首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effectiveness of feeding barriers to protect seedlings against damage caused by pine weevil (Hylobius abietis) was evaluated in experiments established from 1995 to 1999 in southern Sweden. For this purpose the damage done to containerized seedlings protected by various types of barrier was evaluated, and compared with damage to untreated and insecticide (permethrin)-treated seedlings. Three types of feeding barrier that gave significant protection during the first 3 yrs were recognized: coating on the stem bark, shields with a collar at the top, and shields without a collar. The mean accumulated mortality caused by pine weevil for coatings (47%) and shields without a collar (59%) was significantly higher than the corresponding figure for permethrin treatment (13%), whereas shields with a collar (26%) did not differ significantly from the permethrin treatment in this respect. The highest mortality was found for untreated controls (87%).  相似文献   

2.
Alternative methods of protection are required against feeding by the large pine weevil (Hylobius abietis) on the bark of conifer seedlings. Silicon (Si) has been shown to enhance the resistance of plants to insect herbivores. This study investigated the effects of low doses of Si-rich soil amendments on growth, mortality and bark feeding damage of Sitka spruce (Picea sitchensis) seedlings. Two-year old seedlings were grown, individually, in soil taken from a tree nursery treated with coal ash, peat ash, rice husk ash, slag, sodium metasilicate or a commercially available Si fertiliser (Pro-Tekt) and planted out on two reforestation sites in Ireland. Seedlings grew well (about 20% growth in terms of height, 66% in root collar diameter, after two growing seasons), and Si-rich amendments did not have a significant effect on growth or mortality. Bark feeding damage on Si-treated seedlings did not vary significantly from control seedlings. Bark Si concentrations were not significantly larger in treated seedlings than in control seedlings, but control seedlings already had comparatively high bark Si concentrations (560?mg?kg?1 dry tissue). In conclusion, Sitka spruce seedlings grown in the presence of Si-rich soil amendments prior to planting did not show greater resistance to weevil feeding under the present conditions.  相似文献   

3.
Damage caused by pine weevil (Hylobius abietus L.) to planted seedlings and cuttings of Norway spruce (Picea abies (L.) Karst.) was studied at five clearcut sites in south-eastern Sweden. The main objective was to compare the two types of stock in terms of attack frequency and mortality due to pine weevil feeding. Cuttings and seedlings with the same initial stem-base diameter (4 mm) were compared. Two sites were harvested and scarified shortly before planting, two were harvested shortly before planting, but were not scarified, and one was harvested 2 years before and scarified the autumn before planting. The total mortality 5 years after planting was highest, greater than 90%, at the new, non-scarified sites, and lowest, 23%, at the old, scarified site. More than 90% of the mortality was caused by pine weevil feeding. Attack frequency and pine weevil induced mortality were significantly higher among seedlings than among cuttings. Mortality due to pine weevil damage was 4–43% higher in seedlings than in cuttings after the fifth year. Of the cuttings and seedlings that were attacked in the first year, a significantly higher frequency of the seedlings were girdled. The higher resistance of cuttings to pine weevil damage may partly explain the more rapid growth of cuttings reported in other studies. However, the causes of their higher resistance need to be further investigated. The thicker bark and needles on the stem base of the cuttings could be important in this respect.  相似文献   

4.
Damage by the large pine weevil, Hylobius abietis (L.), is a major threat to conifer plantations throughout Eurasia, but damage is usually less severe in northern areas. However, pine weevil damage seems to increase if the sites are burnt. The aim of this study was to determine the effects of variations in the time of planting (with respect to the total age of the clear-cut and the time since burning) on pine weevil damage to seedlings on burnt sites in northern Sweden. The study also explored whether there is an optimal time for planting at which damage levels are reduced to acceptable levels. Ten sites were selected in an inland area of northern Sweden where pine weevils are normally scarce. The sites were dry–mesic and represented a range of times since clear-cutting and since burning. The sites were planted in June 1998, 1999 and 2000 with 1-year-old container-grown seedlings of Norway spruce [Picea abies (L.) Karst.]. Pine weevil damage was reduced if planting was done no earlier than 3 years after clear-cutting and no earlier than 2 years after burning. Planting too soon after burning, irrespective of the age of the clear-cut, resulted in unacceptably high damage levels.  相似文献   

5.
Feeding by pine weevil (Hylobius abietis L.) causes severe damage to newly planted conifer seedlings in most parts of Scandinavia. We investigated the effect of planting time and insecticide treatment on pine weevil damage and seedling growth. The main objective was to study if planting in early autumn on fresh clear-cuts would promote seedling establishment and reduce the amount of damage caused by pine weevil the following season. The experiment was conducted in southern Sweden and in south-eastern Norway with an identical experimental design at three sites in each country. On each site, Norway spruce seedlings with or without insecticide treatment were planted at four different planting times: August, September, November and May the following year. In Sweden, the proportion of untreated seedlings that were killed by pine weevils was reduced when seedlings were planted at the earliest time (August/September) compared to late planting in November, or May the following year. This pattern was not found in Norway. The average length of leading shoot, diameter growth and biomass were clearly benefited by planting in August in both countries. Insecticide treatment decreased the number of seedlings killed or severely damaged in both Norway and Sweden.  相似文献   

6.
Abstract

Pine weevil (Hylobius abietis L.) damage to seedlings after overstorey removal was investigated in a survey study in six shelterwoods in the south–central part of Sweden. The shelterwoods predominantly consisted of Scots pine, except at one site where the shelter trees mainly consisted of Norway spruce. Before final cutting, 10 plots were laid out at each site and measurements of shelter trees and marked seedlings were taken. The seedlings were examined during the 2 years after final cutting. The study showed that removal of shelter trees increases the risk of severe damage by pine weevil and the variable that was most strongly correlated with the risk was the seedling root collar diameter. Both Scots pine and Norway spruce seedlings were severely damaged by pine weevil, and most of the feeding occurred during the first year after cutting. The amount of debarked area was significantly larger for Scots pine than for Norway spruce seedlings. Vitality (growth of the leading shoot before final cutting) of the seedlings also affected the probability of damage. Seedlings with high vitality were less damaged by pine weevil than seedlings with low vitality. For Scots pine the shelterwood density before final cutting was correlated to the intensity of pine weevil feeding after cutting. In conclusion, after the final cutting of a pine or spruce shelterwood, pine weevils will probably invade the area. To avoid serious damage, Norway spruce and Scots pine seedlings should have reached a diameter of at least 10–12 mm.  相似文献   

7.

Örlander, G.1 and Nilsson, U. (Swedish University of Agricultural Sciences, The Southern Swedish Forest Research Centre, Asa Forest Research Station, S-360 30 Lammhult, Sweden and Swedish University of Agricultural Sciences, The Southern Swedish Forest Research Centre, Box 49, S-230 53 Alnarp, Sweden). Effect of reforestation methods on pine weevil (Hylobius abietis) damage and seedling survival. Received Feb. 16, 1998. Accepted Sept. 15, 1998. Scand. J. For. Res. 00: 000-000, 199X. Damage to Norway spruce (Picea abies (L.) Karst.) seedlings by the large pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae), was monitored in relation to clear - cutting age and silvicultural treatments in southern Sweden. New clear - cuttings were established on four sites during five consecutive years, and seedlings were planted on them from 1989 through 1993. In total, 31 774 seedlings were planted on 20 clear - cuttings. The measures evaluated were seedling insecticide treatment, application of herbicide to ground vegetation, scarification (mound) and planting late in the season. In addition, the effects of slash removal and seedling type were studied. The pine weevil was, by far, the dominant damaging agent. Planting without insecticide or soil treatment on fresh, one- or two - year - old clear - cuttings resulted in a mean level of weevil - caused mortality exceeding 60%. The results indicate that the risk of serious damage by pine weevils remains high until the clear - cuttings reach four or five years of age. Killing the vegetation with herbicide had no effect on pine weevil damage. Slash removal decreased damage on older clear - cuttings, but the effect was small. Scarification (mounding) strongly reduced damage. On fresh clear - cuttings the mean mortality caused by pine weevils in mounded plots was 13%, whereas it was 77% in the controls. The mounding effect varied between sites and clear - cuttings of different ages. Late planting (10 June instead of 1 May) reduced damage on two- and three - year - old clear - cuttings. Three - year - old, bare - rooted seedlings were not damaged as seriously as two - year - old, containerized ones, but the effect was probably due to the larger size of the bare - rooted seedlings. Non - lethal injury resulted in reduced seedling growth. Damage by pine weevils varied between years and within growing seasons. However, on fresh, one- and two - year - old clear - cuttings, damage was severe enough to cause high mortality during all studied years.  相似文献   

8.
Damage to conifer seedlings caused by the pine weevil, Hylobius abietis, was estimated within eighty-two forest sites in Northern Ireland. A wide range of environmental variables were compared with the variation in damage between study sites using multiple logistic regression. Although 45 explanatory variables were considered only four were identified as significant within the final model. The four variables were the size of the planted area, the age of the planting, whether the majority of seedlings were self-seeded or planted, and if the site had been previously planted or was a newly planted area. The identification of these four variables indicates that it is possible to build a model identifying areas at risk to weevil damage. Further, although three of the factors have been recognised as significant influences on weevil damage for some time, they still remain important variables within British Isles forestry, suggesting that there is further scope for more precise targeting of weevil control measures.  相似文献   

9.

Pine weevils (Hylobius spp.) feeding on stem bark of young conifer seedlings pose a serious threat to forest regeneration-planting programmes in Nordic countries. This study was designed to determine the threshold diameter for planted, untreated containerized seedlings, above which pine weevils cause little or no damage. The effects of sublethal weevil damage on seedling growth were also assessed. In total, 5320 containerized spruce seedlings were planted on scarified and unscarified plots on three sites in southern Sweden. Seedlings in six size classes, which differed with regard to age (1.5-3.5 yrs) and cultivation density (28-446 seedlings m 2) were grown using the Combicell system. None of the seedlings was treated with insecticides, except for those in the smallest class, where both untreated and treated seedlings were used. Inspections were made periodically during the first 3 yrs and after both 5 and 7 yrs. A statistically significant relationship was found between seedling losses due to pine weevil attack and seedling stem-base diameter at the time of planting out, on both scarified and unscarified plots. For seedlings with a stem-base diameter of around 10 mm, mortality due to pine weevil attack on scarified plots was low enough to be considered negligible. This threshold diameter was several millimetres greater for seedlings planted on unscarified plots. An analysis of the relationship between the extent of weevil damage and seedling growth rate showed that among surviving seedlings, those that grew fast tended to show low levels of damage. On unscarified plots, the mortality rate amongst seedlings treated once with a permethrin insecticide was only one-third that of untreated seedlings. On scarified plots, the corresponding difference was somewhat smaller. Repeated insecticide treatment resulted in a pronounced reduction in seedling mortality on the unscarified plots, whereas the effect was weaker on scarified plots.  相似文献   

10.
Replanting at appropriate times after harvesting a coniferous forest stand can help efforts to suppress seedling mortality caused by the pine weevil Hylobius abietis, but optimal times are uncertain. We hypothesized that planting in June rather than May in the third season after harvest would reduce feeding damage by the pine weevil and increase seedling survival rates in central Sweden, where new-generation weevils mainly fly away from their development sites in May/early June. An experimental test of the hypothesis in eight clear-cuts confirmed that planting in June instead of May reduced proportions of seedlings attacked by pine weevil, bark removal from seedlings’ stems, and proportions of seedlings killed by feeding damage. These differences between seedlings planted in May and June declined to some extent with time but still remained significant after two growing seasons. The total seedling mortality after two seasons did, however, not differ significantly between seedlings planted in May and June. Overall, 29% of all seedlings were killed by pine weevil, 4.0% by Hylastes bark beetles, and 2.3% by drought. The results indicate that replanting in spring during the third season after harvest can advantageously continue until mid-June with respect to damage and mortality.  相似文献   

11.
Removal of logging residues causes significant nutrient losses from the harvesting site. Furthermore, collection of residues into piles could lead to small-scale differences in establishment conditions for seedlings. We studied the effects of stem-only (SOH) and aboveground whole-tree harvesting (WTH) on Norway spruce (Picea abies) seedling growth and pine weevil (Hylobius abietis) damage at two sites (SE and W Norway). We also compared two planting environments within the WTH plots (WTH-0: areas with no residues, WTH-1: areas where residue piles had been placed and removed before planting). In practice, one-third of the residues were left on site after WTH. After three growing seasons there were no differences for height or diameter increment between SOH and WTH (WTH-1 and WTH-0 combined) treatments. However, relative diameter increment was largest for WTH-1 seedlings and lowest for WTH-0 seedlings. Few seedlings sustained pine weevil attacks at the W Norway site, with no differences among treatments. At the SE Norway site, the percent of seedlings damaged by pine weevils and average debarked area were significantly higher after WTH (82% and 3.3?cm2) compared to SOH (62% and 1.7?cm2). We conclude that WTH may lead to spatial differences in establishment conditions.  相似文献   

12.
Damage to planted conifer seedlings by the pine weevil, Hylobius abietis (L.), is considered to be less severe in shelterwoods than in clear-cuttings. To evaluate possible reasons for this reduction, this study investigated the relationship between seedling damage and pine weevil population density in the presence and absence of shelter trees. Assessments of seedling damage throughout a full growth season and absolute population density estimates were made at a fresh clear-cutting and an adjacent shelterwood (1 ha each). A grid of 100 pitfall traps was placed over each area, and population estimates were made using the mark–recapture technique. Pine weevil damage to seedlings was about twice as high in the clear-cutting, whereas pine weevil density was estimated to be higher in the shelterwood or about the same in the two treatments (~14?000 weevils ha?1). Existing differences in microclimate between the shelterwood and clear-cutting did not seem to be the cause of the differences in damage levels. Thus, the hypothesis that seedling damage is reduced in shelterwoods because of increased availability of alternative food remains a candidate for further testing.  相似文献   

13.
邵景文 《林业研究》1995,6(4):36-40
THEACTIONLAWoFADULTThcadultsofOsierweevilwereobservedonafixedspotinfieldandraisedindoorsandinfieldseparatelyinl987-9o.Theboxes(4()x4()x6ocm)ineachofWhichl5pairsofadultswereplacedwereusedwiththrcere-peats.Thesamesizesofboxesinwhichtl1eadultsxvcrcraisedx`eredesignedindoorswithtWorepeats.l5canswerealsousedineachofwhlchapairofadultwasplaced.ThefreshbranchesofPoplarthattheadultswcrelikctoeatt`crereplacedilladayabout.ThcEmcrgcnccLawofAdultOsierwecvilstartcdemergenceinthclasttendaysofJuly.…  相似文献   

14.
In northern Europe, there are high risks of severe pine weevil (Hylobius abietis) damage to newly planted conifer seedlings. Site preparation is one of the most important measures for reducing these risks and as several studies have shown the damage is highly dependent on the amount of pure mineral soil around the seedlings. We investigated effects of three site preparation techniques: (1) disc trenching with a conventional Bracke T26, (2) MidiFlex unit and (3) soil inversion with a Karl Oskar unit on characteristics of the planting spots, growth and pine weevil damage and survival rates of untreated and insecticide treated planted Norway spruce (Picea abies) seedlings. All three site preparation techniques reduced pine weevil damage in comparison with no site preparation, and the proportion of spots with pure mineral soil they created was inversely related to the rate of mortality caused by pine weevil. The results indicate that the quality of the planting spots depends on the technique used. In areas where pine weevil is the major threat to seedling survival, the amount of mineral soil in the planting spots is the most important factor in order to protect the seedling from damage. Without site preparation most planting spots consisted of undisturbed humus. Generally, the Karl-Oskar created the most spots with pure mineral soil, but on very stony soils the Bracke T26 created more mineral soil spots than other methods. Site preparation is a valuable tool in order to improve survival in regeneration areas and it is of great importance to make the right choice of technique depending on the particular circumstances on the actual site.  相似文献   

15.
A method for trapping walking Hylobius abietis (L.) (Coleoptera: Curculionidae) was developed and evaluated. Synergism between α‐pinene and ethanol in attracting H. abietis was confirmed. The effects of varying release rates of these substances and of adding other host terpenes were studied. A simple bait was developed containing α‐pinene and ethanol released from separate vials. The correlation between trap catch and seedling damage was estimated during May, June, and August on 1‐, 2‐, and 3‐year‐old clear‐cuttings. In May and June, population levels were relatively high on all clear‐cuttings and no significant correlations were found. The August experiment showed a strong positive correlation between catch and damage. The percentage damaged seedlings per captured weevil was considerably higher in August than in May or June. Possibilities for developing a system for forecasting seedling damage using this trapping method are discussed.  相似文献   

16.
We investigated the effects of herbaceous and woody vegetation control on the survival and growth of planted eastern white pine (Pinus strobus L.) seedlings through six growing seasons. Herbaceous vegetation control involved the suppression of grasses, forbs, ferns, and low-shrubs, and was maintained for 0, 2, or 4 years after white pine seedlings were planted. Woody control involved the removal of all tall-shrub and deciduous trees, and was conducted at the time of planting, at the end of the second or fifth growing seasons, or not at all. Seedling height and basal diameter responded positively and proportionally to duration of herbaceous vegetation control. Gains associated with woody control were generally not significant unless some degree of herbaceous vegetation control was also conducted. Only herbaceous control increased pine crown closure and rate of crown closure. Herbaceous control and the presence of 5000–15,000 stems per ha of young overtopping aspen were associated with reduced weevil (Pissodes strobi Peck.) injury and increased pine height growth. The study suggests that white pine restoration strategies on clearcut sites should focus on the proactive, early management of understory vegetation and the gradual reduction of overtopping cover from woody vegetation to create a seedling light environment that supports acceptable growth with minimal weevil damage.  相似文献   

17.
We tested the hypothesis that fertilized containerized Pinus canariensis seedlings increases survival when planted in semiarid sites through the improvement of their physiological status during the establishment phase by an increment in root growth. Seedlings were cultured under two different regimes: traditional (in non-fertilized natural soil) and alternative (in fertilized peat). Morphological attributes and nitrogen content were measured before planting. Measurements of survival and growth in the plantation were made periodically for 2 years and physiological plant responses (leaf water potential, gas exchange and chlorophyll fluorescence) during the third summer after planting were tested and finally a set of plants were excavated to measure the same parameters as before planting. Seedlings cultivated using fertilized peat achieved the highest values for all of evaluated parameters. During the third dry season, big seedlings exhibited better physiological status. Therefore, enhanced root growth can result in better water uptake during the dry period thereby increasing survival and growth in the next few years after planting. A feed-back physiological model is proposed to explain P. canariensis establishment in a semiarid environment.  相似文献   

18.
Results are presented from several studies on the epidemiology of Armillaria ostoyae in Douglas‐fir plantations in the interior cedar‐hemlock (ICH) biogeoclimatic zone of British Columbia. Two plantations were monitored for mortality by A. ostoyae and other agents for 35 years after establishment. In these and other plantations ranging in age from 7 to 32 years, one or more of the following factors were determined: source of inoculum, mode of spread and characteristics of lesions on roots of excavated trees; symptom expression in relation to tree age and damage to the root system and years from initial infection to death on trees killed by the fungus. Mortality from A. ostoyae began in both plantations about 5 years after planting, reaching 30% in one and 11% in the other after 35 years. The spatial pattern of mortality was similar to that reported from New Zealand, France and South Africa; however, the temporal pattern differed, beginning later and, instead of declining, continuing at a nearly constant rate to the present. To age 10, nearly all infections were initiated by rhizomorphs; as plantations aged, the proportion of infections occurring at root–root contacts increased. In seven plantations, in moist and wet subzones of the ICH, from 23 to 52% of Douglas‐firs had root lesions, with the higher incidences occurring on moist sites. The occurrence of aboveground symptoms, reduced leader growth and basal resinosis, was related to the percentage of root length colonized by A. ostoyae on trees with more than 30% of root length killed. Average time from infection to death increased from 1 to 2 years at age 6 to 22 years at age 33. The outlook for timber yield from Douglas‐fir plantations in the cedar‐hemlock zone is discussed. Management alternatives for reducing damage from A. ostoyae when regenerating sites are reviewed.  相似文献   

19.
Reciprocal families of Scots pine, Pinus sylvestris (L.), from a Swedish seed orchard were artificially freeze tested to ‐10°C at the end of the first growth period. The degree of freezing damage was used as an indication of the cold acclimatization achieved at the time of freeze testing. Both one‐year cold acclimatization and one‐year height were mainly additively inherited. Specific combining ability, reciprocal and maternal effects were small. On the family level, freezing damage was non‐significantly correlated with field survival and field height after ten years. One‐year height was positively correlated with 10‐year field height and negatively correlated with field survival on the family level. Within families, plants from early germinated seeds cold acclimated earlier and were higher at the end of the first growth period than plants from lately germinated seeds. The results indicate that conclusions made from first‐year cold acclimatization studies can be influenced by variation in the rate of seed germination and seedling/germinant development.  相似文献   

20.
The effects on seedling survival and growth of a new scarification method, inverting, were evaluated over 10‐yrs after planting lodgepole pine and Norway spruce on a 2‐yr‐oId clear‐cut in northern Sweden. Inverting, which provides planting spots containing humus turves covered in loose mineral soil without making mounds or ridges, was compared with ploughing, mounding, disc trenching, and no scarification. Subplots with high or low planting positions were used to assess small‐scale topographical effects. For both species, the treatment ranking according to stem volume production after 10‐yrs was inverting > ploughing ≥ mounding = disc trenching > no scarification. Inverting improved seedling height growth by approximately 35% compared with mounding or disc trenching and by more than 100% compared with no scarification. High survival rates were also found following inverting, but only the no‐scarification treatment resulted in a statistically significant reduction in survival rates (ca. 25%) for both species. Further development of the inverting technique might give environmental advantages compared with conventional mechanical site preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号