首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.

• Introduction  

The accurate estimation of stem taper and volume are crucial for the efficient management of the forest resources. Compatible segmented polynomial taper and volume equations were developed for Brutian pine (Pinus brutia Ten.), Lebanon cedar (Cedrus libani A. Rich.), Cilicica fir (Abies cilicica Carr.), Scots pine (Pinus sylvestris L.), and Black pine (Pinus nigra Arnold.).  相似文献   

2.
The effects of forest site type and logging intensity on polyporous fungi were studied in subxeric, mesic and herb-rich forests and spruce mires in northern Finland. The species richness of polypores did not follow the fertility gradient of the site types, but was connected with the amount and diversity of coarse woody debris (CWD). The total number of species, and the numbers of indicator and threatened species were equal in subxeric pine forests and in more fertile spruce-dominated stands. The species composition of pine-dominated forests differed conspicuously from that of spruce-dominated site types. The total number of species was not affected by logging intensity, but no virgin forest species or threatened species were found on the sites where the number of cut stumps exceeded 150 stumps ha?1. Increasing logging intensity decreased the number of polypore observations, indicating reduced substrate availability. The results stress the importance of protecting not only fertile spruce-dominated stands, but also poorer, pine-dominated forests, and sites with high and diverse CWD content.  相似文献   

3.
Foresters may require to estimate the diameter at breast height(d.b.h.) and the volume of trees that have been cut, and mayonly have available the stumps as an indicator of the size ofthe trees. In the present study, equations for predicting bothd.b.h. and volume from stump diameter inside bark were developedfor major pine species in the forest region of El Salto, Durango(Mexico). The d.b.h. was estimated with relatively high accuracywith a simple linear model. The tree volume was also estimatedwith high precision by use of an allometric equation. Weightedlinear and non-linear least squares methods were used to takeinto account the problem of heteroscedasticity observed in thevolume–stump diameter relationships. The results of thenon-linear extra sum of squares method and of the F tests indicatedthat species-based equations for estimating both d.b.h. andvolume from stump diameter are required.  相似文献   

4.
While maximizing plant species richness continues to be central in the design, conservation and reforestation action plans, plant life histories are receiving increasing attention in assessments for the conservation of biodiversity in fragmented landscapes. We investigated the determinants of woody plant species (trees, shrubs and climbers) richness in the forest patches of the Guadalquivir river valley, a Mediterranean agricultural landscape with ∼1% forest cover. We analyzed three species richness variables, total, and those corresponding to species with short-distance (ballistic, barochorous, myrmecochorous and short-distance anemochorous) and long-distance (anemochorous, endozochorous, exozoochorous, hydrochorous and dyszoochorous) dispersal systems, which significantly characterize earlier and late successional stages, respectively. We selected eleven predictor variables related to habitat structure (patch area, shape, distances to the nearest patch and reserve, and general isolation), physical environment (temperature, precipitation, elevation, and lithological heterogeneity), and anthropogenic influences (disturbance and proportion of old-growth forest). We used ordinary-least-squares multiple regression (OLS) and the Akaike's information criterion (corrected for spatial autocorrelation) and derived indices to generate parsimonious models including multiple predictors. These analyses indicated that plant species richness increase primarily along with increasing patch area and decreasing disturbance, but also detected secondary effects of other factors when dispersal was considered. While the number of species with potential long-distance dispersal tended to increase in more isolated patches of areas with greater precipitation and lithological heterogeneity (e.g. highlands at the valley edges), the number of species with short-distance dispersal increased towards drier and less lithologically complex zones with shorter between-patch distances (e.g. central lowlands). Beyond emphasizing the need to consider dispersal in fragmentation studies, our results show that woody plant species richness would be favoured by actions that increase patch area and reduce anthropogenic disturbances particularly in lowland forests.  相似文献   

5.
Community forestry is expanding in developing countries but there is limited knowledge of, and contradictory findings about, its contribution to biodiversity conservation. This study aims at increasing the understanding of tree species diversity in community forests compared to National Parks. A forest inventory was carried out in four community forests and one National Park in the mid-hills of central Nepal. The study found that community forestry has contributed to high tree species diversity where forest management communities have interests in multiple species, but most community forests are moving toward promoting limited timber yielding species that have high economic value. Linking community forestry with economic incentives for conserving multiple tree species could therefore be a strategy to conserve biodiversity outside of protected areas.  相似文献   

6.
Accurate and efficient estimation of forest growth and live biomass is a critical element in assessing potential responses to forest management and environmental change. The objective of this study was to develop models to predict longleaf pine tree diameter at breast height (dbh) and merchantable stem volume (V) using data obtained from field measurements. We used longleaf pine tree data from 3,376 planted trees on 127 permanent plots located in the U.S. Gulf Coastal Plain region to fit equations to predict dbh and V as functions of tree height (H) and crown area (CA). Prediction of dbh as a function of H improved when CA was added as an additional independent variable. Similarly, predic- tions of V based on H improved when CA was included. Incorporation of additional stand variables such as age, site index, dominant height, and stand density were also evaluated but resulted in only small improvements in model performance. For model testing we used data from planted and naturally-regenerated trees located inside and outside the geographic area used for model fitting. Our results suggest that the models are a robust alternative for dbh and V estimations when H and CA are known on planted stands with potential for naturally-regenerated stands, across a wide range of ages. We discuss the importance of these models for use with metrics derived from remote sensing data.  相似文献   

7.
8.
《Southern Forests》2013,75(4):221-237
The relationship between tree height (h) and tree diameter at breast height (dbh) is an important element describing forest stands. In addition, h often is a required variable in volume and biomass models. Measurements of h are, however, more time consuming compared to those of dbh, and visual obstructions, rounded crown forms, leaning trees and terrain slopes represent additional error sources for h measurements. The aim of this study was therefore to develop h–dbh relationship models for natural tropical forest in Tanzania. Both general forest type specific models and models for tree species groups were developed. A comprehensive data set with 2 623 trees from 410 different tree species collected from a total of 1 191 plots and 38 sites covering the four main forest types of miombo woodland, acacia savanna, montane forest and lowland forests was applied. Tree species groups were constructed by using a k-means clustering procedure based on the h–dbh allometry, and a number of different non-linear model forms were tested. When considering the complexity of natural tropical forests in general and in particular variations of h–dbh relationships due to high species diversity in such forests, the model fit and performance were considered to be appropriate. Results also indicate that tree species group models perform better than forest type models. Despite the fact that the residual errors level associated with the models were relatively high, the models are still considered to be applicable for large parts of Tanzanian forests with an appropriate level of reliability.  相似文献   

9.
Many wood-inhabiting fungi are today threatened as modern forestry practices drastically reduce the amount of dead wood available in various forest ecosystems. We investigated whether the occurrence of red-listed wood-inhabiting fungi differed between natural and managed forest landscapes adjacent to the timberline in the middle part of Sweden. We assessed whether environmental variables such as the degree of human impact, length of forest roads, dead wood volume and quality affected species richness and abundance. The effects of forestry on wood-inhabiting fungi have been assessed in several studies in lowland Swedish forests. Few studies have, however, been conducted in forest landscapes adjacent to the timberline in Sweden. This is potentially important since forests close to the Swedish mountains have been pointed out as one of few intact forest landscapes in Fennoscandia and they are subjected to increasing logging pressure. Similar to other studies, species numbers and abundances were positively correlated with larger volumes of logs in various decay stages. However, never shown previously, the length of forest roads was negatively correlated with species abundance and occurrence of red-listed species. We suggest that a low amount of forest roads can be used as a conservation indicator to localize still-intact forest landscapes.  相似文献   

10.
We analyzed the relationship between species richness and biomass in natural forest communities at two similar sites on Mt. Xiaolongshan, northwest China. At both sites, a wide range of tree layer biomass levels was available by local biomass estimation models. In order to identify underlying mechanism of the species richness-biomass relationship, we included different water resource levels and number of individuals in each plot in our analysis. We sampled 15 and 20 plots (20 m ×20 m), respectively, at both two sites. These plots were sampled equally on the sunny slope and the shady slope. Species richness, number of individuals of each species and diameter at breast height (DBH) as a substitute of biomass of tree layer were recorded in each sample. At one site, the relationship between species richness and biomass was significant on the sunny slope, and this relationship disappeared on the shady slope due to more environmental factors. The relations between species richness and number of individuals and between number of individuals and biomass paralleled the species richness-biomass relation on both slopes. The difference in number of individuals-biomass relationships on the sunny slope and the shady slope revealed "interspecific competitive exclusion" even though the species richness-biomass relationships were not hump-shaped. At the other site, species richness was not related to biomass or to number of individuals. Our study demonstrated the importance of environmental stress and succession of community in the understanding of species diversity-productivity patterns.  相似文献   

11.
Sustainable management of plant diversity in a forest requires adequate information that is often derived from samples. With limited resources, the plot design has to be efficient. Most studies focused on evaluating effects of plot designs on sample estimates of species richness at landscape scale. This study aims at filling a knowledge gap by investigating how plot size and shape affect sample estimates of species composition at a local scale. Two census datasets with distinct forest ecosystems were used. Fifteen combinations of plot size and shape were simulated. Species compositional similarity between two combinations of plot design at a sample point was estimated by Jaccard and Sørensen indices, and their abundance-adjusted counterparts. Similarity in species composition decreased with increasing difference between two plot sizes. Plots with varying shapes were found to have different local species composition but could be similar in the number of observed species, which has not been explicitly reported elsewhere. For less species-rich forests, a 0.025–0.05 ha circular plot is recommended. For species-rich forests, a 0.05–0.1 ha rectangular plot with aspect ratio of at least 1:20 is recommended. The results should be of interest to stakeholders managing small area forests for conservation of plant diversity.  相似文献   

12.
天然油松林与人工油松林物种结构等方面存在一定差异,其群落物种丰富度和最小面积也不同。本文对河北蔚县的天然次生油松林和人工油松林的物种丰富度及木本植物群落最小面积进行了探讨。结果表明,油松天然林乔木物种丰富度较人工林高,乔木幼苗幼树差距不大,灌木物种丰富度比人工林高,草本物种丰富度比人工林低。从总的物种组成来看,天然油松林与人工油松林具有较高的相似性。用8个模型对天然林和人工林木本植物种-面积曲线分别进行了拟合,并确定各自的最优模型,得出各取样比例时的最小面积。结果表明,当所取物种比例为0.6及以下时,天然林的最小面积小于人工林;而所取比例为0.7及以上时,天然林的最小面积大于人工林。  相似文献   

13.
Blakesley  David  Hardwick  Kate  Elliott  Stephen 《New Forests》2002,24(3):165-174
Some governments in Southeast Asia, such as those of Thailand and Vietnam have clear policies to restore large areas of degraded land to native forest. However, knowledge needed for the success of these ambitious programmes is still inadequate, and considerable further research is required. Furthermore, very little literature is available to conservation practitioners about the restoration of tropical forests for biodiversity conservation. This paper introduces the framework species method of forest restoration, which is being developed to restore forests in Thailand. The paper examines the potential for adoption of this technique in different forest types across the Southeast Asia region, and identifies priorities for future research needed before the method can be widely implemented. These include the identification of forest types, the selection of candidate framework species, maintenance of genetic diversity, and development of methods of seed collection and germination.  相似文献   

14.
Tree species diversity and population structure at different community types were described and analyzed for primary and secondary lowland moist deciduous forests in Tripura.Overall 10,957 individual trees belonging to 46 family,103 genera and 144 species were counted at ≥30 cm DBH(diameter at breast height) using 28 permanent belt transects with a size of 1 ha(10 m × 1000 m).Four different tree communities were identified.The primary forests was dominated by Shorea robusta(mean density 464.77 trees ha-1,105 species) and Schima wallichii(336.25 trees ha-1,82 species),while the secondary forests was dominated by Tectona grandis(333.88 trees ha-1,105 species) and Hevea brasiliensis(299.67 trees ha-1,82 species).Overall mean basal area in this study was 18.01m 2 ·ha-1 ;the maximum value was recorded in primary Shorea forest(26.21 m 2 ·ha-1).Mean density and diversity indices were differed significantly within four different communities.No significant differences were observed in number of species,genera,family and tree basal cover area.Significant relationships were found between the species richness and different tree population groups across the communities.Results revealed that species diversity and density were increased in those forests due to past disturbances which resulted in slow accumulation of native oligarchic small tree species.Seventeen species were recorded with <2 individuals of which Saraca asoka(Roxb.) de Wilde and Entada phaseoloides(L.) Merr.etc.extensively used in local ethno-medicinal formulations.The present S.robusta Gaertn dominated forest was recorded richer(105 species) than other reported studies.Moraceae was found more speciose family instead of Papilionaceae and Euphorbiaceae than other Indian moist deciduous forests.Seasonal phenological gap in such moist deciduous forests influenced the population of Trachypithecus pileatus and capped langur.The analysis of FIV suggested a slow trend of shifting the population of Lamiaceae group by Moraceae species in secondary T.grandis L.dominated community.  相似文献   

15.
石灰岩山地水土保持林的树种选择   总被引:4,自引:0,他引:4  
在石灰岩山地水土保持立地类型划分的基础上 ,参照相关研究成果 ,通过标准地调查和主要牧草的播种试验 ,以生长量和生物量为指标 ,确定了水土保持林不同立地类型适宜的树 (草 )种  相似文献   

16.
为了给建立生态水源涵养林筛选抗旱节水的优势树种及植被营建合理规划提供科学的理论依据,采用盆栽称重法对7种乔木树种蒸腾耗水规律及环境因子影响等进行试验。结果表明:1)油松、元宝枫T_r日变化为双峰曲线,侧柏、栓皮栎、槲树、刺槐、盐肤木为单峰曲线,峰值出现在9:00—11:00或13:00—15:00;T_r日均值从大到小排序为:栓皮栎(4.40 mmol?m-2s-1)>盐肤木(3.42 mmol?m-2s-1)>槲树(3.13 mmol?m-2s-1)>刺槐(1.95 mmol?m-2s-1)>元宝枫(1.84 mmol?m-2s-1)>油松(1.79 mmol?m-2s-1)>侧柏(1.76 mmol?m-2s-1),阔叶乔木T_r日均值高于针叶乔木的。2)RWUE主要表现为"V"型趋势,9:00—11:00出现最小值,油松、侧柏的抗旱性强于刺槐、元宝枫、栓皮栎、槲树、盐肤木。3)不同天气耗水量从大到小排序为:晴天>半晴天>阴天,7月、8月、9月的耗水量多于5月、6月、10月;不同树种耗水量ATWCA序为元宝枫(0.120 g·cm-2d-1)>盐肤木(0.115 g·cm-2d-1)>栓皮栎(0.098 g·cm-2d-1)>槲树(0.090 g·cm-2d-1)>油松(0.061 g·cm-2d-1)>刺槐(0.053 g·cm-2d-1)>侧柏(0.039 g·cm-2d-1);表明阔叶乔木耗水量多于针叶乔木。4)影响树种叶片蒸腾速率的影响因子主要是光合有效辐射和气孔阻力。  相似文献   

17.
A model that describes the relationship between the form-factors for stem volume and those for stem surface area in coniferous species is proposed. The model is derived assuming that the stem form of a tree can be expressed by Kunze's equation. The model indicated that the form-factor for stem surface area was directly proportional to the square root of the form-factor for stem surface volume, independent of the stem position. The proposed model expressed the relationship of the form-factors for Japanese cedar (Cryptomeria japonica D. Don) and Japanese cypress (Chamaecyparis obtusa Endl.) trees well. Therefore, the form-factors for stem surface area could be estimated from those for stem volume. No significant difference in the coefficient was found between Japanese cedar and Japanese cypress trees, indicating that the proportional coefficient would be common between the two species. Many studies have shown that the form-factors for stem volume at 0.7 and 0.5 in relative height were, respectively, almost steady at 0.7 and 1.0, independent of species, district, density control, and growth stage. Substituting these universal values into the proposed model, the form-factors for stem surface area at 0.7 and 0.5 in relative height were estimated to be 0.730 and 0.873, respectively. The estimated values of the form-factors for stem surface area would be universal for coniferous species. The proposed model also showed that the breast height form-factor for stem surface area decreased sharply with the increase in total tree height, when the height was less than 10 m. However, after the tree attained the total height of 10 m, the breast height form-factor gradually decreased with the total tree height approaching its asymptotic value of 0.605. In conclusion, the model proposed here can be used to describe the relationship between form-factors for stem volume and those for stem surface area successfully.  相似文献   

18.
Mixtures of litter from different plant species often show non-additive effects on decomposition and net N release (i.e., observed effects in mixtures differ from predictions based on litter of the component species), with positive non-additive (i.e., synergistic effects) being most common. Although large amounts of C and N reside in soil organic matter that contribute significantly to the overall C and N cycle, only a few studies have compared species monoculture vs. mixture effects on soil C and N dynamics. We studied the interactive effects of black spruce (Picea mariana), tamarack (Larix laricina), and white pine (Pinus strobus) on soil C respiration and net N mineralization in a plantation in northern Minnesota, USA. The trees were planted in monoculture and in all three possible two-species combinations (mixtures). After 10 years, we measured aboveground plant biomass and soil C respiration and net N mineralization rates in long-term (266 days) and short-term (13 days) laboratory incubations, respectively. Soil C respiration and net N mineralization were significantly lower in mixtures with tamarack than would be predicted from the monocultures of the two component species. Possibly, mixing of lignin rich litter from black spruce or white pine with N rich litter from tamarack suppressed the formation of lignolytic enzymes or formed complexes highly resistant to microbial degradation. However, these antagonistic effects on soil C respiration and net N mineralization in mixtures with tamarack did not result in reduced aboveground biomass in these plots after 10 years of growth. It remains to be seen if these antagonistic effects will affect long-term forest productivity and dynamics in boreal forests.  相似文献   

19.
ABSTRACT

Information regarding carbon concentration and wood density are lacking in Chilimo dry Afromontane forest.

The aim of this study was to estimate carbon concentration and wood density for Allophyllus abyssinicus, Olea europaea, Olinia rochetiana, Rhus glutinosa, and Scolopia theifolia. A total of 105, 30–50 mm thick wood discs were collected and oven dried at 102°C and 67°C to constant weight, chopped and finally grinded into 0.2 mm with a grinding mill. Carbon concentration was analyzed using the ash method, while wood density was estimated using the water displacement method. The highest carbon concentration (57.12%) was found for O. rochetiana, however, the lowest carbon concentration (56.43%) was found for A. abyssinicus. Stem parts had higher carbon concentration (56.98%) than branch (56.74%) and leave (54.53%) parts. O. europaea exhibited the highest wood density (0.67 g cm?3) value than other species. However, the lowest wood density (0.42 g cm?3) was exhibited for A. abyssinicus. Wood density was also showed a decreasing trend along with increases in stem height and maximum wood density (0.62 g cm?3) was found under stump position, while, the minimum wood density (0.4 g cm?3) was found under tree commercial height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号