共查询到2条相似文献,搜索用时 0 毫秒
1.
One-year-old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings were grown for 17 weeks in 100-cm deep, 7.8-liter containers. Two Douglas-fir provenances, one from a wet and one from a dry site in coastal British Columbia, and two lodgepole pine provenances, one from a wet and one from a dry site in interior British Columbia, were grown in wet (522% water content) or dry (318% water content) peat/vermiculite soil in a factorial design. Each container was sealed so that water loss occurred only through the seedling. Five harvests were made at three to five week intervals and water use, dry matter increment, root length and root weight were determined at each harvest. Stomatal conductance and shoot water potentials were measured during the last 12 weeks of the experiment. Lodgepole pine seedlings had greater dry matter production, water use, stomatal conductance and new root length than Douglas-fir seedlings. New root weight of lodgepole pine seedlings exceeded that of Douglas-fir seedlings during the last five weeks of the experiment, and specific root length (root length per unit root weight) of new roots was higher for lodgepole pine seedlings throughout the experiment. Douglas-fir seedlings showed higher water use efficiency (WUE) than lodgepole pine seedlings, and both species showed higher WUE in the dry soil treatment. Douglas-fir seedlings had lower water potentials and higher water uptake rates per unit of new root length than lodgepole pine seedlings, although water uptake rates per unit of root dry weight showed little difference between species. Soil water treatment influenced specific root length of new roots, water uptake per unit of new root length, and WUE in Douglas-fir seedlings more than in lodgepole pine seedlings. 相似文献
2.
《Scandinavian Journal of Forest Research》2012,27(6):532-544
Abstract This transect study in 41–178 year-old stands of Lodgepole pine (Pinus contorta DOUGL. ex. LOUD.) in the southern boreal forest of British Columbia, Canada, analyses how site conditions modify the coarse root–shoot dynamics of trees. The allometric relationship between diameter growth of coarse roots and trunk is scrutinised for long-term site dependence, and short-term reactions to periodic climate conditions. Along a gradient from poor to rich sites, we analysed 54 trees. The sampling scheme provided two increment cores each from the three main roots and the shoot at breast height per tree. From the year-ring series, we calculated diameter time series for each shoot and each root. With these data, we show (1) that the trees’ coarse root diameter and shoot diameter are linearly related in a double-logarithmic coordinate system, thus representing constant allometry on the long run. Statistical analysis of these long-term trajectories reveals that (2) the relative allocation to coarse roots versus shoot is much higher on poor sites compared to rich sites. A closer look at the short-term reaction to stress events in the period from 1995 to 2000, where several dry years occurred, underpins that (3) a lack of water supply triggers biomass allocation in favour of coarse roots at the expense of shoot growth most pronouncedly on poor sites. Implications of this morphological plasticity for allometric theory, method development, tree and stand dynamics and carbon storage assessment are discussed. 相似文献