE of the four conifers. According to the CSEmean obtained from analysis of variance and the least significant difference method, two groups were identified among these four conifers: the Japanese cedar (4.03 Mg ha?1 yr?1) and Taiwania (3.52 Mg ha?1 yr?1) yielded higher CSEmean values and the China fir (1.79 Mg ha?1 yr?1) and Taiwan red cypress (2.36 Mg ha?1 yr?1) yielded lower CSEmean values. The same patterns were observed in the CSEperiod values; however, no significant difference in CSEperiod was observed between Taiwan red cypress and either of the two groups. Therefore, Japanese cedar and Taiwania have high CSE potential among conifers.  相似文献   

19.
The effect of forest conservation on the organic carbon (C) stock of temperate forest soils is hardly investigated. Coarse woody debris (CWD) represents an important C reservoir in unmanaged forests and potential source of C input to soils. Here, we compared aboveground CWD and soil C stocks at the stand level of three unmanaged and three adjacent managed forests in different geological and climatic regions of Bavaria, Germany. CWD accumulated over 40–100 years and yielded C stocks of 11 Mg C ha?1 in the unmanaged spruce forest and 23 and 30 Mg C ha?1 in the two unmanaged beech–oak forests. C stocks of the organic layer were smaller in the beech–oak forests (8 and 19 Mg C ha?1) and greater in the spruce forest (36 Mg C ha?1) than the C stock of CWD. Elevated aboveground CWD stocks did not coincide with greater C stocks in the organic layers and the mineral soils of the unmanaged forests. However, radiocarbon signatures of the O e and O a horizons differed among unmanaged and managed beech–oak forests. We attributed these differences to partly faster turnover of organic C, stimulated by greater CWD input in the unmanaged forest. Alternatively, the slower turnover of organic C in the managed forests resulted from lower litter quality following thinning or different tree species composition. Radiocarbon signatures of water-extractable dissolved organic carbon (DOC) from the top mineral soils point to CWD as potent DOC source. Our results suggest that 40–100 years of forest protection is too short to generate significant changes in C stocks and radiocarbon signatures of forest soils at the stand level.  相似文献   

20.
Despite the low timber productivity of Mediterranean Pinus halepensis Mill. forests in south-eastern Spain, they are a valuable carbon sequestration source which could be extended if young stands and understories were considered. We monitored changes in biomass storage of young Aleppo pine stands naturally regenerated after wildfires, with a diachronic approach from 5 to 16 years old, including pine and understory strata, at two different quality sites (dry and semiarid climates). At each site, we set 21 permanent plots and carried out different thinning intensities at two ages, 5 and 10 years after fires. We found similar post-fire regeneration capacity at both sites in terms of total above-ground biomass storage ~6 Mg ha?1 (3 Mg ha?1 of the above-ground pine biomass plus 3 Mg ha?1 of the above-ground understory biomass), but with a contrasting pine layer structure. Generally, across the diachronic study, the earlier thinning reduced biomass stocks at both sites, except for the best quality site (the dry site), where the earliest thinning (applied at post-fire year 5) enlarged carbon storage by 11 % as compared to non-thinned plots. We found root:shoot ratios of an average 0.37 for the pine layer and 0.45 for the understory layer. These results provided new information which not only furthers our understanding of carbon sequestration in low timber productivity Mediterranean forests, but will also help to develop new guidelines for sustainable management adapted to the high-risk terrestrial carbon losses of fire-prone areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号